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Experimental data

Experimental data are complex. No
experimentalist has ever run every experiment
they could Imagine, resulting In sparse data
availability. Biological data are also noisy, as
running the same experiment twice gives
different results. Drug discovery data can also be
weakly defined: running the same assay in two
different groups can give systematically different
results, so Is this one assay or two?
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Alchemite™ engine

Intellegens I1s a spin-out from the University of
Cambridge, and specialises In applying deep
earning to sparse and noisy experimental data
Using our proprietary Alchemite™ engine. We
combine all accessible data sources to extend
horizons, learning between endpoints to capture
all available information. By focussing on the
most confident predictions we are able to
INncrease the utility of the results, rejecting low-
ikelihood outcomes. Flexible, user-defined
relationships between variables overcome weak
definitions. Alchemite™ s available now In
collaborative projects: see https://intellegens.al.

Material design

Intellegens’ Alchemite™ engine has been used to
design new high performance alloys [1], metals for

are a predicted and experimentally verified
property for an alloy designed for 3D printing, and
the alloy itself.
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oredictions, the accuracy and utility of
resulting predictions Increases.

3D printing [2], and industrial lubricants [3]. Below
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Drug discovery

Intel\egens Alchemite™ engine has been used to
Impute missing experimental measurements [4]
IN active drug discovery projects. In application to
a big pharma company's corporate collection,
Alchemite™ significantly outperformed a leading
guantitative structure-activity relationship model.
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Each prediction made by Alchemite™ comes
with an associated probability distribution to
gauge confidence in the results.
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