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BCS superconductivity in MgB2

Monteverde et al., Science 292, 75 (2001)
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Transition in disordered systems

 Magnetoresistance peak [Sambandamurthy & Shahar, PRL 2004]
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Transition in highly disordered systems

MR(B ,T )=
R(B ,T )−R(0,T )

R(0,T )

Lin & Goldman, PRL, (2011)



  

Transition in highly disordered systems

Lin & Goldman, PRL, (2011)

MR(B ,T )=
R(B ,T )−R(0,T )

R(0,T )
R(B ,T )=R0(B)e

T A /T



  

Strategy to study superconductors

 Develop new formalism to:

− Calculate exact net current flow

− Account for phase and amplitude fluctuations

− Include disorder

− Extract the microscopic current flow

− Develop algorithm that permits access to large systems

 Test the formalism against a series of well-established results

 Study the magnetoresistance peak & putative quantum phase 
transition



  

How to calculate the current

 General expression for the current [Meir & Wingreen, PRL 1992]
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Decoupling the interactions

 Negative U Hubbard model

 Decouple in density and Cooper pair channels

 Hamiltonian now contains single-body operators



  

Diagonalizing the Hamiltonian

 Hamiltonian now contains single-body operators

 Energy eigenstates can be found from diagonalization of



  

Accelerated Metropolis sampling

 To perform thermal sum calculate

 Propose new configuration of     and    , accept with probability

 Calculating              costs           , where      is the number of sites

 New method calculates                                             using a

Chebyshev expansion [Weisse 09] in               time

E [ ,] O (N 3
)

exp E [old ,old ]−E [new ,new ]

E [ ,]−E [ ,]

ON 1.56


〈J 〉=∑ , 
J [ ,]e−E [ ,]−E0 

N

 



  

Verification

 Resistivity at the
Kosterlitz-Thouless
transition

 Length dependence
of conductivity

 Andreev reflection

 Josephson junction

 Little-Parks effect

Halperin & Nelson, J. Low Temp. Phys (1979)

Ambegaokar et al., PRB (1980)



  

Magnetoresistance peak

  Study superconductor-insulator transition in dirty sample with 
perpendicular magnetic field

Sample
undergoing

superconductor
insulator transition
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Normal
magnetic field B

[Sambandamurthy & Shahar, PRL 2004]



  

Magnetoresistance peak

  Study superconductor-insulator transition in dirty sample with 
perpendicular magnetic field



  

Clues: current maps

Superconducting current

Normal current
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Clues: activated transport

  Activated transport =0 eT I /T



  

Proposed mechanism

   

Sample entirely
superconducting

Superconducting puddles
have a charging energy
and a tunneling barrier
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normal
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Highly disordered films

 

MR(B ,T )=
R(B ,T )−R(0,T )

R(0,T )

R(B ,T )=R0(B)e
T A /T

T A(0)=T A(BC)

Lin & Goldman, PRL, (2011)



  

Highly disordered films

 

MR(B ,T )=
R(B ,T )−R(0,T )

R(0,T )

γ z=0.91



  

Highly disordered films

 
R(B ,T )=R0(B)e

T A /T

T A(0)=T A(BC)
MR(B ,T )=

R(B ,T )−R(0,T )

R(0,T )

MR(B ,T )=
R0(B)

R0(0) ( 1+
T ' A(BC)(B−BC)

T )−1

ν z=0.91



  

Highly disordered films

 
R(B ,T )=R0(B)e

T A /T

T A(B0)=T A(BC)
MR(B ,T )=

R(B ,T )−R(B0,T )

R(B0,T )

MR(B ,T )=
R0(B)

R0(B0)( 1+
T ' A(BC)(B−BC)

T )−1



  

Highly disordered films

 Sambandamurthy & Shahar, PRL 2004



  

Summary & future prospects

  Developed new formalism that includes thermal phase fluctuations to 
calculate and probe transport in superconductor

 Magnetoresistance peak may be driven by condensation of 
superconducting puddles

 Activated transport explains results of Goldman group on highly 
disordered superconductors

 Flexibility allows us to study wide range of unexplained effects
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