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Characteristics of a many-body interacting system



Characteristics of a many-body interacting system



Characteristics of a quantum system

Photoelectric effect Electron diffraction



Electrons: many-body interacting and quantum

1027 interacting electrons

Fermi temperature 30,000K



Electrons: Hamiltonian
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Ultracold atomic gas: many-body interacting and quantum

107 interacting atoms

0.1 TF



Ultracold atomic gas: Hamiltonian
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Energy stored in an elastic band
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Energy stored in an elastic band

Potential energy in elastic band

Kinetic energy in handgun bullet

Potential energy in enormous band
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Questions about solid state systems

Chemical and structural properties
Why does carbon form diamond, graphene, nanotube, or 
buckyballs?

Electrical properties
Why do some metals superconduct at low temperatures?

Optical properties
How does photosynthesis occur?

Magnetic properties
Why do high Tc superconductors display magnetic order?



Approaches to study the system
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Experiments: determining the ground state

Lattice of a 
solid

It is hard to predict from the many-electron Hamiltonian that copper 
crystallizes in a fcc crystal structure. Computational techniques can 
compare the energy of fcc Cu to bcc Cu, but cannot exclude other 
structures. X-ray diffraction experiments show that Cu crystallizes in 
a fcc structure, providing a platform for theoretical analysis.

Dominant 
terms in the 
Hamiltonian

There is currently no satisfactory theoretical understanding of the 
phenomenon of high-Tc superconductivity, but experimental 
techniques have delivered a lot of clues (and some red herrings) 
about how the physics of high-Tc materials differs from that of 
ordinary superconductors.

New strongly 
correlated 
effects

Within condensed matter physics, there is a very exciting interplay 
between experiment and theory: Sometimes theory is first to predict 
effects, often experiments discover interesting novel phenomena 
which then stimulate theoretical explanations, and may lead to 
general advances in understanding of many-body physical 
phenomena.



Experiments: probing the system response

Experimental stimulus promotes the system from its ground state into an 
excited state, and the response provides insights into the underlying 
microscopic properties

Response Stimulus

Electrical Applied electric field

Optical absorption Electromagnetic wave

Temperature response Heat flux

Magnetic moment External magnetic field

Attenuation of sound waves External source of sound



Computational approaches

Independent-electron approximation
Treats each electron as if it is moving in a periodic effective 
potential created by the ion cores
Neglect electron-electron correlations

Hartree-Fock theory
Includes “exchange” related correlations between electrons by 
forcing the wave function to be a single Slater determinant of 
optimal single-particle orbitals
Electrons of opposite spin remain uncorrelated



Computational approaches

Density functional theory
Includes both exchange and other correlations between 
valance electrons.
Correlations included by approximating the electron density as 
being locally uniform

Quantum Monte Carlo methods
Use the Monte Carlo method to handle the many-dimensional
integrals that arise
Takes almost full account of electron-electron correlations

Exact diagonalization
Compute and diagonalize over all matrix elements
Captures all electron-electron correlations within limits of the 
basis set size



Analytical: emergent phenomena

Adopt a complementary approach to the reductionist approach 
of other areas of physics. Identify key organizing principles on 
the relevant macroscopic length scale inspired by experiment.

Complex phenomena can emerge from very simple sets of 
rules, for example Conway’s life



Analytical: example of emergent phenomena

For a space that is populated

Cell with one or no neighbors dies

Cell with four or more neighbors dies

For a space that is unpopulated

Cell with three neighbors becomes populated



Analytical: critical phenomena

Critical phenomena: length scales diverge near to transitions 
insensitive to microscopic properties



Analytical: critical phenomena



Analytical: construction of models

Solutions to the Schrödinger equation, whether numerical or 
exact, can be very hard to interpret or even connect with 
observed phenomena.

Phenomenological models that capture the essential physics of 
the system whilst blocking out non-relevant features often 
provide deeper, more applicable and predictive insight into a 
particular problem.

Models can be justified from first principles, and parameters 
determined by experiment.



Analytical: constructing a model
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Analytical: constructing a model
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Analytical: constructing a model

Ĥ=−J∑i=1

N ^⃗Si⋅
^⃗Si+1



Collective excitations

Ground state

Spin wave

Magnon: wave-like deviations of spins



Collective excitations

Ground state

Spin wave

Magnon: wave-like deviations of spins
Plasmon: electron density displacements
Phonon: wave of atom displacements
Exciton: electron and hole bound
Polariton: electron and photon bound



Quasiparticles



Quasiparticles



Quasiparticles



Quasiparticles



Quasiparticles



Outline of lectures

1) Concepts in many-body physics



Outline of lectures

1) Concepts in many-body physics

2) Second quantization

3) Interactions

4) Correlation functions

5) Feynman diagrams



Books

Basic general
Principles of the Theory of Solids, Ziman (1979)
Solid State Physics, Ashcroft & Mermin (1976)
Introduction to Solid State Physics, Kittel (1996)

Advanced many-body theory
Quantum Theory of Solids, Kittel (1987)
Quantum Field Theory in Condensed Matter Physics, Nagaosa (1999)
Condensed Matter Field Theory, Altland & Simons (2010)
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