Machine learning: a priori or a posteriori?

Gareth Conduit



Machine learning algorithm to

a priori computer simulations and physical laws with a posteriori experimental data
Exploit a priori correlations
Train from datasets

costly experiments to discovery



Combustor in a jet engine




A posteriori black box machine learning for materials design

Defects

Fatigue

Strength




Train the a posteriori machine learning

63658497@50818
70§3¥@Mﬁﬂmm5oo

39404670396039

293 090
OZlﬁ(deeirg 6020

6365849 2020
7038184 N
Defécis ° &
7152690 B
01140 44 e
4886852 pmennn
2033327 iEes
?@ﬁgm§37**




A posteriori machine learning predicts material properties

Properties

Composition 77 ﬁ Defects




Data available to model defect density
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Composition and heat treatment space 30 dimensions

Requires 371 points to fit a hyperplane

Just 10 data entries available to model defect density




Ability for printing and welding are strongly correlated

Laser Electricity



First predict weldability

entries
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Use 1000 weldability entries to understand complex composition — weldability model




Use a posteriori weldability to a priori predict defects formed

entries
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Use 1000 weldability entries to understand complex composition — weldability model

10 defects entries capture the simple weldability — defect relationship

Two interpolations give composition — defects extrapolation



Insufficient data for number of defects formed
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Welding is analogous to direct laser deposition
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Straightforward defects-welding relationship
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Merge properties with the machine learning

Defects

r.

| .
Composition




Use a priori CALPHAD to a priori predict strength
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A
!

N

@ N
@ @

,A“‘V

Use 100,000 CALPHAD results to model complex composition — phase behavior

500 strength entries capture the phase behavior — strength relationship

Two interpolations aid the composition — strength extrapolation




Target properties

Elemental cost < 25 $kg*
Density < 8500 kgm3
Defects < 0.15% defects
Oxidation resistance < 0.3 mgcm=
y content > 75 wt%
Phase stability > 99 wt%
y’ solvus > 1000°C
Thermal resistance > 0.04 KQ*m=
Yield stress at 900°C > 200 MPa
Tensile strength at 900°C > 300 MPa
Tensile elongation at 700°C > 8%
1000hr stress rupture at 800°C > 100 MPa
Fatigue life at 500 MPa, 700°C > 10° cycles



Composition and processing variables
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Microstructure

R{ Probabilistic neural network identification of an alloy for direct laser deposition
=BY Materials & Design 168, 107644 (2019)




Target y content

Elemental cost < 25 $kg*
Density < 8500 kgm3
Defects < 0.15% defects
Oxidation resistance < 0.3 mgcm=
y content > 75 wt%
Phase stability > 99 wt%
y’ solvus > 1000°C
Thermal resistance > 0.04 KQ*m=
Yield stress at 900°C > 200 MPa
Tensile strength at 900°C > 300 MPa
Tensile elongation at 700°C > 8%
1000hr stress rupture at 800°C > 100 MPa
Fatigue life at 500 MPa, 700°C > 10° cycles



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
=8Y Materials & Design 168, 107644 (2019)




Target phase stability

Elemental cost < 25 $kg*
Density < 8500 kgm3
Defects < 0.15% defects
Oxidation resistance < 0.3 mgcm=
y content > 75 wt%
Phase stability > 99 wt%
y’ solvus > 1000°C
Thermal resistance > 0.04 KQ*m=
Yield stress at 900°C > 200 MPa
Tensile strength at 900°C > 300 MPa
Tensile elongation at 700°C > 8%
1000hr stress rupture at 800°C > 100 MPa
Fatigue life at 500 MPa, 700°C > 10° cycles



Deleterious phases formed

R{ Probabilistic neural network identification of an alloy for direct laser deposition
=BY Materials & Design 168, 107644 (2019)




Target defect density

Elemental cost < 25 $kg*
Density < 8500 kgm3
Defects < 0.15% defects
Oxidation resistance < 0.3 mgcm=
y content > 75 wt%
Phase stability > 99 wt%
y’ solvus > 1000°C
Thermal resistance > 0.04 KQ*m=
Yield stress at 900°C > 200 MPa
Tensile strength at 900°C > 300 MPa
Tensile elongation at 700°C > 8%
1000hr stress rupture at 800°C > 100 MPa
Fatigue life at 500 MPa, 700°C > 10° cycles



Defect detection

R{ Probabilistic neural network identification of an alloy for direct laser deposition
=BY Materials & Design 168, 107644 (2019)




Testing the defect density

0.3

0.2

Exposure parameter

R{ Probabilistic neural network identification of an alloy for direct laser deposition
=8Y Materials & Design 168, 107644 (2019)
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Open Source Malaria contest

=sB-1 OPEN SOURCE MALARIA
gl ll) Looking for New Medicines




Action of a drug

Drug Protein Effect



Action of a drug

Drug Protein Effect



Predictions have an uncertainty
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Validation data typically within one standard deviation
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R? metric calculated with difference from predicted value
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Impute 75% of data with smallest uncertainty
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Impute 50% of data with smallest uncertainty
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Impute 25% of data with smallest uncertainty
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Improved performance by exploiting uncertainty
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Focus on compounds with low uncertainty
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Different drugs can treat the same ailment
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Open Source Malaria experimental validation
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Optibrium & Intellegens Davy Guan Exscientia Molomics

0.647 uM
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Journal of Medicinal Chemistry 64, 16450 (2021)



Open Source Malaria other compounds
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Commercialization

platform for materials and chemicals
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Merge simulation with experimental data and exploit relationships to
circumvent designed an alloy for 3d printing
Exploited to predict drug most probable drug

approach applied to materials, batteries, pharmaceuticals, and beyond

Taken to market through startup as Alchemite Analytics™ and with partners
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