

Multi-particle instability in an imbalanced electron gas

Thomas Whitehead Gareth Conduit

TCM Group, Department of Physics

$$E = 2 \omega_{\rm D} \exp\left(-\frac{2\xi'}{gv_{\rm c}}\right)$$

Cooper pair on imbalanced Fermi sea

Cooper pair on imbalanced Fermi sea

Cooper pair on imbalanced Fermi sea

Orbitals that can be correlated

Orbitals that can be correlated

Few-particle instability

Binding energy of a few-particle instability

$$E = (N_{\uparrow} + N_{\downarrow}) \omega_{D} \exp \left(-\frac{(N_{\uparrow} + N_{\downarrow})\xi'}{gN_{\uparrow}N_{\downarrow}} \frac{N_{c}}{v_{c}}\right) \qquad E = 2 \omega_{D} \exp \left(-\frac{2\xi'}{gv_{c}}\right)$$

Optimal number of up and down spin electrons in an instability

$$\frac{N_{\uparrow}}{N_{\downarrow}} = \frac{v_{\uparrow}}{v_{\downarrow}}$$

Many-body theory

Superconducting transition temperature

$$T_{c} = \omega_{D} \exp \left(-\frac{(N_{\uparrow} + N_{\downarrow})\xi'}{2gN_{\uparrow}N_{\downarrow}} \frac{N_{c}}{v_{c}} \right)$$

Optimal number of up and down spin electrons in an instability

$$\frac{N_{\uparrow}}{N_{\downarrow}} = \frac{v_{\uparrow}}{v_{\downarrow}}$$

Summary

Optimal number of up and down spin electrons in a Cooper particle is the ratio of the density of states

Cooper particle is the building block for superconducting state, verified by Diffusion Monte Carlo simulations

Energetically favorable to FFLO state

Possibility of number fluctuations in a superconductor

Recovering known results

Standard BCS result (v_↑=v_↓)

$$E = 2 \omega_{\rm D} \exp \left(-\frac{2\xi'}{gv} \right)$$

One-dimensional result (v_↑=v_⊥)

$$E = 2 \omega_{\rm D} \exp \left(-\frac{2 \xi'}{g \nu} \right)$$

Polaron limit (v_↑»v_↓)

Exact diagonalization

Exact diagonalization for 2:1 system

Analytical result for 2:1 system

Exact diagonalization for S:1 systems

Diffusion Monte Carlo: 25 up, 9 down spins

Three-particle superconducting correlations

$$\Delta_{\mathbf{q}} = \langle c_{\uparrow \mathbf{k}_1}^{\dagger} c_{\uparrow \mathbf{k}_2}^{\dagger} c_{\downarrow \mathbf{q} - \mathbf{k}_1 - \mathbf{k}_2}^{\dagger} \rangle$$

q_{x}	q y	$\Delta_{\mathbf{q}}$
0	0	0.01
1	0	0.02
1	1	0.01
2	0	0.02
2	1	0.01
2	2	0.01
3	0	0.57
3	1	0.00
3	2	0.01
4	0	0.03