INntroduction

Nickel-base superalloys are a class of alloys that have found
widespread use in the aerospace and energy sectors due to
their excellent high temperature properties that arise due to the
their two-phase matrix-precipitate microstructure. For this
reason predicting the amount and composition of each phase
is a critical first-step towards making further property
predictions.

Typically this is done by using the Calculation of Phase
Diagrams (CALPHAD) method. This thermodynamic approach
minimises the free energy of the system with respect to the
variables of interest [1]. This means the problem of fitting the
model to experimental data is the problem of correctly
modelling the free energy of each phase—an inverse problem.

Method

Our approach to modelling alloy composition is to use gaussian process regression (GPR) models of the phase fractions and the

log partitioning coefficients for each element in each phase [2].
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Our method has a number of inherent advantages over
CALPHAD:
e |t yields uncertainties for each prediction.
e |t can be used to identify outliers in the training dataset.
¢ [t can easily be retrained as more data becomes
available.
e Non-equilibrium descriptors such as heat treatments can
be incorporated into the GPR kernel.
e No minimisation procedure is required to make
predictions.
In a practical test, our GPR model outperformed CALPHAD for
predictions of both the y phase, y' phase, and phase fraction
of four benchmark SX-series alloys [2,3].

Results
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Distribution of Uncertainty Quality

Machine learning delivers uncertainty estimates for each of its predictions, so
evaluating how close the uncertainties are to the real-life validation data is
crucial. The typical error in a prediction should be normally distributed with
standard deviation equal to its associated uncertainty. Binning all of the N
errors/uncertainty for a dataset and comparing the resulting histogram to an
ideal gaussian allows us to quantify the quality of our predictions. We call this
metric the distribution of uncertainty quality (DUQ) [2]. It is defined so that its
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value is between 0 and 1.
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The pre-fitted parts of each
method: free energy models for
each phase in CALPHAD, and
pre-trained GPR models for each
component in our new method.
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Each component of the alloy microstructure has its own GPR
model. Interpreting the GPR kernel as a measure of alloy
similarity, we are able to incorporate some simple physics into
the model. To begin with we split each alloy's descriptor into a
composition and heat treatment vector, x. and x,,. We then use
the following kernel:
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Most of the variance is due to composition.
We capture this with a simple linear kernel
term.

The heat treatment is coupled with a
composition term to capture its influence on
alloy similarity. In this context we can interpret
the product as an AND operation [4].

An obvious physical constraint is that the amounts of each
element in each phase must sum to 1. We enforce this by
making a dynamic choice of balance element for each
prediction. the
composition predictions. Compared to using Ni as a fixed
pbalance element, the dynamic method improved the
predictions not only for Ni but in fact for all elements.

This makes use of the uncertainty in

A further physical constraint is that the total amount of an
element in the alloy must equal the input composition—for two-
phase superalloys this means that:

fal + 1= fa] ==,
Due to how the experimental data that we train on has been
collected, this equation typically doesn't hold exactly. For this
reason we treat it as a probabilistic constraint rather than a
hard one. To do so the GPR prediction for the phase fraction f

IS taken as a prior and the equation above is rearranged into a
likelihood, allowing for a Bayesian inferral of a final value for f.

Left: cross-validation predictions for the y' phase fraction.
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