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The modern-day blacksmith



Machine learning to

Model datasets where the data is sparse

Exploit property-property relationships

Merge data, computer simulations, and physical laws 

Reduce costly experiments to accelerate discovery



Black box machine learning for materials design
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Machine learning predicts material properties
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Jet engine schematic



Combustor in a jet engine



Direct laser deposition



Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires 31 points to fit a hyperplane

Just 10 data entries available to model defect density

10 entries



Ability for printing and welding are strongly correlated

Laser Electricity



First predict weldability

Use 1000 weldability entries to understand complex composition → weldability model

1000 entries



Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition → weldability model

10 defects entries capture the simple weldability → defect relationship

Two interpolations aid composition → defects extrapolation

10 entries1000 entries



Use CALPHAD to predict strength

Use 100,000 CALPHAD results to model complex composition → phase behavior

500 strength entries capture the phase behavior → strength relationship

Two interpolations aid the composition → strength extrapolation

100,000 entries 500 entries



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Target properties



Cr 19% Co 4% Mo 4.9% W 1.2% Zr 0.05% Nb 3%

Al 2.9% C 0.04% B 0.01% Ni Expose 0.8 THT 1300ºC

Composition and processing variables



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Concrete

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Defects target



Testing the defect density

Design
parameter

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Target properties



Testing the oxidation resistance

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)
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Open Source Malaria contest



Action of a drug

Drug Protein Effect



Action of a drug

Drug Protein Effect



Predictions have an uncertainty

A
ct

iv
ity

Drug 1 Drug 2 Drug 3 Drug 4



Validation data typically within one standard deviation
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R² metric calculated with difference from mean

A
ct

iv
ity

Drug 1 Drug 2 Drug 3 Drug 4

Error =   +   +   +



Impute 75% of data with smallest uncertainty
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Impute 50% of data with smallest uncertainty
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Impute 25% of data with smallest uncertainty
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Error =



Improved performance by exploiting uncertainty

High accuracy

Low accuracy



Different drugs can treat the same ailment



Focus on compounds with low uncertainty

High accuracy

Low accuracy



Open Source Malaria experimental validation

Optibrium & Intellegens

0.647 µM

Journal of Medicinal Chemistry 64, 16450 (2021)



Open Source Malaria other compounds

Optibrium & Intellegens Davy Guan Exscientia Molomics

0.647 µM >25 µM 10.9 µM >25 µM

Journal of Medicinal Chemistry 64, 16450 (2021)
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Summary

Merge computer simulations with experimental data and exploit property-property 

relationships to circumvent missing data

Designed and experimentally verified alloy for direct laser deposition

Exploited uncertainty to predict drug most probable drug

Generic approach applied to materials, batteries, pharmaceuticals, and beyond

Taken to market through startup Intellegens
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