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BCS superconductivity in MgB2

Monteverde et al., Science 292, 75 (2001)
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Transition in disordered systems

 Magnetoresistance peak [Sambandamurthy 04]
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Transition in highly disordered systems

                                                      [Lin & Goldman 11]MR B ,T =
R B ,T −R 0,T 

R 0,T 
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Strategy to study superconductors

 Develop new formalism to:

− Calculate exact net current flow

− Extract the microscopic current flow

− Account for phase and amplitude fluctuations

− Develop algorithm that permits access to large systems

 Test the formalism against a series of well-established results

 Study the magnetoresistance in thin-film superconductors



  

How to calculate the current

 General expression for the current [Meir & Wingreen, PRL 1992]
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Decoupling the interactions

 Negative U Hubbard model

 Decouple in density and Cooper pair channels

 Hamiltonian now contains single-body operators



  

Diagonalizing the Hamiltonian

 Hamiltonian now contains single-body operators

 Energy eigenstates can be found from diagonalization of



  

Accelerated Metropolis sampling

 To perform thermal sum calculate

 Propose new configuration of     and    , accept with probability

 Calculating              costs           , where      is the number of sites

 New method calculates                                             using a

Chebyshev expansion [Weisse 09] in               time

E [ ,] O (N 3
)

exp E [old ,old ]−E [new ,new ]

E [ ,]−E [ ,]

ON 1.56


〈J 〉=∑ , 
J [ ,]e−E [ ,]−E0 

N

 



  

Verification

 Resistivity at the
Kosterlitz-Thouless
transition

 Nonlinear IV
characteristics

 Length dependence
of conductivity

 Andreev reflection

 Josephson junction

 Little-Parks effect in
large diameter cylinder

Halperin & Nelson, J. Low Temp. Phys 1979

Ambegaokar et al., PRB 1980
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Magnetoresistance peak

  Study superconductor-insulator transition in dirty sample with 
perpendicular magnetic field
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Magnetoresistance peak

  Study superconductor-insulator transition in dirty sample with 
perpendicular magnetic field
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Clues: activated transport

  Activated transport =0 eT I /T



  

Proposed mechanism
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Highly disordered systems

MR(B ,T )=
R(B ,T )−R(0,T )

R(0,T )

                                                      [Lin & Goldman 11]  

R(B ,T )=R0(B)e
T A /T

T A 0=T A BC



  

Highly disordered films
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Highly disordered films

  

MR B ,T =
R0 B
R00 1

T 'A BCB−BC

T −1

R(B ,T )=R0(B)e
T A /T

MR(B ,T )=
R(B ,T )−R(0,T )

R(0,T ) T A 0=T A BC

 z=0.91



  

Highly disordered films

  

MR B ,T =
R0 B
R0 B0

1T 'A BCB−BC

T −1

MR B ,T =
R B ,T −R B0 , T 

R B0 ,T 

 z=0.87



  

Highly disordered films

  [Sambandamurthy 04]



  

Summary & future prospects

  Developed new formalism that includes thermal phase fluctuations to 
calculate and probe transport in superconductors

 Magnetoresistance peak could be driven by activated transport through 
superconducting islands

 Universal scaling of MR curves could be consequence of activated 
transport

 Superconductor-insulator transition in small diameter cylinders is driven 
by phase fluctuations

 Flexibility allows us to study wide range of unexplained effects



  

Little-Parks in a large diameter cylinder

 Cylindrical superconductor held at transition temperature and zero 
threading flux [Little & Parks, PRL 1962]
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Little-Parks in a small diameter cylinder

 Reduce cylinder diameter to superconducting correlation length
[Liu et al., Science 2001; Wang et al., PRL 2005]



  

Little-Parks in a small diameter cylinder

 



  

Quantum phase transition hypothesis
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Little-Parks in a small diameter cylinder

 Experiment:Theory:
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Evidence of phase reconstruction

  Experiment:

 Theory:
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Summary & future prospects

  Developed new formalism that includes thermal phase fluctuations to 
calculate and probe transport in superconductors

 Magnetoresistance peak could be driven by activated transport through 
superconducting islands

 Universal scaling of MR curves could be consequence of activated 
transport

 Superconductor-insulator transition in small diameter cylinders is driven 
by phase fluctuations

 Flexibility allows us to study wide range of unexplained effects
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