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Two types of ferromagnetism

● Localized ferromagnetism: moments localised in real space

Ferromagnet

Antiferromagnet

● Itinerant ferromagnetism: moments localised in reciprocal space

Not magnetised Partially magnetised
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Stoner model for itinerant ferromagnetism

● Repulsive interaction energy U=gn
↑
n

↓
 

● A ΔE shift in the Fermi surface causes:

(i) Kinetic energy increase of ½νΔE2

(ii) Reduction of repulsion of -½gν2ΔE2

● Total energy shift is ½νΔE2(1-gν) so a 
ferromagnetic transition occurs if gν>1

E

ν↑(E)ν↓(E)

Not magnetised

E

ν↑(E)ν↓(E)

Partially magnetised

ΔE
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Ferromagnetism in iron

● The Stoner model has a second order transition of e.g. iron and nickel

which is characterized by:

● Smoothly varying magnetisation

● A divergence of length-scales (peaked heat capacity and susceptibility)



  

Gareth Conduit (Cavendish Laboratory)

Breakdown of Stoner criterion -- ZrZn
2

● At low temperature and high pressure ZrZn
2
 has a first order transition

Uhlarz et al., PRL 2004

p
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Breakdown of Stoner criterion -- MnSi

Pfleiderer et al., PRB 1997

Pfleiderer et al., PRB 1997
Vojta et al., 1999 Ann. Phys. 1999

● MnSi also displays a first order phase transition

Low 
pressure

High 
pressure



  

Gareth Conduit (Cavendish Laboratory)

Breakdown of Stoner criterion

● At low temperature UGe
2
, ZrZn

2
, MnSi, and others are first order

● Here I describe two projects that investigate the first order behaviour:

(i) Use atomic gases to probe the first order transition without the lattice

(ii) Motivated by the FFLO phase, apply the formalism to search for a 
putative textured phase

(interaction 
strength)

PM: Partially magnetised
FM: Fully magnetised
TCP: Tricritical point
QCP: Quantum critical point
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Cold atomic gases -- interactions

● A gas of Fermionic atoms is prepared by laser and evaporative cooling 
to ~10-8K

● Two-body contact collisions are controlled with a Feshbach resonance 
tuned by an external magnetic field

● Can tune from bound BEC molecules to weakly bound BCS regime1

● Repulsive interactions might allow us to investigate itinerant 
ferromagnetism

1Lofus et al. PRL 2002, O'Hara et al. Science 2002, Bourdel et al. PRL 2003

Strong interactions                    Weak interactions
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Feshbach resonance

● Control the relative energy level of states with an external magnetic 
field

Tuned 
with B

BEC (boson)

BCS (fermions)Repulsive (fermions)

Unitarity

k
F
a>0 → Repulsive

k
F
a<0 → Attractive

Tuned 
with B

Tuned 
with B

Van der Waals
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Cold atomic gases -- spin

● Two fermionic atom species have a pseudo-spin:

40K m
F
=9/2 maps to spin 1/2

40K m
F
=7/2 maps to spin -1/2

● The up-and down spin particles cannot interchange -- population 
imbalance is fixed

● Atomic gases contain no disorder

● Atomic gases provide unprecedented levels of control allowing 
investigators to probe solid state phenomena e.g. Hubbard model1, 
superfluid vortices2, Josephson effects3, FFLO4, and Kosterlitz-
Thouless phase transition5 

1Greiner et al. Nature 2002, 2Abo-Shaeer et al. Science 2001, 3Albiez et al. PRL 2005, 4GJC et 
al. PRB 2008, 5Hadzibabic et al. Nature 2006
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Population imbalance ferromagnetism

● A spin up and a spin down particle (S
z
=0) in triplet and singlet states:

|↑↑› S=1, S
z
=1 State not possible as S

z
 has changed

|↓↓› S=1, S
z
=-1 State not possible as S

z
 has changed

(|↑↓› + |↓↑›)/√ 2 S=1, S
z
=0 Magnetic moment in plane

(|↑↓› - |↓↑›)/√ 2 S=0, S
z
=0 Non-magnetic state

● Ferromagnetism, if favourable, must form in plane



  

Gareth Conduit (Cavendish Laboratory)

Analytical method

● System free energy F=-k
B
TlnZ is found via the partition function 

the summation includes spatial and temporal fluctuations of 
magnetisation and density

● Using only the average magnetisation and density:

 gives 

i.e. the Stoner criterion

Z=∑{m x , t  , n x , t }
exp−E [mx , t  , n x ,t ]/kBT 

m x , t =m

nx , t =n

F∝1−g  m
2
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Method of steepest descent

● Suppose the partition function takes the form

● Expand about the maximum of the function at m=s:

● Following the Gaussian integral

● This is Stirling's formula

Z=∫0

∞

exp−ms lnmdm

Z≈2 sexp−s1−ln s

Z=∫0

∞

exp−s1−ln s−m−s2 /2sO m−s3dm

s !≈2 s sse−s
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Consequences of fluctuations

● In a similar way we can expand the energy in magnetisation to second 
order to account for fluctuations

● Larkin & Pikin [Zh. Eksp. Teor. Fiz. 1969] included auxiliary fluctuations 
of the lattice which introduced a negative magnetisation term, driving 
the transition first order

● Previous work on itinerant ferromagnetism considered a mean field 
Ginzburg-Landau expansion1 or non-analyticities to examine the 
transition2

1Belitz et al. PRL 2005, 2Belitz et al. PRL 2002

Z=∑{m x , t  , n x , t }
exp−E [m ,n ]/k BT 

=∑{m x , t  ,n  x , t }
exp−1

k BT E [ m ,n]m  nE
2,0 E1,1

E1,1 E0,2m n 

r m2
um4

a2
±2am2

=r m2
u−a m4

a ±m2


2
=r m2

u−am4
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Fluctuation corrections

● We include corrections due to dynamic quantum fluctuations in 
magnetisation in x, y, and z directions, and also account for fluctuations 
in density

● Similarly here considering the soft transverse magnetic fluctuations 
drives the transition of the longitudinal first order

● The results give the following phase diagram
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Uhlarz et al., PRL 2004
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Population imbalanced case

● With population imbalance P in the canonical regime we obtain

P M
spon

M
perp

M
spon

=M
perp

P=0

UnM: Unmagnetised
PM: Partially magnetised
FM: Fully magnetised
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Grand canonical ensemble

● In the grand canonical ensemble we obtain
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Trap behaviour

● Trap behaviour corresponds to three trajectories in the phase diagram
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QMC calculations

● Fluctuation corrections are not exact and higher order terms might 
destroy the first order phase transition

● Exact (except for the fixed node approximation) Quantum Monte Carlo 
calculations confirmed a first order phase transition

0.0 0.2 0.4 0.6 0.8 1.0
0.90

0.92

0.94

0.96

0.98

M

E
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Wohlfarth Rhodes criterion

● Do fluctuations influence the transition through the density of states?

● The first order transition could be caused by a peak in the density of 
states [Sandeman et al. PRL 2003, Pfleiderer et al. PRL 2002]

● If the density of states ν(E) changes rapidly with energy then a 
ferromagnetic transition is favourable when [Binz et al. EPL 2004]

 ' '3  ' 2
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Improved Wohlfarth Rhodes criterion

● Accounting for changes in the energy spectrum ε gives criterion

● The terms have magnitude

Wohlfarth Rhodes 
criterion

Overall change in 
energy spectrum 
during the transition

How energy spectrum 
changes during transition 
at the Fermi surface

< 0

Transition due to changing 
energy spectrum at the 
Fermi surface


a ,b

Differentiate energy spectrum 
wrt changing Fermi surface

Differential of energy 
spectrum curve
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Summary of uniform work

● Consideration of corrections due to fluctuations in magnetisation and 
density revealed a first order phase transition

● Nature of transition confirmed by Quantum Monte Carlo calculations

● Shed light on relation to features in the density of states

● Motivated by FFLO and experiment now examine a putative textured 
ferromagnetic phase
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ZrZn
2

● Kink in magnetisation indicative of metamagnetic phase

Uhlarz et al., PRL 2004

Kink
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Sr
3
Ru

2
O

7

● Resistance anomaly

● Consistent with a new crystalline phase
Grigera et al., Science 2004

Scattering of M fluctuations

Scattering off M 
crystal?
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NbFe
2

● NbFe
2
 displays antiferromagnetic order where it is expected to be 

ferromagnetic -- could this be a textured ferromagnetic phase? 

Crook & Cywinski, JMMM 1995

H
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MnSi

● MnSi displays non-Fermi liquid behaviour consistent with a spin state 
(though in a non-centrosymmetric crystal)

Pfleiderer et al., Nature 2004Tricritical point



  

Gareth Conduit (Cavendish Laboratory)

Previous analytical work

● Current proposals exploit a quantum critical point:

● Pomeranchuk instability – Grigera et al., Science 2005

● Nanoscale charge instabilities – Honerkamp, PRB 2005

● Electron nematic – Kee & Kim, PRB 2005

● Magnetic mesophase formation --  Binz et al., 2005

● Here propose a spin-spiral state, previous studies focussed on non-
analyticities:

● Rech, Pépin & Chubukov, PRB 74, 195126, (2006) used Eliashberg 
theory

● Belitz et al., PRB 1997 considered corrections due to magnetisation 
fluctuations
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FFLO

● The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase has a modulated 
superconducting gap

● A Cooper pair has zero momentum, with unequal Fermi surfaces the 
Cooper pair carries momentum, causing a modulated superconducting 
gap parameter Δ

● The FFLO phase preempts the normal phase-superfluid transition

GJC et al. PRB 2008

Superfluid

Partially 
polarised

Fully 
polarised

FFLO
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Ginzburg-Landau analysis

● In analogy to FFLO1 we can look at a Ginzburg-Landau analysis

● The development of the tricritical point is accompanied by sign reversal 
of the gradient term

● Consider the lowest order term in a Ginzburg-Landau expansion, which 
is a function of the wave vector q of the textured phase

● When α
q
>0 zero magnetisation is favourable, if α

q
<0 a textured phase 

preempts the first order ferromagnetic transition

1Saint-James et al. 1969, 2Buzdin & Kachkachi 1996

H=∫ r m2
um4

v m6


2
3
u ∇m2

3
5
v ∇ 2m2−hm

H=∑q
qmq

2
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Results

● Textured phase preempted transition with q=0.1k
F
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Summary

● Found field theoretic construction to understand population imbalance 
in atomic gases with a first order transition

● Confirmed with QMC calculations

● Applied improved Wohlfarth Rhodes criterion

● Ginzburg-Landau analysis of textured ferromagnetic phase

● Acknowledgements: Ben Simons & Andrew Green, EPSRC
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