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The modern day blacksmith

Gareth Conduit

Theory of Condensed Matter group



Machine learning algorithm to

Train from datasets
simulations, physical laws, and experimental data
the need for expensive experimental development
materials and drugs discovery

with applications in materials discovery and drug design



Schematic of a jet engine




Combustor in a jet engine




Direct laser deposition requires new alloys




A posteriori black box machine learning for materials design




Train the a posteriori machine learning
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A posteriori machine learning predicts material properties

Properties

Composition




One point cannot define a straight line
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One point cannot define a straight line
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One point cannot define a straight line
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Need at least two points to define a straight line
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Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires 371 points to fit a hyperplane

Just 10 data entries available to model defect density




Neural networks for materials design

Laser Electricity



Insufficient data for processability
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Welding is analogous to direct laser deposition
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Simple processability-welding relationship
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Merging properties with the neural network

Defects
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First predict weldability

entries

Use 1000 weldability entries to understand complex composition — weldability model




Use weldability to predict defects formed

entries entries
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Use 1000 weldability entries to model complex composition — weldability
10 defects entries capture the simple weldability — defect relationship

Two interpolations give composition — defects extrapolation



Schematic of a jet engine




Target properties

Elemental cost < 25 $kg’
Density < 8500 kgm
Yy’ content < 25 wt%
Oxidation resistance < 0.3 mgcm-
Defects < 0.15% defects
Phase stability > 99.0 wt%
Yy’ solvus > 1000°C
Thermal resistance > 0.04 KQ'm=
Yield stress at 900°C > 200 MPa
Tensile strength at 900°C > 300 MPa
Tensile elongation at 700°C > 8%
1000hr stress rupture at 800°C > 100 MPa
Fatigue life at 500 MPa, 700°C > 10° cycles



19% 4%

2.9% 0.04% 0.01%




Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition

Materials & Design 168, 107644 (2019)




Testing the defect density

Exposure parameter

Probabilistic neural network identification of an alloy for direct laser deposition

Materials & Design 168, 107644 (2019)




Testing the oxidation resistance
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Probabilistic neural network identification of an alloy for direct laser deposition
ngc Materials & Design 168, 107644 (2019)




Printing components for an engine

Probabilistic neural network identification of an alloy for direct laser deposition

Materials & Design 168, 107644 (2019)




Action of a drug

Drug Protein Effect



Novartis dataset to benchmark machine learning

159 kinase proteins, 10000 compounds, data 5% complete

159 proteins
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10000 compounds

Imputation of Assay Bioactivity Data using Deep Learning
Journal of Chemical Information and Modeling, 59, 1197 (2019)



Quantitative structure-activity relationships
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Imputation of Assay Bioactivity Data using Deep Learning
Journal of Chemical Information and Modeling, 59, 1197 (2019)



Quantitative structure-activity relationships

Imputation of Assay Bioactivity Data using Deep Learning
Journal of Chemical Information and Modeling, 59, 1197 (2019)



Exploit protein-protein correlations

Imputation of Assay Bioactivity Data using Deep Learning
Journal of Chemical Information and Modeling, 59, 1197 (2019)



Comparison of techniques
- OMF

Deep neural net _

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Median R2




Predictions have an uncertainty
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Validation data typically within one standard deviation
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R? metric calculated with difference from mean
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Impute 75% of data with smallest uncertainty
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Impute 50% of data with smallest uncertainty
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Impute 25% of data with smallest uncertainty
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Improved performance by exploiting uncertainty

R2
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Different drugs can treat the same ailment




Open Source Malaria contest




Focus on compounds with low uncertainty
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Open Source Malaria experimental validation
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Irwin, Whitehead, Wade,
Segall, Conduit

0.647 uM



Open Source Malaria other compounds
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Segall, Conduit Davy Guan Exscientia Molomics

0.647 uM >25 uM 10.9 M >25 uM



Commercialization

platform for materials and chemicals
with Intellegens released in

- Machine learning tool embedded into released in
optibrium

\NSysS / GRANTA Integrate machine learning into



Merge different experimental quantities and computer simulations into a
design tool

Designed and experimentally verified alloy for
Designed experimentally verified in Open Source Malaria competition

Taken to market through startup
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