Intellegens machine learning for materials design o
Technology developed at University of Cambridge with three features

Design for multiple target properties

Merge simulations, physical laws, and experimental data to exploit all available information

Probabilistic algorithm finds material MOst likely to succeed



Schematic of a jet engine




Combustor in a jet engine




Direct laser deposition requires new alloys




Black box machine learning for materials design
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Train the machine learning
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Machine learning model for materials design a
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One point cannot define a straight line
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Need at least two points to define a straight line
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Data required for a defects model

Composition and heat treatment space 30 dimensions

Requires 371 points to fit a hyperplane

Just 8 data points available



Neural networks for materials design

Laser Electricity



Insufficient data for processability
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Welding is analogous to direct laser deposition
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Simple processability-welding relationship
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Merging properties with the neural network
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Simple straight line fit to data
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Usually design to exceed target
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Design the material most likely to succeed
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Design the material most likely to succeed
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Schematic of a jet engine




Target properties

Elemental cost < 25 $kg’
Density < 8500 kgm
Yy’ content < 25 wt%
Oxidation resistance < 0.3 mgcm~
Defects < 0.15% defects
Phase stability > 99.0 wt%
Yy’ solvus > 1000°C
Thermal resistance > 0.04 KQ'm=
Yield stress at 900°C > 200 MPa
Tensile strength at 900°C > 300 MPa
Tensile elongation at 700°C > 8%
1000hr stress rupture at 800°C > 100 MPa
Fatigue life at 500 MPa, 700°C > 10° cycles



Composition

Cr19% Co 4% Mo 4.9%

Zr 0.05%

Al 2.9% C 0.04% B 0.01% Ni




Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition

Materials & Design 168, 107644 (2019)




Testing the defect density
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Testing the oxidation resistance
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More materials designed

Nickel and
molybdenum

Steel for welding

Experiment and DFT for
batteries




Application to industrial chemicals
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Summary

Merge different experimental quantities and computer simulations into a
holistic design tool

Designed and experimentally verified alloy for direct laser deposition

Designed and many other experimentally verified materials and drugs
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