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Introduction

I Many properties of materials are determined by the variation
of the total energy around the equilibrium configuration of the
system.

I Vast amounts of experimental data have been generated from
studies of vibrational spectra, magnetic excitations, and other
responses to experimental probes.

I First principles calculations have been successfully used to
provide improved understanding of experimental discoveries
and to predict novel properties and behaviour before they
have been observed.
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Static response functions

∂ observable

∂ perturbation

Force constants ≈ ∂Fαi
∂uβj

Elastic constants ≈ ∂σij
∂εkl

Born effective charges ≈ ∂Pi
∂uβj

Piezoelectric constants ≈ ∂Pi
∂εkl

I The response of periodic systems to perturbations
characterised by a wave vector k may be calculated using the
direct method or perturbative methods.
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The direct method

I The direct method involve freezing a perturbation into a
system and calculating the response functions using a finite
difference approach.

I The formalism is conceptually straightforward but only
perturbations commensurate with the simulation cell can be
considered.

I This necessitates the use of supercells and the computational
cost increases rapidly with system size.

I The simplicity of the direct method means that it is often
utilised in the early development of a new field of research.
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Perturbative methods

I Perturbative methods involve determining the linear response
of a system with respect to a perturbation of a given wave
vector.

I It is possible to consider perturbations that are not
commensurate with the periodic lattice using a single
primitive cell.

I Perturbative methods have therefore been used for the
majority of calculations of response functions for solids.

I It requires significant effort to implement linear response
methods for a new physical quantity of interest.
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Supercells

I A supercell is the unit cell of a superlattice, whose basis
vectors are constructed by taking linear combinations of the
primitive lattice basis vectors with integer coefficients.

as1
as2
as3

 =

S11 S12 S13
S21 S22 S23
S31 S32 S33

ap1
ap2
ap3


Sij ∈ Z

I The supercell contains |S| parent primitive cells. We refer to
the matrix S as the supercell matrix.
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Reciprocal space

I The set of plane waves with the same periodicity as the
primitive lattice define the reciprocal primitive lattice.

bp1
bp2
bp3

 = 2π

ap1
ap2
ap3

−T

I The set of plane waves with the same periodicity as the
superlattice define the reciprocal superlattice.

bs1

bs2

bs3

 =

S̄11 S̄12 S̄13
S̄21 S̄22 S̄23
S̄31 S̄32 S̄33

bp1
bp2
bp3


S̄ij = (S−1)ji
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Fractional coordinates

I An arbitrary k-point can be expressed in terms of both the
reciprocal primitive lattice basis vectors and reciprocal
superlattice basis vectors.

ks1ks2
ks3

 =

S11 S12 S13
S21 S22 S23
S31 S32 S33

kp1kp2
kp3


I If the reciprocal superlattice fractional coordinates are all

integers, collective displacements of atoms characterised by
the wave vector k are commensurate with the supercell
defined by S.
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A change of basis

Rn1n2n3 = n1as1 + n2as2 + n3as3

= (n1 − n3)as1 + n2as2 + n3(as1 + as3)

= n′1a
′
s1 + n′2a

′
s2 + n′3a

′
s3

= Rn′1n
′
2n
′
3

I There are a finite number of unique superlattices with unit
cells that contain a given number of primitive cells, but there
are an infinite number of sets of basis vectors that can be
used to describe each superlattice.

I Two different supercell matrices S and S′ generate different
bases for the same superlattice if S′ can be reduced to S by
elementary unimodular row operations.
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Hermite normal form

I The canonical form for elementary unimodular row operations
is the upper-triangular Hermite normal form (HNF):

S11 S12 S13
0 S22 S23
0 0 S33


0 ≤ S12 < S22 and 0 ≤ S13, S23 < S33

I Note that the product S11S22S33 fixes the determinant |S|
and therefore the number of primitive unit cells contained
within the supercell.

I Most previous calculations have used supercell matrices with
S12 = S13 = S23 = 0.
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Commensurate k-points

kp1kp2
kp3

 =

m1
n1
m2
n2
m3
n3


0 ≤ kp1 , kp2 , kp3 < 1

m1/n1, m2/n2, and m3/n3 are reduced fractions

ks1 =
S11m1

n1
+
S12m2

n2
+
S13m3

n3

ks2 =
S22m2

n2
+
S23m3

n3

ks3 =
S33m3

n3
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Diagonal supercell matrices

ks1 =
S11m1

n1

ks2 =
S22m2

n2

ks3 =
S33m3

n3

|S| = n1n2n3

I k-points on an N ×N ×N grid. Size of largest supercell
required scales as N3. Cost of standard DFT calculation
scales as N9.
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Non-diagonal supercell matrices

ks1 =
S11m1

n1
+
S12m2

n2
+
S13m3

n3

ks2 =
S22m2

n2
+
S23m3

n3

ks3 =
S33m3

n3

|S| = lcm(n1, n2, n3)

I k-points on an N ×N ×N grid. Size of largest supercell
required scales as N . Cost of standard DFT calculation scales
as N3.
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Two-dimensional example

2π
a

S̄ =

(
1 0
−1

2
1
2

)
S =

(
1 1
0 2

)

S̄ =

(
1 0
0 1

2

)
S =

(
1 0
0 2

)

S̄ =

(
1
2 0
0 1

)
S =

(
2 0
0 1

)
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Lattice dynamics

E(r) = E(r0) +
1

2

∑
Rp,α,i

Rp′ ,α
′,i′

Cαiα′i′(Rp −Rp′)upαiup′α′i′

Cαiα′i′(Rp −Rp′) =
∂2E(r0)

∂upαi∂up′α′i′

Dαiα′i′(k) =
1

√
mαmα′

∑
Rp

Cαiα′i′(Rp)eik·Rp

Ĥvib = −1

2

∑
n,k

∂2

∂q2nk
+

1

2

∑
n,k

ω2
nkq

2
nk
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Zero-point vibrational energy of diamond
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Electron-phonon coupling

〈Eg〉 = 〈Φ(q)|Eg(q)|Φ(q)〉

Eg(q) = Eg(0) +
∑
n,k

c
(1)
nkqnk +

∑
n,k
n′,k′

c
(2)
nk;n′k′qnkqn′k′ + · · ·

EZPR =
∑
n,k

c
(2)
nk;nk

2ωnk
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Comparison using 4× 4× 4 grids
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Thermal and optical band gaps of diamond
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Some numbers

I We have considered k-point grids up to 32× 32× 32. The
largest supercells that we have used contained 32 primitive
cells.

I If we had only considered diagonal supercell matrices, we
would have needed to use supercells containing 323 = 32, 768
primitive cells.
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Conclusions

I The responses of condensed matter systems to perturbations
characterized by a wave vector k are central in probing a wide
range of physical properties.

I The use of non-diagonal supercell matrices significantly
reduces the computational cost of calculating response
functions using the direct method.

I The direct method may now be applied to problems that were
previously only tractable using perturbative methods.

I Paper coming soon!
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