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Train from sparse datasets

Merge simulations, physical laws, and experimental data

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

Generic with proven applications in materials discovery and drug 
design

Alchemite™ for materials design



Black box machine learning for materials design
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Machine learning for materials design
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Two sources of information in the design pipeline
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Merge the information with machine learning
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Nickel-Cobalt-Manganese (NCM) battery materials



  

Design variables and target properties
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Nickel-Cobalt-Manganese NCM-424 material

LiNi0.4Co0.2Mn0.4O2
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Nickel-Cobalt-Manganese NCM-424 material

LiNi0.4Co0.2Mn0.4O2

Calculate properties with DFT simulations



  

Approach: exhaustive exploration of unit cells



  

Approach: exhaustive exploration of unit cells



  

Approach: exhaustive exploration of unit cells



  

Approach: exhaustive exploration of unit cells

153153000 
permutations
=42000 years

Only examine
order that fits

into the unit cell



  

Design variables and target properties with DFT
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Approach: characterize with a local order matrix
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Approach: characterize with a local order matrix
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Train on initial results
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Guided calculation for recursive learning
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How many calculations are required

Machine learning guidance requires 5-times fewer calculations
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Predicting the lattice constant from DFT

Structure a (Å) c (Å)
LiNi0.4Co0.2Mn0.4O2 prediction 2.863 14.257
LiNi0.4Co0.2Mn0.4O2 experiment 2.866 14.254
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Local order matrix within a single unit cell
Matrix element Optimal Achievable in cell

NCo-Co 0.34 1
NNi-Ni 0.16 0
NMn-Mn 0.09 1
NLi-Li 0.08 0
NCo-Ni 2.5 2
NCo-Mn 0.2 0
NNi-Mn 3.4 3
NNi-Li 0.32 1
NCo-Li 0.21 0
NMn-Li 1.37 1
NNi 1.82 1
NCo 0.02 0
NMn 0.01 1

Machine learning can predict cells inaccessible to DFT



  

Tracking Li migration

Original structure Remove Li Relax atoms Reinsert Li Relax atoms

+ Li + Li + Li



  

Li migration optimal structures

Ground state

82% robust



  

Li migration optimal structures displacing 4xLi

Ground state Configuration 1 Configuration 2 Configuration 3 Configuration 4

82% robust 100% robust 100% robust 100% robust 100% robust



  

Merge computational and experimental data
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Merge computational and experimental data
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Prospects for the future

Merge computational simulations and experimental data

Design battery materials

Guided simulations and experiments leads to 5x speedup

Predict complex cells inaccessible to DFT
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