The modern-day blacksmith

Gareth Conduit



Machine learning to

Model datasets where the data is
Exploit relationships
data, computer simulations, and physical laws

costly experiments to discovery



Black box machine learning for materials design

Defects

Fatigue

Strength




Train the machine learning
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Machine learning predicts material properties

Properties

Composition 77 ﬁ Defects




Combustor in a jet engine




Data available to model defect density
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Composition and heat treatment space 30 dimensions

Requires 371 points to fit a hyperplane

Just 10 data entries available to model defect density




Ability for printing and welding are strongly correlated

Laser Electricity



First predict weldability
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Use 1000 weldability entries to understand complex composition — weldability model




Use weldability to predict defects formed

entries entries

A
!

\/

=l
P’-.

Use 1000 weldability entries to understand complex composition — weldability model

10 defects entries capture the simple weldability — defect relationship

Two interpolations give composition — defects extrapolation



Target properties

Elemental cost 25 $kg
Density 8500 kgm
Yy’ content 25 wt%
Oxidation resistance 0.3 mgcm™
Defects 0.15% defects
Phase stability 99.0 wt%
Y’ solvus 1000°C
Thermal resistance 0.04 KQ'm3
Yield stress at 900°C 200 MPa
Tensile strength at 900°C 300 MPa
Tensile elongation at 700°C 8%
1000hr stress rupture at 800°C 100 MPa
Fatigue life at 500 MPa, 700°C 10° cycles



Composition and processing variables

2.9% 0.04%




Microstructure

R{ Probabilistic neural network identification of an alloy for direct laser deposition
=8Y Materials & Design 168, 107644 (2019)




Testing the defect density

Exposure parameter

R{ Probabilistic neural network identification of an alloy for direct laser deposition
=8Y Materials & Design 168, 107644 (2019)




Testing the oxidation resistance
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Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)
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Predicting the state of charge and health of
batteries using data-driven machine learning

Man-Fai Ng', Jin Zhao?, Qingyu Yan?™, Gareth J. Conduit*™ and Zhi Wei Seh ®*=

Heat exchanger
& shape memory
alloy applications




Development of methodology

ROLLS

ROYCE

Multiple
properties for
Rolls Royce
engines



Development of methodology
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Development of methodology
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Development of methodology
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Development of methodology
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Open Source Malaria contest

=sB-1 OPEN SOURCE MALARIA
gl ll) Looking for New Medicines




Action of a drug

Drug Protein Effect



Action of a drug

Drug Protein Effect



Predictions have an uncertainty
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Validation data typically within one standard deviation
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R? metric calculated with difference from mean
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Impute 75% of data with smallest uncertainty
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Impute 50% of data with smallest uncertainty
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Impute 25% of data with smallest uncertainty
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Improved performance by exploiting uncertainty
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Different drugs can treat the same ailment




Focus on compounds with low uncertainty
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Open Source Malaria experimental validation
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Optibrium & Intellegens

0.647 uM

Journal of Medicinal Chemistry 64, 16450 (2021)



Open Source Malaria other compounds
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0.647 uM >25 UM 10.9 yM >25 UM

Journal of Medicinal Chemistry 64, 16450 (2021)



Commercialization
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Commercialization
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Merge computer simulations with experimental data and exploit
relationships to circumvent

Designed and alloy for direct laser deposition
Exploited to predict drug most probable drug
approach applied to materials, batteries, pharmaceuticals, and beyond

Taken to market through startup
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