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A B S T R A C T

We propose an element-agnostic set of descriptors to model superalloy properties with Gaussian process
regression. Furthermore, we develop a correction method to deliver the best and most physical predictions
for microchemistry in multi-phase alloys. The model’s performance in predictions is confirmed for superalloy
microchemistry, microstructure, and strength properties. When including new, unseen elements in the test
data, the models still give good predictions; such extrapolations into new chemical-space would be impossible
with component-based descriptors.
1. Introduction

Hume-Rothery first developed his eponymous set of rules in 1935 [1,
2]. They describe whether any two elements could alloy together to
form a stable solid solution. For substitutional alloys there are four
rules: they concern the similarity of atomic radius, crystal structure,
valency, and electronegativity. Further developments to solubility rules
include the Pettifor scale and its 2016 proposed update by Glawe
et al. [3,4]. The Hume-Rothery rules highlight the opportunity for
fully element-agnostic models of phase composition that would enable
them to be applied to any material, even those containing elements
not before considered. However, the Calculation of Phase Diagram
(CALPHAD) methodology – which has become the industry standard
approach due to the promulgation of software such as ThermoCalc –
typically relies on thermodynamic models that have been constructed
element-by-element, limiting their broad applicability [5–7].

The same duality exists in applications of machine learning to
alloys. Some researchers have adopted the approach of using alloy
components directly as descriptors in their ML models. Such models
have been used to model Ni-based superalloy microstructures, and
design superalloys for a diverse range of applications [8–13]. Other
researchers have taken the approach of mapping alloy components to
physical descriptors based on domain knowledge [14–19]. This strategy
greatly improves models trained on small datasets, whereas models
trained on suitably large datasets were already able to self-encode the
physical descriptions of a system in their latent space [20], see Hart
et al. (2021) for a thorough review [21].
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E-mail address: p.taylor23@imperial.ac.uk (P.L. Taylor).

Superalloys are precipitation hardened—their important bulk prop-
erties, such as high-temperature creep and yield strength, derive from
their two-phase microstructure [22–26]. Hence, accurate prediction of
the relative phase fraction and phase compositions is a crucial first-step
towards property prediction. However, each generation of superalloys
has typically included additional elements [27], the most recent being
the inclusion of ruthenium [28–32]. The trend of additional elements
improving properties is naturally extended by high-entropy superalloys
(HESA), in which the principles of high-entropy alloy design are applied
to the superalloy matrix phase [33–37]. Machine learning models
that better transfer their inherent knowledge of alloy chemistry to
new composition-space could accelerate the further development of
superalloys.

We propose a physics-inspired set of descriptors to describe super-
alloys that is element-agnostic. Gaussian process regression machine
learning is then used to predict superalloy properties. For phase com-
position we build on previous work [10] to develop and demonstrate
a probabilistic correction method. In addition to interpolative scoring
of the models in the usual cross-validated manner (via a withheld,
randomly selected, test dataset), models are also scored on their ability
to extrapolate to datasets containing alloy components not seen during
training. Finally, creep strength models of Ni superalloys are developed
using similar physics-inspired descriptor sets.

2. Computational method

In this section we detail the computational method developed to
predict phase behaviour. We first describe the physical descriptor-set
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Fig. 1. An overview of how the Gaussian process regression models in this work were formulated.
used as input features to our machine learning models, then proceed to
give details of the Gaussian Process Regression models. Next, we discuss
some particular problems with representing phase microchemistry data
in machine learning models, and the novel correction method devel-
oped to address them. Finally, we describe our approach to physical
descriptor GPR models of creep strength.

2.1. Data representation

Our first task was to predict superalloy microchemistry. This is
described by the phase fraction, 𝑓𝜙, and the corresponding composition
of each phase, 𝑥𝜙𝑖 . Following other authors and our previous work,
we adopt partitioning coefficients in place of phase composition, 𝑘𝜙𝑖 =
𝑥𝜙𝑖 ∕𝑥𝑖 [8,10,28,32,38–41]. The partitioning coefficients give a simpler
encoding of physical information—for a given element, its partitioning
coefficients across many different alloys are typically more similar than
its various phase component percentages. In order to use variables that
are more normally distributed, we use a further transformation of 𝑓𝜙,
𝑘𝜙𝑖 from their respective intervals to the real line:

𝑝𝜙𝑖 = ln
(

𝑥𝜙𝑖 ∕𝑥𝑖
)

,

𝑞𝜙 = arctanh
(

2𝑓𝜙 + 1
)

.

As well as being necessary mappings, they also capture the physical
symmetry: 𝑓𝜙 → 1 − 𝑓𝜙 ⟺ 𝑞𝜙 → −𝑞𝜙 and 𝑘𝜙 → 𝑘𝜙−1 ⟺ 𝑞𝜙 → −𝑞𝜙.

The dataset used in this work is an updated version of that in
Ref. [10], containing 123 entries with complete microstructure data
(matrix and precipitate phase composition and fractions) [42]. The
phase composition dataset is presented in the conventional form, with
the nominal alloy compositions and heat treatments being the inputs
to our model, and the phase fractions and respective compositions
being the output. However, in this work we ‘‘reshape’’ the dataset into
a single-target format. This is represented graphically in Fig. 1 as a
two-step process. First the dataset is reshaped so that for a single-
phase ML model, each partitioning coefficient is considered to be a
separate output, and the input gains an additional column labelling
the output element. Note that in the GPR framework, this is equivalent
to a multi-output Gaussian process (MOGP) [43]. We will refer to this
model as the ‘‘plain method’’. Secondly, the data is transformed into a
2

physical representation, which is a function of composition and label,
but does not explicitly preserve the label as a feature. This means that
predictions can be made for labels (i.e. components) not present in the
training data—so long as the physical descriptors are carefully chosen.
We will refer to this model as the ‘‘descriptor method’’.

2.2. Physical descriptors

To fully understand the phase behaviour we must predict both the
phase fraction, and also the partitioning of each element between the
phases. The model for each property requires different inputs: for the
phase fraction model, inputs were composition and heat treatment data;
for the partitioning coefficient model, each entry gains a further feature
corresponding to the component-label of the target, see Fig. 1 and
Section 2.1. In our model, both this label and the composition are
converted into element-agnostic descriptors. The most natural choice
of physical descriptors would be based on the lattice structure and
atomic arrangement of an alloy, but these are a priori unknown.
Instead, a given alloy – for which, in our case, we only know the
nominal composition – can be thought of an ‘‘atomic soup’’, see Fig. 2.
Inspired by ab initio electronic structure methods used in physics and
chemistry, the atomic soup can be represented by the distribution of
the constituent atoms’ electronic properties. Said distributions can be
approximately specified by their mean, standard deviation; and higher
order moments if necessary. This is how the descriptors (descriptor set
A in Fig. 2) for modelling phase fraction were formulated. For the GPR
model of partitioning coefficients, the atomic species labels were also
transformed to physical descriptors (Fig. 1 and Section 2.1), chosen
following a similar logic (descriptor set B in Fig. 2).

Our choice of descriptors bore a strong similarity to the popu-
lar descriptor-set MAGPIE [44]. Those used by Ling et al. [45] and
Liu et al. [46] to model nickel superalloy properties are also sim-
ilar. Much like these descriptor sets, we found electronic structure
inspired descriptors to be especially powerful. Data used to construct
our descriptors was taken from Refs. [47,48].

Alongside its nominal composition, the precipitation heat treat-
ments applied to an alloy will also affect its final composition and
properties [10]. Up to three heat treatment stages were used as input
features for each alloy; each comprising a treatment temperature (𝑇𝑗)
and time (𝜏 ), for a total of six features. The theory of Ostwald ripening
𝑗
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Fig. 2. How physics-based descriptors were selected for this work. Descriptor sets A and B were used for different aspects of microstructure modelling. Descriptor set A was used
to model phase fraction, B was used to model the partitioning coefficients.
gives a theoretical dependence on heat treatment time and temperature
for an alloy’s phase compositions [49–52]:

⟨𝛥𝑥𝜙𝑖 ⟩
3(𝑡) ∼ e−𝜀𝑖∕𝑘B𝑇

𝑇
𝑡 ,

where 𝜀𝑖 is an activation energy associated with the diffusion of species
𝑖. Our model’s targets are the log partitioning coefficients; heat treat-
ment times in our database varied over several orders of magnitude
(from around 15 mins to 1000 h). Putting this altogether, we propose
representing 𝑚HT-stage heat treatments with the following descriptors:

ℎ′𝑗 =

{

∑𝑗
𝑘=1 ln(𝜏𝑘) − ln(𝑇𝑘) , 𝑗 ≤ 𝑚HT

1∕𝑇𝑗 , 𝑚HT < 𝑗 ≤ 2𝑚HT .
(1)

This retains the same total number of descriptors as in the initial input.
In Section 3.3 we show that this set of heat treatment descriptors
accurately capture the evolution of the alloys’ microstructures.

2.3. Gaussian process regression

A large number of physical descriptors were proposed for use in
our GPR model: much more than the number of input columns in
our dataset (18 for our dataset with component and heat treatment
inputs). To ensure that the GPR models were selecting the minimal set
of relevant features during hyperparameter optimisation, an automatic
relevance determination (ARD) Matérn kernel was used [53]. In cases
where the ARD kernel lengthscale 𝑙 for some of the features was found
to be very large, 𝑙 ≳ 103, small improvements in the model’s score could
be obtained by retraining the model without using said features at all.
The GPyTorch library was used for GPR [54]. Both the L-BFGS and
ADAM algorithms were tested for hyperparameter optimisation, with
L-BFGS being found to give both better results for a small trade-off in
training time.

2.4. Probabilistic correction to phase compositions

There are three physical constraints that alloy phase compositions
– i.e. the output predictions of the GPR models for phase chemistry –
3

must obey [5,10]:
∑

𝑖
𝑥𝜙𝑖 = 1 , (2)

∑

𝜙
𝑓𝜙 = 1 , (3)

∑

𝜙
𝑓𝜙𝑥𝜙𝑖 = 𝑥𝑖 , (4)

where there are 𝑚 phases labelled 𝜙 and 𝑛 components labelled 𝑖.
Eqs. (2) & (3) are hard constraints that the total concentration and total
phase fractions must each sum to unity. Eq. (4) can be interpreted as
a soft constraint representing an assumption of minimal material loss
in the forging process. Gaussian process regression does not present
an obvious way to impose such constraints—in Ref. [10] they were
imposed on the final model outputs. In particular, a Bayesian approach
was taken to apply constraint Eq. (4) via a correction to the predicted
phase fraction. In this work, the same approach is extended to apply
a simultaneous correction to the phase fractions 𝑓𝜙 and the phase
compositions 𝑥𝜙𝑖 . The output of the GPR models for phase fraction and
phase composition are taken to be independent Gaussian processes,
which for each alloy gives a prior:

exp
[

−1
2
(𝐪 − 𝐪̂)𝑇 Σ𝑞 (𝐪 − 𝐪̂)

]

∏

𝜙
exp

[

−1
2
(

𝐩𝜙 − 𝐩̂𝜙
)𝑇

Σ𝑝𝜙
(

𝐩𝜙 − 𝐩̂𝜙
)

]

,

(5)

and a likelihood relating to the soft constraint, where 𝜏𝑖 is a tolerance
for ‘allowed’ component loss, and 𝜎(3)𝑖 is an estimated uncertainty on
the sum on the LHS of Eq. (4)

∏

𝑖
exp

⎡

⎢

⎢

⎣

−1
2

(

𝑥𝑖 −
∑

𝜓 𝑓
𝜓𝑥𝜓𝑖

𝜏𝑖𝑥𝑖 + 𝜎
(3)
𝑖

)2
⎤

⎥

⎥

⎦

. (6)

Combining these to give a posterior, expanding the exponent of the
likelihood to quadratic order in 𝛥𝑝𝜙𝑖 = 𝑝𝜙𝑖 −𝑝̂

𝜙
𝑖 , 𝛥𝑞

𝜙 = 𝑞𝜙−𝑞𝜙, and finally
completing the square gives a new Gaussian probability distribution.
This is equivalent to maximising the log-posterior probability with



Computational Materials Science 227 (2023) 112265P.L. Taylor and G. Conduit

-

respect to the corrections to 𝐪̂ and 𝐩̂. This maximisation can be carried
out subject to hard constraints for Eqs. (2) & (3). Doing so produces a
correction to each of 𝑝𝜙𝑖 and 𝑞𝜙, as well as a new, valid covariance for
a given prediction, which in turn yields the associated uncertainties.

2.5. Creep strength modelling

We compiled a dataset of creep strength properties for single crys-
tal Ni superalloys. Entries were drawn from academic literature and
commercial databases [42]. A substantial contribution to the dataset
was from the open source creep rupture life dataset compiled by Liu
et al. [46] (266 entries). Database entries included multiple properties
characterising creep strength, including elongation at rupture (82 en-
tries), time to 1% creep (79), and minimum secondary creep rate (55).
There were significantly more entries available for creep rupture life
(388), reflecting the importance of this particular property as the pri-
mary metric of creep strength [23,55]. For this reason we solely focused
on modelling creep rupture life. Each entry had two corresponding ex-
perimental conditions, a temperature and applied stress. Other authors
have found that direct ML models of the creep rupture life are more
effective than modelling the Larson–Miller parameter [18]. We adopted
the same approach, which meant both experimental conditions were
included as input features.

Three approaches were taken to create a GPR model for creep
strength:

• Plain composition descriptors (directly analogous to the plain
method described above).

• Physical descriptor set derived from the input composition only
(analogous to the descriptors used for modelling phase fraction).

• Physical and metallurgical descriptors derived both from the
input composition and from the fitted GPR microstructure model.

Atomistic microstructural properties, in combination with precipitate
morphology, are known to determine the physical mechanisms by
which creep occurs [22,23]. This motivated the use of the third model.
In this model the precipitate fraction predicted by the microstructure
model was used directly as a descriptor. Other derived descriptors
were used: the lattice misfit between the two phases was calculated
using the Vegard coefficients [56–58]. The matrix phase stacking fault
energies were approximated using fcc and hcp formation energies for
each element [23,41,59,60]. The formation energies were calculated
via density functional theory using the PBSESOL functional [61]. The
mean and standard deviation of melting points for elements in the
precipitate phase were included as proxies for the 𝛾 ′ solvus [62,63]. The
mean interdiffusivity metric and the mean metal d-level metrics used
in the alloys-by-design procedure were also used as descriptors [57,64–
67]. The necessary microstructure predictions were made using the
GPR model described in the previous sections, trained on the full
microstructure database excluding any entries overlapping with the
creep rupture life dataset.

This GPR model incorporated more explicit high-level domain knowl
edge than any of the other models, which was only possible because the
physical mechanisms that govern creep deformation have been well
studied by metallurgists. However, the descriptors of this type that
were used are not an exhaustive list, and for this reason physics-based
descriptors that did not use explicit metallurgical domain knowledge
were also used in this model (see Fig. 8).

3. Results

With the data curated, descriptors selected, and machine learning
formalism in place, we are now well-positioned to test the performance
of our machine learning algorithms. We first study the performance of
microstructure prediction, before studying the creep strength.

To compare the performance of the proposed physical-descriptor
model to the plain model that uses composition features, we performed
4

Fig. 3. Predicted precipitate fractions from the descriptor model versus the actual
values. The vertical bars are the model’s uncertainties.

two rounds of tests on the microstructure data: firstly on blind valida-
tion data where all elements had been present in the training data, and
secondly for extrapolating to new materials that contain fresh elements
not present in the training dataset.

3.1. Performance when all elements available

We first test the performance of the physical descriptor model
when information about all elements is available at training. Two
models were trained: one that uses physical descriptors as inputs and a
second that inputs the plain composition. We carried out ten-fold cross
validation on the available microstructure data (123 database entries).
For each fold, the model was trained via log-likelihood maximisation
over the training dataset, then predictions were made on the withheld
validation set. These results were combined to give a single set of pre-
dictions for the entire dataset. The correction method from Section 2.4
was applied in the same way to both models.

The root mean squared error (RMSE) was used to compare the
two models due to its ease of interpretation for percentage-like prop-
erties. The RMSE for each element and fraction component of the
microstructure is given in Table 1. The physical descriptor model was
significantly better than the plain composition model for predicting
phase fraction, improving the RMSE from 6.3% to 4.4%. The predicted
versus actual phase fraction is plotted in Fig. 3, which confirms not
only the quality of predictions, but also the accuracy of the uncertainty
estimates. The phase fraction is the most crucial measure of a super-
alloy’s microstructure given its physical influence on yield and creep
strength. The descriptor-based model shows a smaller improvement for
phase composition predictions when compared with the plain method,
although it does still achieve the same or better RMSE for almost every
element.

We also confirmed the selected kernel hyperparameters. A Matérn
kernel with smoothness parameter 𝜈 = 2.5 gave the best results for the
log partitioning coefficient models and the phase fraction model. The
fact that a smoother kernel gives better predictions when using physical
descriptors is because the models are ‘forced’ to find the best physical
descriptors rather than relying on the kernel’s complexity to fit the data.
In turn, the combination of a simpler, smoother model with a superior
‘understanding’ of chemistry allows the model to extrapolate well.
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Table 1
Comparison of the root mean squared error (RMSE) for different components between the GPR model using descriptors and that using plain
composition.

Phase frac.(at. %) Composition (at. %)

Ni Cr Co Al Ti Heavy els.

Phase 1 Descriptor method – 4.8 4.8 3.4 1.7 1.2 0.6
Plain method – 5.4 5.2 3.2 1.6 1.3 0.6

Phase 2 Descriptor method 4.4 3.8 2.7 2.7 2.4 1.5 0.5
Plain method 6.3 3.8 3.0 3.0 2.4 2.0 0.6
Fig. 4. Predictions on a test dataset of Re bearing superalloys made by models trained on a dataset of 85 superalloys without Re plus a number of alloys with Re (indicated on
the x-axis). The points with open-circles are the physical descriptor model and with squares are the plain composition descriptor model.
3.2. Extrapolative predictions in composition-space

To test whether descriptors improve the ability of the model to ex-
trapolate in composition-space, we adopted the simple approach of test-
ing our GPR model on superalloy families outside the training dataset.
We focus on two categories of alloys: Re/Ru-bearing Ni-superalloys,
and high-entropy superalloys (HESA).

The addition of Re and Ru to commercial superalloy compositions
was one of the key innovations of the most recent generations of
conventionally developed single-crystal superalloys [23,68–70]. Here
we repeat the training process and start from a database comprising
88 historic superalloys that contain neither Re nor Ru. Of the data
on contemporary superalloys containing Re and Ru, 6 were randomly
selected to form a test set, and the remaining were added incrementally
to the training set so as to expose the importance of adding fresh
alloys during a research project. Fig. 4 shows the RMSE vs. number
of Re-bearing alloys in the training data. The initial predictions by the
physical descriptor model are extremely impressive, giving about the
same RMSE on the test data as it attains with any amount of Re-bearing
alloy data. When a few data-points for Re alloys are added, the plain-
descriptor model overfits so gives a higher RMSE than the physical
descriptor model. For the crucial prediction of the 𝛾 ′ phase fraction,
this improvement persists up to the maximum number of additional
training data points.

High-entropy superalloys are a more recent development in alloy
design, combining the design principles of high-entropy alloys and
precipitation-strengthened alloys [71,72]. HESAs typically contain Fe
as one of their entropy of mixing-boosting components. For a review
on HESAs see Ref. [35]. HESAs are a prime target for the physical
descriptor model owing to the large number of element permutations
that cannot all be represented in the training dataset. The GPR model
was trained on the full conventional superalloy database, that did not
5

contain a single HESA entry, nor any entries containing Fe. The model
was then tested on the HESA data collected by Zhang et al. [71]
that includes Fe-bearing superalloys, with results shown in Fig. 5. The
results are overall in excellent agreement, capturing the behaviour
of the elements known to the model well, and notably making good
predictions for Fe, which would have been impossible with the plain
descriptor model. For both experimental HESAs, the RMSE for 𝛾 ′ phase
elements was 1.8% and for 𝛾 phase elements was 7.0%. Once again,
predictions for the 𝛾 ′ phase are better than for the 𝛾 phase, reflecting
the stronger influence of physical factors on this phase’s formation.
Such a prediction would be simply impossible to make with a plain
composition descriptor model.

3.3. Heat treatments

To assess how well our heat treatment descriptors (Eq. (1)) capture
the evolution of microstructure during a heat treatment, we test our
model against two sets of experimental data [73,74]. In each case, the
physical descriptor model was retrained on the full database excluding
the respective set of test alloys.

The first test case was a commercial superalloy SRR99, aged under
a variety of conditions. Our model captured both the qualitative and
quantitative trends in the evolution of the 𝛾 ′ fraction, see Fig. 6(a).
Surprisingly, it exhibited both the largest uncertainty and error for
heat treatment A, the un-aged specimen. This could be reflective of
a spurious correlation in the training data, since data for commer-
cial superalloy microstructures are typically presented for fully heat
treated specimens, whereas ‘‘experimental’’ alloy compositions are less
frequently fully heat treated.

The second test case was for an experimental five-component su-
peralloy, where each specimen was aged at 760 ◦C for increasingly
long durations, shown in Fig. 6(b). Our model captured not only the
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Fig. 5. Predictions for the phase composition of a high-entropy superalloy (HESA) [71] from the physical descriptor model.
Fig. 6. Predicted (red points/series) and experimental (blue points) data for phase fraction evolution with applied heat treatments in two superalloys. The vertical bars and shaded
region give the standard uncertainty in the model’s predictions. (a) the commercial superalloy SRR99. Point A is for a sample that has only had a solid solution heat treatment
applied, point B has undergone a single precipitation heat treatment at 870 ◦C, and all following data points have undergone the same 870 ◦C heat treatment preceded by a
1080 ◦C heat treatment for the time indicated [73]. (b) an experimental superalloy. Each alloy has undergone a single precipitation heat treatment at 760 ◦C for the number of
hours indicated [74].
trend towards an increased 𝛾 ′ phase fraction with treatment time,
but also the observed decrease in precipitate fraction at intermediate
ageing times. It captured this qualitative trend despite the fact that it
is opposite to that observed for the alloy SRR99; which furthermore
was one of the only alloys in the training data with more than two
different heat treatments applied to the same composition. Our new
proposed physical description of heat treatments, Eq. (1), outperformed
other descriptors for both test datasets, including a plain time and
temperature descriptor and other Ostwald ripening-based descriptors,
as well as giving better results for the five-fold cross-validation testing
described above.
6

3.4. Creep rupture life model

GPR models for the creep rupture life of signal crystal superalloys
were trained. The accuracy of each model was assessed with ten-fold
cross validation in the manner described in Section 3.1. As the creep
rupture life data spans multiple orders of magnitude, 𝑅2 scores are
given for both the actual values and log values. An ARD Matérn kernel
was used in the Gaussian processes; but for the creep models, unlike
those for microstructure, the optimal kernel smoothness parameter
was found to be 𝜈 = 1.5. The decreased smoothness of the kernel
is likely because creep rupture life data spans multiple scales and
testing regimes. For example, it is known that creep in single crystal
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Fig. 7. Predicted creep rupture life from a descriptor model including microstructure-
based descriptors. The vertical bars are the model’s uncertainties.

Table 2
A summary of the coefficients of determination for GPR models of creep rupture life
using different descriptors.

Descriptors 𝑅2

Physics + metallurgy-based descriptor method 0.864
Physics-based descriptor method 0.856
Plain method 0.840

superalloys occurs by two main mechanisms, dislocation and diffusion
creep, with the former mechanism dominating at low temperatures and
the latter at high temperatures.

Firstly, a plain composition descriptor GPR model was trained,
which achieved 𝑅2 = 0.840. Next, a model using a similar physics-based
descriptor set to that used for microstructure, i.e. using descriptors
calculated solely from each alloy’s nominal overall composition, was
trained. This delivered an improvement on the plain descriptor method,
achieving 𝑅2 = 0.856 (see Table 2). This physics-based descriptor set
was then further refined to include more high-level domain knowl-
edge, summarised in Fig. 8. Metallurgy-based descriptors developed in
Section 2.5 were added, some of which were calculated using phase
compositions and fractions predicted by the pre-trained microstructure
model described in the preceding sections. This model achieved a
further improvement of 𝑅2 = 0.864 (Fig. 7).

The relevance of various descriptors in this model as determined by
the ARD kernel lengthscales are given in Fig. 8. Many of the expected
important descriptors are found to be relevant: the precipitate fraction,
the overall mean interdiffusivity, and the mean melting point of the
precipitate phase are selected. However, other descriptors that were
expected to be highly relevant are not selected, including the lattice
misfit, mean metal d-level, and the matrix phase stacking fault energy
(SFE). The mean metal d-level is a metric used to estimate suscepti-
bility to TCP phase formation during creep: commercial single-crystal
superalloys have long been designed to avoid this behaviour, which will
limit the influence of this descriptor for a model fitted to a dataset of
largely commercial superalloys. The matrix SFE descriptor is unlikely to
be sufficiently accurate: our estimate used an average of the difference
between zero-point formation energies. This neglects thermal effects
and uses an approximation to the SFE in fcc alloys. The lattice misfit
is likely found to be irrelevant for both of those reasons. Of the non-
metallic trace elements, the B and C at. % are relevant, whereas Y is not.
The same heat treatment descriptors used for the microstructure mod-
elling were again used, but the Ostwald ripening inspired descriptors
7

that were key to capturing microstructure evolution with ageing are not
found to be relevant (although it should be noted that they indirectly
enter the model via the predicted precipitate fraction descriptor). Three
physics-based descriptors calculated from the nominal composition are
found to be relevant. They are three descriptors that are also selected
by the microstructure GPR model, so they may be relevant due to
their influence on microstructure morphology, which is not explicitly
modelled.

4. Conclusion

In this work we have proposed a set of physical descriptors for
composition and heat treatment for use in machine learning models
of superalloy microstructure. A model using physical descriptors out-
performs a model using plain composition descriptors when making
interpolative predictions, see Table 1. Furthermore, when making ex-
trapolative predictions, the model significantly outperforms the plain
descriptor model, notably not suffering from such a severe overfit-
ting effect (Fig. 4). Moreover, it can also make predictions for alloys
containing elements that were not even present in its training dataset
(Fig. 5). Such predictions are completely impossible to make using a
plain descriptor model since they are not element-agnostic. This means
our model can make useful predictions for cutting-edge superalloys,
such as high-entropy superalloys or superalloys containing new heavy
elements.

As well as standing up on its own, our model has a number of
advantages over traditional CALPHAD. Previously identified benefits
include the ability to easily retrain the GPR model, incorporate non-
equilibrium features such as heat treatments, and most importantly its
inherent quantification of uncertainties [10]. The model presented in
this work captures both qualitative and quantitative effects of ageing on
microstructure, see Fig. 6(a–b). A further benefit of our model is that it
is possible to easily incorporate computational data, whilst still treating
it as distinct from empirical data. This can be achieved by simply
adding an extra feature to the inputs: a binary descriptor encoding the
method by which an entry has been obtained. The process of fitting
the Gaussian process will determine how relevant the computational
composition data is to predicting ‘true’ compositions.

In addition to the microstructure model, we developed a GPR model
for the creep rupture life of single crystal nickel superalloys. This
model builds on that developed for microstructure in two ways. Firstly,
it explicitly incorporates predictions of the microstructure model as
descriptors, and finds them to be relevant to making predictions, pro-
viding a direct use-case for the usefulness of our GPR approach. Sec-
ondly, it expands on the domain knowledge paradigm by making use
of descriptors that encapsulate metallurgical theories and principles. By
incorporating such high-level domain knowledge, the ARD lengthscales
of the fitted Gaussian process can be used to infer greater physical
understanding about the properties it models. With a coefficient of
determination of 𝑅2 = 0.864 for the log creep rupture lifes, this model
is itself useful for making predictions of this key strength property of
single crystal superalloys. Like the microstructure model, its predictions
include uncertainties, a crucial feature for its intended usage in alloy
design [10,75,76].

Currently our model only calculates partitioning into two pre-
determined phases, a use-case we have identified as most critical to
superalloy design. Other authors have constructed machine learning
models to classify alloys by phase stability [19]. This points towards
development of a fully-fledged, generic, and probabilistic approach
to the Calculation of Phase Diagrams problem. Beyond alloys, this
approach could be extended to phase separation in other systems
including polymer/polymer, polymer/filler, and aqueous two-phase
mixtures [77–80].
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Fig. 8. Feature weightings (inverse of ARD lengthscales) determined for a creep rupture life model trained on the full dataset.
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