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Train from datasets
simulations, physical laws, and experimental data
the need for expensive experimental development
materials and drugs discovery

with applications in materials discovery and drug
design
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Training machine learning
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Machine learning for materials design
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Atom level insights
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Cheap to perform



Accurate
Quantities of interest
Lack of data
Expensive

&

Less accurate
Atom level insights
Perform on demand

Cheap to perform



[ @fpy

5‘3’:7!@'

(4 L?’ZS‘&I?E?{J . r?f? 5»,&

ﬂaréyo,r@a "’F?a;;g&
“ﬁ'*#"‘? 72 é’ &




Design variables and target properties °
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Design variables and target properties with DFT ﬁ
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Approach: exhaustive exploration of unit cells ﬂ
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Approach: exhaustive exploration of unit cells ﬂ
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Approach: exhaustive exploration of unit cells ﬁ
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Train on initial results
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Guided calculation for recursive learning
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Lattice constants




How many calculations are required
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Machine learning guidance requires 5-times fewer calculations



Predicting the lattice constant from DFT
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LiNio.4C002Mno.40, prediction 2.863 14.257

LiNig4C002Mno .40, experiment 2.866 14.254



Tracking Li migration
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Li migration optimal structures
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Li migration optimal structures displacing 4xLi
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Merge computational and experimental data
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Merge computational and experimental data ﬂ
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Battery management system

Juxtapose physics-based modeling with machine
learning

In-service data from a particular battery and others
deployed to make bespoke predictions of remaining
useful life

Model that spans time-scales to permit
simultaneous state-of-health and state-of-charge
predictions

Data from testing in first few cycles to predict long-
term battery performance
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Predicting the state of charge and health of
batteries using data-driven machine learning

Man-Fai Ng', Jin Zhao? Qingyu Yan?%2, Gareth J. Conduit** and Zhi Wei Seh®*=

Machine learning is a specific application of artificial intelligence that allows to learn and imp| from data anc

experience via sets of algorithms, without the need for reprogramming. In the field of energy storage, machine learning has

recently emerged as a promising modelling approach to determine the state of charge, state of health and remaining usefu

life of batteries. First, we review the two most studied types of battery models in the literature for battery state prediction: the

equivalent circuit and physics-based models. Based on the current limitations of these models, we showcase the promise of

various hine learning techni for fast and battery state prediction. Finally, we highlight the major challenge:
" f high

involved, especially in accurate modelling over length and time, performing in situ and high-thr data gen:
eration. Overall, this work provides insights into real-time, explainable machine learning for battery production, management
and optimization in the future.

Predicting the State of Charge and Health of Batteries using Data-Driven Machine Learning

Nature Machine Intelligence 2, 161 (2020)



Battery component specification
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. . Predicting the state of charge and health of
Improved understanding of battery properties batteries using data-driven machine learning

Man-Fai Ng', Jin Zhao? Qingyu Yan?%2, Gareth J. Conduit** and Zhi Wei Seh®*=
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experience via sets of algorithms, without the need for reprogramming. In the field of energy storage, machine learning has
recently emerged as a promising modelling approach to determine the state of charge, state of health and remaining usefu
life of batteries. First, we review the two most studied types of battery models in the literature for battery state prediction: the
. equivalent circuit and physu:s -based models. Based on the current limitations of these models, we showcase the promise o
various hi hni for fast and battery state prediction. Flnally we hnghhght the major challenges
e S p O e a tte ry e S | g n O r e a C C u Sto I | I e r involved, especially in accurate modelling over length and time, performing in situ and high-tt data gen
eration. Overall, this work provides insights into real-time, explainable machine learning for battery produchon managemen
and optimization in the future.

ith rising concerns about global warming, electrification ~ where C,,,, is the capacity of the battery in its current state, Cy,; is th
of transport has recently emerged as an important vision  capacity of the battery in its fully charged state, C,,, is the nomina
in many countries. The successful development of elec-  capacity of the brand-new battery’.

tric vehicles (EVs) depends highly on the cycling performance, cost In essence, SOC denotes the capacity of the battery in its curren

and safety of the batteries. Rechargeable lithium-ion (Li-ion) bat-  state compared to the capacity in its fully charged state (equivalen
teries are currently the best choice for EVs due to their reasonable  of a fuel gauge), while SOH describes the capacity of the batter

Predicting the State of Charge and Health of Batteries using Data-Driven Machine Learning
Nature Machine Intelligence 2, 161 (2020)



Other materials designed

Steel welding consumables
Titanium additive manufacturing

High temperature alloys

Lubricants

Journal of Chemical Physics 153, 014102 (2020) Physical Review Applied 12, 034024 (2019)
Fluid Phase Equilibria 507, 112259 (2019) Matter 1,219 (2019)

Materials & Design 168, 107644 (2019) Scripta Materialia 146, 82 (2018)

Computational Materials Science 147, 176 (2018) Materials & Design 131, 358 (2017)



Delivery

API for integration

Within the browser

intel Iege 1S  Suggest which missing values to provide from
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Q search... o
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Alchemite API v0.17.




computational simulations and experimental data
battery materials
simulations and experiments leads to ox speedup

battery management software
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