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Abstract
Noise and uncertainty are usually the enemy of machine learning, noise in training data leads to uncertainty and inaccuracy
in the predictions. However, we develop a machine learning architecture that extracts crucial information out of the noise
itself to improve the predictions. The phenomenology computes and then utilizes uncertainty in one target variable to predict
a second target variable. We apply this formalism to PbZr0.7Sn0.3O3 crystal, using the uncertainty in dielectric constant
to extrapolate heat capacity, correctly predicting a phase transition that otherwise cannot be extrapolated. For the second
example – single-particle diffraction of droplets – we utilize the particle count together with its uncertainty to extrapolate the
ground truth diffraction amplitude, delivering better predictions than when we utilize only the particle count. Our generic
formalism enables the exploitation of uncertainty in machine learning, which has a broad range of applications in the physical
sciences and beyond.

Keywords Machine learning · Uncertainty · Extrapolation · Case studies

1 Introduction

Throughout the human history, scientific discoveries her-
alded each new epoch, including the stone, bronze, and iron
ages. However, discovering new phenomena is not the only
challenge: utilizing the freshly obtained knowledge for real-
world applications is crucial. With the availability of com-
puters and large amounts of experimental/computational
data nowadays [1–4], machine learning [5–9] has proven an
effective tool for this purpose.

Machine learning is a class of methods that start
from existing data to train a model and then predict the
quantities of interest useful for a given application. For
example, machine learning can predict many properties of
a putative material [10–18], and moreover can understand
the uncertainty in those predictions. This uncertainty can be
used to design the material that is most likely to satisfy the
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set target criteria [19–21], avoiding the typical expensive
and time-consuming cycles of trial and improvement
experiments. Furthermore, the uncertainty is useful for
accelerating materials discovery by guiding where new
experiments should be performed in the materials space
[22–24], and also for the identification of outliers and
erroneous entries in materials databases [25].

While uncertainty is crucial for focusing on the most
viable candidates for a given application, uncertainty itself
could be a useful value for predicting the quantities of
interest. Uncertainty values, computed either analytically
or through machine learning, can be used as an input for
either analytical or machine learning models that deliver
the final predictions. For example, uncertainty (fluctuations)
in the financial markets, known as volatility [26], is found
analytically and can be hardcoded as an input value for
machine learning models to determine prices of derivative
contracts [27]. In another example, when an author of a
novel deliberately introduces vagueness into a character’s
speech, the reader infers that the character is unsure
about their situation. This uncertainty can be quantified
by machine learning models [28, 29] for further use in
analytical literary tools. For physical systems, the use
of uncertainty for property prediction is motivated by
Wilson’s Renormalization Group theory [30], in which
analytically determined fluctuations on all scales are used in
an analytical relationship to determine the macroscopic state
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of the system. An example is the liquid-vapor transition,
in which near the critical temperature water droplets and
vapor intermix over all length scales, leading to critical
opalescence [31].

This work develops a methodology that extends previous
efforts by using machine learning for both uncertainty
estimation and also for the final predictions. This approach
utilizes dependences between moments of probability
distributions of different quantities, e.g. use uncertainty
in one quantity to predict the expected value of another
quantity. Moreover, the method can combine the expected
value and uncertainty in one quantity, which could increase
the amount of information about another quantity and
improve the quality of its predictions. An example is shot
noise [32], for which the expected value is equal to the
square of its uncertainty. Combining both expected value
and uncertainty would double the amount of information
about the second quantity.

In this paper, we first review the machine learning methods
in the literature and set up the formalism to extract informa-
tion from uncertainty in Section 2. We then validate the
formalism on paradigmatic datasets in Section 3 and apply
it to the real-world physical examples – PbZr0.7Sn0.3O3

crystal phase transitions and single-particle diffraction of
droplets – in Section 4, predicting the quantity of interest
by extrapolation in both cases. Finally, we discuss broader
applications of the generic methodology in Section 5.

2Methodology

We build the individual components for the machine
learning methodology before compiling them into a tool
to extract information from noise. First, in Section 2.1
we describe the underlying vanilla random forest machine
learning method. In Section 2.2 we outline how the
machine learning algorithm estimates the uncertainty in
its predictions. Following this, in Section 2.3 we address
how to handle missing data using an intermediate target
variable before finally putting all three components together
in Section 2.4 to extract information from uncertainty.

2.1 Machine learning

Machine learning algorithms are trained on existing data
to make predictions of target variables for new data
entries. A few examples of widely used machine learning
algorithms are k-means clustering [33], linear regression
[34], neural network [35] and Gaussian processes [36]. In
the current work we use random forest, implemented in
Scikit-learn Python package [37], since it is computationally

cheap, robust against overfitting, and accurate with good
uncertainty estimates.

Random forest is a collection of independent identical
regression trees [38]. During the training phase, each tree
learns the rules for mapping the input variables to target
variables. The geometry of regression trees in a random
forest, and therefore accuracy of predictions, is affected
by the hyperparameters of the random forest. In order to
achieve the best accuracy of predictions, we need to select
the optimal min samples leaf hyperparameter, which is
the minimum number of datapoints in each leaf of a
regression tree. Selection of the optimal hyperparameter
– hyperparameter optimization – is done numerically by
maximizing the accuracy of a model.

A robust method of assessing the accuracy of a model,
applicable to any machine learning algorithm, is k-fold
cross-validation. In this method, of the k equally sized
subsamples of training data, each one is retained as
the validation data for testing the model trained on the
remaining subsamples. The process is repeated k times
(typically k = 5) to obtain the average R2, coefficient
of determination, on validation, which is to be maximized.
The cross-validation method is universal so numerically
determines the optimal hyperparameters of a machine
learning model (e.g. min samples leaf of a random forest)
for any given noisy dataset.

2.2 Uncertainty frommachine learning

The sources of uncertainty that machine learning should
capture are the inevitable statistical uncertainty in training
data derived from experiments, and also the uncertainty in
extrapolation. Depending on the machine learning algorithm,
different techniques can be employed to estimate the
uncertainty in prediction, here we highlight two approaches.
Firstly, linear regression [39] and Gaussian processes [40]
intrinsically compute the covariance matrix [34] from the
training data and use it to estimate the uncertainty.

Secondly, the bootstrap approach can calculate the uncer-
tainty for several methods including neural networks and
random forests. More specifically, bootstrap samples of the
training set are generated [41]. Each bootstrap sample is
obtained by repeatedly drawing an entry from the training
set randomly with replacement, meaning any entry can be
drawn again in the future, until the bootstrap sample is of the
same size as the training set. Then, each bootstrap sample is
used to train one machine learning model [19, 35, 42, 43].
The differences among the bootstrap samples lead to differ-
ing models that give a range of predictions. The compound
predictions are averaged to give the overall prediction, and
their standard deviation is the uncertainty in this prediction.
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Fig. 1 Flowchart for the multilayer regressor. Flow 1 takes X directly
to the second machine learning model; Flow 2 takes X to the
first machine learning model; Flows 3 and 4 predict Y and Y, σY

respectively; Flow 5 takes Y and σY to the second layer; Flow 6
outputs Z

2.3 Use of intermediate variable to handle missing
data

Data is often erroneous or missing in databases, which limits the
information available to train the model and make predic-
tions. We first review the techniques to handle erroneous
and missing data in Section 2.3.1. We then describe the
method that we use for imputing the missing data in
Section 2.3.2.

2.3.1 Techniques to handle erroneous andmissing data

Erroneous entries in the data hinder the performance
of the model so should be removed. These entries
can be pinpointed using outlier detection algorithms,
including using Kernel PCA [44], one-class SVM [45],
and autoencoders [46]. Another method is to search for
entries multiple standard deviations away from the machine
learning model prediction [25]. Removing the erroneous
entries, however, leads to missing data.

The easiest way to deal with the missing data is to
remove the corresponding entries completely [47], but that
would lead to loss of crucial information. Another method
is to impute the missing values with the mean value of the
available data [48], however that would not preserve the
relationships between inputs and outputs. Furthermore, the
fact that data is missing for a given entry can give crucial
information about this entry [49]. For example, if certain
clinical measurements are missing from a patient’s record,
it could either mean that the patient’s condition is not severe
so the physician saw no need to take the diagnostic test [50],

or the condition is severe and therefore the patient dropped
out of diagnostic testing to undergo treatment [51].

Machine learning algorithms can learn and exploit
correlations between output variables. For example, neural
networks that predict different but correlated quantities
can share weights to improve predictions [52]. Another
example is collaborative filtering [53], which utilizes
relationships between online store customer’s preferences
for different items to give recommendations. Correlations
between output variables can be used to impute the missing
values [54, 55]. This strategy was generalized to impute
the missing data in an iterative and self-consistent manner,
and then successfully applied to materials and drugs design
[25, 56–58]. Here we first outline this final method in
Section 2.3.2, before extending it further in Section 2.4 to
exploit the untapped resource of information hidden in noise.

2.3.2 Method to impute missing data

We define a dataset that comprises three columns: an input,
an intermediate target variable, and an output. Without loss
of generality, we define X as the input, Y as the intermediate
target variable, and Z as the output. We can visualize the
flow of information through the machine learning algorithm
with the flowchart in Fig. 1. A standard machine learning
approach will follow Flows 1 & 6 to use only the input
feature X to predict the target variable Z.

Instead, we can train the first machine learning model
on X (Flow 2) to predict the intermediate target variable Y

(Flow 3), which is correlated with the target variable Z. We
then train the second machine learning model on Y (Flow 5)
to predict Z (Flow 6). The two machine learning models can
use different underlying algorithms, making the approach
generic and broadly applicable.

Using the intermediate variable Y is particularly useful if
we want to extrapolate Z for X outside the training range,
e.g. when we have data available for Z at X < 0 but no data
for Z at X > 0, as in the third plot in Fig. 2. At both X < 0
and X > 0, data is available for Y , as illustrated in the X−Y

plot in Fig. 2. We start by learning the X − Y relationship,
and then exploit the correlation between Y and Z to improve
Z-predictions. In other words, two interpolations X → Y

Fig. 2 The three plots applied sequentially utilize variable Y to extrapolate Z on X. In the rightmost figure Z-values are missing for X > 0. Blue
points are training data, red curve is extrapolated values. The arrows represent Flows 2 & 3 and 5 & 6 from Fig. 1
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(Flow 3) and Y → Z (Flow 6) would give an extrapolation
X → Z. This situation commonly arises if Z is more
expensive to measure than Y and/or more data is available
for Y than for Z.

The strategy to exploit an intermediate variable is generic
and can be applied to any dataset with correlations between
variables. Therefore, the method can be applied to any
permutation of input, intermediate, and output columns. For
example, previously we discussed X → Y → Z, however
the method works just as well to predict X → Z → Y or
Z → Y → X simply by swapping the column labels in
the algorithm. The reordering of the columns can be done
concurrently, so within the macromodel the same column
can be used as both an input and also be predicted from
other columns, depending on what data is available and the
quantity of interest.

2.4 Use of uncertainty as an input

When applying machine learning to sparse data, the scarcity
of reliable information will always hinder accuracy. It
is essential to exploit all available knowledge. Here we
develop the formalism to exploit the untapped resource of
information hidden in noise. With the three components –
machine learning, estimation of uncertainty, and handling
of missing data – in place, we are well-positioned to
develop the overarching framework to use uncertainty as
an input for machine learning. In this methodology we will
utilize uncertainty in one target variable for extrapolation
of another final target variable. We prescribe the formalism
with a general machine learning model, for which any
standard method that estimates uncertainty is available, so
the approach has broad applicability.

The simplest way to use the uncertainty in target variable
Y for extrapolation of another target variable Z is to use a
multilayer regressor (Fig. 1). We first train a model (first
layer machine learning model) on X (Flow 2) to predict
Y and its uncertainty σY (Flow 4); then train another
model (second layer machine learning model that can use a

different algorithm compared to the first model) on X (Flow
1), Y and σY (Flow 5) to predict Z (Flow 6).

To this point the approach has been prescribed using
general and possibly different machine learning models in
the two layers. However, we note that as the first and
second layer machine learning models predict the same
quantity with the same amount of target data, governed by
the same underlying trend, they should naturally be similar.
Therefore, in practical applications and hereafter in the
paper, we set both models to have the same architecture
and moreover to adopt the same hyperparameters. This
constraint halves the total number of hyperparameters,
which not only mitigates overfitting, but moreover reduces
the computational cost of hyperparameter optimization.

3 Algorithm validation

Having implemented the machine learning algorithm, we
now need to validate its performance. Firstly, in Section 3.1,
we test the ability to accurately predict uncertainty.
Secondly, in Section 3.2, we confirm the ability to use
the prediction of one target variable to predict another
target variable. Thirdly, in Section 3.3, we validate the core
functionality by estimating the uncertainty in one variable
and using it to predict the second variable. Finally, in
Section 3.4, we validate the ability of the algorithm to
use the combination of one variable and its uncertainty to
predict another variable.

3.1 Uncertainty evaluation

Understanding the uncertainty is central to this study, so first
we confirm that our machine learning method of choice –
random forest – gives a good estimate of the uncertainty in
its predictions. We adopt a dataset comprising N = 100
entries (Fig. 3a), where 0 < X < 1 and Y is normally
distributed white noise ∼ N (μ, σ 2) with the mean μ =
0 and the variance σ 2 = 12. The hyperparameters that

Fig. 3 Random forest for
Gaussian white noise: (a)
predictions (orange, error region
shaded), (b) calculated
uncertainty (red) convergence to
the true value (blue, error region
shaded) as the number of trees is
increased
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maximize the 5-fold cross-validation R2 in Y -predictions
were found: min samples leaf = 100, leading to each
tree averaging over all of the training data, giving a constant
prediction equal to the dataset mean, with uncertainty of
0.091 (Fig. 3a). This compares favorably to the analytical
estimate of the uncertainty in mean, σ/

√
N = 0.100±0.007

(Fig. 3b, blue dotted line, error region shaded) [59].
When a Gaussian process [40] is applied to the same

dataset, it selects a large lengthscale hyperparameter [60]
to maximize the 5-fold cross-validation R2. This averages
over the datapoints, similarly to random forest, giving
an uncertainty estimate of 0.0995. Therefore, uncertainty
estimates from both Gaussian process and random forest are
consistent with the analytical value of 0.1. However, since
random forest is computationally cheaper, we adopt random
forest in this study.

We next check the number of trees, that is number of
parallel models trained on different replicas of the data,
required to give good estimates of the uncertainty. In Fig. 3b
we see that uncertainty estimates using 125 or more trees
are all within the error region of σ/

√
N = 0.100 ± 0.007.

Therefore, we adopt 125 trees for the remainder of this
study.

The choice of min samples leaf was instrumental to
enable the averaging over noise and to give valid uncertainty
predictions. Therefore, in order to further investigate the
noise averaging lengthscale of random forest, we study
a dataset with 0 < X < 10 and Y ∼ N (X, 12)

(Fig. 4a). The value of min samples leaf that minimized
the cross-validation MSE in Y -predictions was 25, leading
to steps in the predictions, which can be seen in Fig. 4a.
Should the random forest average over a higher number
of adjacent datapoints, the contribution to the MSE from
white noise decreases. However, at the same time, the
model underfits the underlying linear function even more.
This means that for a given noisy dataset there must
be an optimal minimum number of datapoints in the
tree leaf, determined numerically through hyperparameter
optimization.

For a more rigorous analysis of the averaging length-
scale, we consider Y ∼ N (X, σ 2), and suppose that n =
min samples leaf . With points spaced at average incre-
ments �Y on the Y -axis, n�Y is the increase in the underly-
ing linear function across the leaf. This leads to the average
contribution to the k-fold cross-validation mean squared

error due to underfitting being ∼
√

n2�Y 2

12 + nk2�Y 2

12(k−1)
, where

k � n. On the other hand, the contribution to the mean
squared error from the noise in the prediction is σ√

n k−1
k

. The

two contributions add in quadrature to give the total squared
error, which when minimized with respect to n gives:

n3k2�Y 2

6(k − 1)2
+ n2k3�Y 2

12(k − 1)2
= σ 2 (1)

Performing numerical experiments, we found the optimal n

for several values of σ using machine learning hyperparam-
eter optimization with 5-fold cross-validation. The values

of 25n3

96 + 125n2

192 – left-hand side of (1) with k = 5 –
plotted against ( σ

�Y
)2 can be seen in Fig. 4b as red dots.

The plot has a series of plateaus, since n is an integer. A
straight line fitted on the red dots (orange line) is within one
standard deviation of the theoretical line of best fit (slope
of 1, through the origin). This confirms that random for-
est coupled with hyperparameter optimization gives valid
uncertainty predictions, allowing uncertainty to be used as
a dependable input for machine learning to predict other
quantities later in the paper.

3.2 Extrapolation using intermediate target variable

Having validated that our machine learning model delivers
reliable estimates of the uncertainty in its predictions, we
turn to confirm its capability to utilize target variables
for extrapolation, as first developed in Ref. [25] and
then exploited in Refs. [56–58]. This requires a dataset
that comprises three columns: one feature column X, an
intermediate target column Y (X) = cos2(πX) (containing
information to guide extrapolation), and final target column

Fig. 4 Random forest model for
a linear function with Gaussian
white noise: (a) predictions
(orange, error region shaded),

(b) plot of 25n3

96 + 125n2

192 against
( σ

�Y
)2, red dots are computed

values, orange line is the straight
line of best fit, blue line is the
theoretical line of best fit (slope
of 1, through the origin)
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Z(X) = Y (X) = cos2(πX). In the training set at −1 <

X < 0, both Y (X) and Z(X) columns have data. At 0 <

X < 0.5, the Y (X) column has data but the Z(X) column
is blank – the missing data that we seek to extrapolate for
validation. The data can be seen in Fig. 5, and the region
with missing Z is shaded in grey in Fig. 5c, whereas all the
data with a white background is present.

First, working on the training set at X < 0, we find
the hyperparameters that maximize R2 in Z-predictions
calculated following the blocking cross-validation [61].
In this method, of the three equally sized subsamples
of the training set split along X-axis, the two outermost
subsamples are retained as validation data for testing the
model trained on the remaining subsamples. The model
with the tuned hyperparameters, which give the highest R2

on blocking cross-validation, was trained and then used to
predict Z at X > 0. The predictions of Z at X > 0
were then compared against the true values. There are two
strategies to predict Z(X): firstly X → Z and secondly
X → Y → Z. In Fig. 5, we have a full period of
Z(X) (−1 < X < 0) in the training set, so it is more
straightforward for the machine learning model to learn the
monotonic Z = Y (Fig. 5b) rather than the oscillating Z(X)

(Fig. 5c). Therefore, predictions of Z mostly follow the
X → Y → Z strategy. This leads to better predictions of
Z at X > 0 with R2 = 0.9995 on validation (Fig. 5c).
Moreover, this is confirmed through the random forest
feature importances of X and Y for predicting Z being

0.003 and 0.997 respectively. When we allow first and
second layer models to have different hyperparameters, the
prediction accuracy of Z at X > 0 drops to R2 = 0.997,
which is ascribed to unnecessary freedom in the model
leading to overfitting. This demonstrates the importance
for both first and second layer models to have identical
hyperparameters.

Having seen the good performance of machine learning
algorithm to circumvent missing data to extrapolate Z(X),
we also confirm that shifting or scaling Z(X) makes no
difference to the accuracy, which is expected as random
forest is both shift and scale-invariant.

3.3 Extrapolation using uncertainty

We have shown that the multilayer regressor can accurately
evaluate the uncertainty and utilize target variables for
extrapolation. We now juxtapose these capabilities and
validate the algorithm’s ability to utilize uncertainty in one
variable to extrapolate another variable. We construct a
paradigmatic dataset with X, Y , and Z columns, where X

is the feature column, Y ∼ N (0, |Z(X)|2), i.e. the noise is
equal to Z(X) and hence σY ∝ Z. Therefore, the second
machine learning model in Fig. 1 can learn X → σY → Z

(Flows 2, 4, 5 & 6) more easily than X → Z (Flows 1
& 6), allowing extrapolation beyond the training range of
X. This is analogous to our study of missing data, simply
following Flow 4 rather than Flow 3 in the flowchart in

Fig. 5 Prediction of Z using Y

for extrapolation with one
period in training data. (a) Y vs
X on training set (blue), (b) Z vs
Y on training set, (c)
Z-predictions given X, using Y

(red, error region shaded,
R2 = 0.9995 on validation) and
without Y (orange, error region
shaded, R2 = −1.75 on
validation). The grey shaded
area is the validation set
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Fig. 1. Therefore, to cement the analogy we adopt the same
target function Z(X) = cos2(πX) as before, with Z-values
missing for X > 0 for validation.

Following the prescription of our study of missing data,
we focus on the case of training on one period (−1 <

X < 0) of data for Z(X), shown in Fig. 6. We find
the hyperparameters that maximize R2 in Z-predictions
calculated following the blocking cross-validation [61]. The
optimal value of min samples leaf was 18, leading to the
estimate of the error in predictions, σY , being proportional
to the noise in the underlying data, with a proportionality
factor of 1/

√
18 (Fig. 6a,b). The model with the tuned

hyperparameters was trained and then used to predict Z

at X > 0. These predictions were compared against the
true values, giving validation R2 = 0.89 (red curve) and
feature importance of σY of 0.93. When we allow first and
second layer models to have different hyperparameters, the
prediction accuracy of Z at X > 0 drops to R2 = 0.86,
which is ascribed to overfitting. This again demonstrates the
importance of constraining first and second layer models to
have identical hyperparameters.

Both first and second layer models can generally predict
the same (and often all) target variables (see Section 2.3.2).
Initially, the uncertainty in the intermediate target variable,
σY , is unknown. Therefore, though the first layer model
cannot use the unknown σY as input, it can predict σY

through X → σY . This provides a springboard for the

second layer model, σY → Z. This means that the two
models are not identical. Therefore, they have different
internal parameters and hence an increased total number of
parameters compared to a single layer model. For clarity,
a single layer model cannot learn σY → Z directly,
because no data for σY exists in the initial training data.
This demonstrates that in order to exploit the uncertainty
for extrapolation, we need more parameters than in a
single layer model. Having too many parameters, however,
would lead to overfitting on the training set and hence
poor predictions on the blind validation set. Our two layer
model gives good predictions on the blind validation set
(Fig. 6c), and also outperforms a model that does not exploit
uncertainty, demonstrating the robustness of the approach.

It should be noted, however, that Z-predictions on
validation (Fig. 6c) could have been better – the plateau of
Z-predictions extends up to X = 0.21, and the minimum
value of Z is 0.017 instead of 0. This stems from the noisy
estimate of uncertainty in the machine learning predictions
of Y , meaning that the model chooses to learn partly from
X → Z. Without using σY , the model mostly learns
X → Z, leading to approximately constant prediction of Z

(orange curve).
To study the relative importance of the X → Z versus the

X → σY → Z approach we now increase the lower bound
B of the range B < X < 0 of training data and therefore
the number of periods of training data at X < 0 to increase

Fig. 6 Predictions from a
random forest trained on one
period of Gaussian white noise
of periodic amplitude: (a) Y

(orange, error region shaded)
and σY (red) predictions, (b) Z

vs σY on training set, (c)
Z-predictions given X, using σY

(red, error region shaded,
R2 = 0.89 on validation) and
without σY (orange, error region
shaded). The grey shaded area is
the validation set
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Fig. 7 Effect of the number of
periods in training set on: (a)
Value of Z at the minimum (red)
and extent of plateau in
Z-predictions (orange); (b) R2

for validation data (red) and
feature importance of σY

(orange). Note that at half
period, feature importance of σY

and R2 are too low (0.003 and
−1.98 respectively) and
therefore not shown in the plot

the amount of data to learn the linear σY → Z relationship.
The results can be seen in Fig. 7. With more periods in
training set, more information is available for learning the
linear σY → Z relationship, and learning X → Z becomes
less favourable. This leads to increase in feature importance
of σY , consequently improving R2, minimum Z, and the
extent of the plateau on validation. Generally, as little as one
period in the training data already gives a real-life benefit
from using the uncertainty.

The amplitude of the noise, as long as it is above zero,
does not affect the quality of predictions. This is expected,
since random forest is scale-invariant. Tests presented so
far have been for Gaussian distributed noise. Therefore, the
algorithm was tested for other noise distributions including
Cauchy, uniform and exponential. For all of these the
algorithm delivered predictions with a similar level of
accuracy.

3.4 Extrapolation using both intermediate target
variable and uncertainty

We have demonstrated that the multilayer regressor
can utilize either an intermediate target variable or its
uncertainty for extrapolation. If both the intermediate target
variable and its uncertainty contain information about the
final target variable but are individually noisy, it is possible
to combine them to use the less noisy average to help
extrapolate the final target variable. This would reduce
the mean squared error in predictions of the final target
variable by a factor of up to 2. Shot noise [32] is one
real-life example of where a variable and its uncertainty
are related and so both contain information that we can
exploit.

In order to validate the algorithm’s ability to combine
an intermediate target variable and its uncertainty for
extrapolation, we construct a paradigmatic dataset with X,
Y , and Z columns. In this dataset, X is the feature column,
and Y ∼ N (Z(X), b2|Z(X)|2), where b is a positive real
number. As before, we adopt Z(X) = cos2(πX), with one
period (−1 < X < 0) of Z(X) for training and Z-values
missing for X > 0 for validation.

To enable learning of Z(X) from a linear combination of
Y and σY , we first standardize Y and σY computed by the
first machine learning model X → Y, σY . Then we perform
a rotation of Y and σY in the Y − σY plane by angle θ :
(

Y ′
σ ′

Y

)
=

(
cos(θ),− sin(θ)

sin(θ), cos(θ)

)(
Y

σY

)
(2)

After that, the two rotated components, Y ′ and σ ′
Y , are

used as inputs by the second machine learning model to
learn Z.

First, working on the training set at X < 0, we find
the hyperparameters that maximize R2 in Z-predictions
following the blocking cross-validation [61]. The model
with the tuned hyperparameters and the optimal angle θ of
rotation in the Y − σY plane was trained and then used to
predict Z at X > 0. The predictions are compared against
the true values for several values of b, and the results are
presented in Fig. 8.

The R2 values obtained when using rotation (red curve)
are slightly better than the R2 values obtained without using
rotation (orange curve) due to the combination of Y and
σY being less noisy than the individual quantities. We also
compute the R2 values obtained when the second machine
learning model uses only Y (brown curve) and only σY

(purple curve). The optimal angle of rotation θ values are

Fig. 8 R2 for validation data at different b using rotation in Y − σY

plane (red), without rotation in Y − σY plane (orange), using only Y

(brown) and using only σY (purple). The green curve shows the optimal
angle of rotation θ in Y − σY plane
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shown by the green curve. It is clear that for the small and
large values of b, which correspond to the limits discussed in
Sections 3.2 and 3.3, no rotation is necessary due to the fact
that Z is predominantly learnt from Y and σY respectively.
Both red and orange curves approach the brown curve in
the former limit and the purple curve in the latter limit from
above.

The noise in σY is smaller than the noise in Y by a factor

of ≈
√

2
b

, therefore θ = 0 at b > 0.7, i.e. it is easier to use
only σY for predictions. At at the intermediate values of b

less than 0.7, however, θ peaks at 45 degrees, meaning that
rotation combines the information from Y and σY in equal
proportions to predict Z. Using this rotation marginally
improves the predictions (red curve) compared to not using
any rotation (orange curve). This improvement comes from
averaging the noise in Y and σY , which would otherwise
exacerbate predictions of Z in regions where Y and σY are
particularly noisy.

4 Application to real-world physical
examples

Having set up and validated the machine learning algorithm
for extracting information from uncertainty, both directly
and alongside the expected value, we are well-positioned
to test these two capabilities of the formalism respectively
on two real-life physical examples: dielectric crystal phase
transitions (Section 4.1) and single-particle diffraction of
droplets (Section 4.2). In each case, we take experimental
data from the literature and split it into two tranches. We
then train the model on the first tranche and validate against
the second tranche to replicate a real-life blind prediction
against a future experiment.

A general characteristic of a system that machine
learning from uncertainty will benefit is non-monotonic
X → Z behaviour coupled with a noisy intermediate
variable Y . An excellent example is a material that
undergoes multiple phase transitions as tuning parameter
(X) increases. Fluctuations in the system’s order parameter
(Y ) will always be elevated near to each phase transition
[62], and so will the energy associated with fluctuations,
and therefore heat capacity (Z). Precise measurements of
heat capacity are typically performed using differential
scanning calorimetry [63], which is usually more costly
than measuring order parameter (e.g. dielectric constant). It
is therefore attractive to learn X → σY and then σY →
Z, i.e. a map from order parameter fluctuations to heat
capacity, in order to extrapolate the latter. In Section 4.1
we apply exactly this approach to a dielectric crystal phase
transition.

Systems where combining the value of the intermediate
quantity with its uncertainty to achieve statistical averaging

are often characterized by counting with shot noise [32].
An example is single-particle diffraction, which we study
in Section 4.2. Here, as the diffraction angle (X) varies, the
particle count (Y ) exhibits noise (σY ) that is dependent on
Y . The combination of the particle count and its uncertainty
can be used to predict the ground truth diffraction pattern
(Z), which is obscured in the regions where the particle
count itself is finite and therefore noisy.

4.1 PbZr0.7Sn0.3O3 crystal phase transitions

An excellent example of a system that undergoes multiple
phase transitions is PbZr0.7Sn0.3O3 – a dielectric crystalline
solid. As the temperature (X) increases, this crystal goes
from antiferroelectric state (A1) to paraelectric state (PE)
via intermediate states A2, IM, and MCC [64] so passes
through a total of four phase transitions. The order
parameter (Y ) is the dielectric constant. The experimental
data [64] available for heat capacity already accounts for the
Debye contribution [65], leaving the excessive heat capacity
(Z) associated with phase transitions, i.e. order parameter
fluctuations. The plot of the available experimental data [64]
is shown in Fig. 9a.

We focus on first-order phase transitions A1 ↔ A2
and A2 ↔ IM. This pair of first-order transitions are the

Fig. 9 (a) Experimental data on dielectric constant (green, primary
y-axis) and excessive heat capacity (blue, secondary y-axis) against
temperature. The vertical black dotted lines denote the phase
transitions between the A1, A2, IM, MCC and PE phases. Reproduced
from Fig. 5 in Ref. [64]. (b) Predictions of the phase transition at
∼ 440 K. The plot includes predictions using uncertainty (red, error
region shaded, R2 = 0.85 on validation) and without uncertainty, i.e.
only using the mean value of the intermediate variable (orange, error
region shaded, R2 = −0.04 on validation). The grey shaded area is the
validation region
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Fig. 10 (a) Data for droplet count (green, primary y-axis) and ground
truth amplitude (blue, secondary y-axis) with angle, reproduced from
Fig. 3 in Ref. [66]. (b) Predictions of the amplitude for the peak at
∼ 30◦. The red curve corresponds to predictions using uncertanty
(R2 = 0.63 on validation), and the red shaded region is the error
region of these predictions. The dashed orange curve corresponds to

predictions without using uncertanty as an input, i.e. only using the
mean value of the intermediate variable (R2 = 0.43 on validation),
and the orange shaded region is the error region of these predictions.
Blue points are the original data. The grey shaded area is the validation
region

most prominent in Fig. 9a, whereas the other second-order
transitions, despite having diverging fluctuations, have a
narrow region of sharp increase in heat capacity that is not
resolved in the available experimental data.

We train a multilayer regressor on the peak at ∼ 471
K and validate on the peak at ∼ 440 K. For training, the
dielectric constant data is available at all temperatures, but
the excessive heat capacity is only available to the right of
the first peak, therefore provides no information about the
phase transition at ∼ 440 K. The results can be seen in
Fig. 9b. The algorithm delivers strong predictions for heat
capacity when compared to unseen data at temperatures
below 455 K with R2 = 0.85, correctly identifying the
phase transition at ∼ 440 K. The feature importance
of uncertainty in dielectric constant is 0.87, showing the
utility of uncertainty in understanding the phase transitions.
If the machine learning is trained without being able to
exploit uncertainty, we see the predictions completely miss
the phase transition with R2 = −0.04, confirming the
importance of predicting and exploiting the uncertainty.

4.2 Single-particle diffraction of droplets

Having successfully applied our method to dielectric
crystal phase transitions, we proceed to demonstrate its
applicability to another phenomenon – diffraction of
droplets through a double slit, taking data from Ref. [66].
For a given angle (X) the count of droplets (Y ) diffracted
into that angle was measured and plotted on a histogram.
The flow of droplets is low, making accumulation of data
for the diffraction pattern time-consuming. We therefore
turn to machine learning to take available data and estimate
the diffraction pattern, expecting it to be that of a double
slit. The noise in the count (σY ) is expected to follow a

Poisson distribution [67], i.e. to depend on the expected
value of the count. Therefore, it is possible to use both
Y and σY self-averaging the statistical uncertainty in each,
delivering a more precise estimate for the analytical ground
truth amplitude (Z), despite the finite number of droplets
in the experiment. The determination of the ground truth
amplitude is useful for investigating the properties of the
particles source (e.g. particle energy) if at some angles the
particle count is noisy or low.

Experimental data for diffraction of 75 particles was
taken from Ref. [66] and is shown in Fig. 10a. We train
multilayer regressor on the two peaks at ∼ −30◦ and
∼ 0◦ and validate on the peak at ∼ 30◦. For training,
the count is available at all angles, but the ground truth
amplitude is only available at the peaks at ∼ −30◦ and
∼ 0◦. Such a situation may arise when the ground truth
amplitude is unknown at some angles due to the complex
nature of the particles source and/or the aperture. The results
can be seen in Fig. 10b. The model achieves R2 = 0.63
on validation. Without using the uncertainty, the value of
R2 on the validation set is 0.43, confirming the significant
benefit of the use of uncertainty to improve extrapolation.
The mean squared error in predictions is reduced by a
factor of 1−0.43

1−0.63 = 1.54 < 2, in agreement with the
expected improvement when using uncertainty discussed in
Section 3.4.

5 Conclusion

We developed, implemented, and validated a machine learn-
ing framework which, given an input feature X, calculates
uncertainty in target variable Y , σY , and uses Y and/or
σY to predict another target variable Z. Two successive
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interpolations X → Y, σY and Y, σY → Z enable the dif-
ficult extrapolation X → Z. Tests on paradigmatic datasets
show two significant advantages: firstly the exploitation of
information only in σY , and secondly reduction of noise by
averaging Y and σY when they are proportional.

To showcase the method it was applied to two
experimental datasets. For the first dataset on dielectric
crystal, given the temperature (X) range and the order
parameter (Y ) values and exploiting the uncertainty σY

in Y -predictions, heat capacity (Z) was extrapolated with
respect to temperature. The method quantitatively predicted
the phase transition completely missed by standard machine
learning methods. For the second dataset, single-particle
diffraction of droplets, given the angle (X) range and
the particle count (Y ) values and exploiting the Y -values
together with the uncertainty σY in Y -predictions, the
ground truth amplitude (Z) was extrapolated with respect
to angle. Our method that combines Y and σY improves
extrapolation in the region with noisy Y -values, reducing the
mean squared error by a factor of ∼ 2. This demonstrates
the importance of uncertainty as a source of information in
its own right, to improve the predictive power of machine
learning methods for physical phenomena.

Furthermore, the method can operate on any number of
input features and target variables and the generic algorithm
can be applied in many different situations. This endorses
the method’s applicability to more complex physical
systems, e.g. concrete or atomic junctions. For concrete, the
input feature X would be the position within the image
of the material’s microstructure. The intermediate target
variable Y would be the size/contrast of the aggregate, and
the uncertainty in it, σY , is linked to mechanical properties
of the material (Z), such as strength [68]. For atomic
junctions, the input feature X would be the shape/structure
of the junction. The intermediate target variable Y would
be the count of electrons passing through the junction. This
count has shot noise, hence the combination of Y and σY

can be used to improve predictions of properties linked to
electron count, such as conductivity (Z) [69].

The algorithm has potential applications in areas beyond
physics as well. One of these areas is financial markets,
where higher uncertainty in predictions of future stock price
movement leads to investors being less likely to buy or
sell it, i.e. to decrease in its trading volume [70]. Another
example is cancer, which is known to cause genetic chaos
[71]. The information extracted from this chaos can be used
for early cancer detection.
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