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Abstract

Gaussian process regression machine learning with a physically-informed kernel
is used to model the phase compositions of nickel-base superalloys. The model
delivers good predictions for laboratory and commercial superalloys, with R? >
0.8 for all but two components of each of the v and ' phases, and R? =
0.924 (RMSE = 0.063) for the ' fraction. For four benchmark SX-series alloys
the methodology predicts the 7/ phase composition with RMSE = 0.006 and
the fraction with RMSE = 0.020, superior to the 0.007 and 0.021 respectively
from CALPHAD. Furthermore, unlike CALPHAD Gaussian process regression
quantifies the uncertainty in predictions, and can be retrained as new data
becomes available.
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1. Introduction

Nickel-base superalloys boast excellent high-temperature properties includ-
ing yield stress, creep strength, fatigue life, and oxidation resistance. For this
reason they are a critical material for the aerospace industry, as well as finding
use in ground-based gas turbines, steam turbines, and nuclear reactors. The
excellent high-temperature properties of superalloys arise due to their unique
sub-crystal scale matrix/precipitate microstructure [I, 2} B]. Accurate design
of future alloys requires a detailed understanding of this underlying structure.
Consequently, first-principles modelling of superalloys is dependent on accurate
prediction of both the amount and chemical composition of both the matrix
() and precipitate (7') phases. Two main methods are used to understand the
microstructure: physical modelling and curve-fitting.

Physical modelling methods must trade off between accuracy and compu-
tational cost, with density functional theory (DFT) regarded by many as the
ideal compromise [4} 5l [6]. Its computational cost scales as O(N?) with the N
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atoms in the simulation cell, the required size of which scales with the number
of components in the alloy system [7]. For this reason an increasingly popular
approach is to use a limited number of DFT calculations to fit the parameters
of a faster atomistic model [8, [O 10, [IT], 12| 13]. However, the cutting-edge
models are still limited to quinary alloys due to the cost of the initial DFT
calculations |14 [15].

The principle curve-fitting approach is the Calculation of Phase Diagrams
(CALPHAD) methodology [16], [I7]. CALPHAD is an equilibrium thermody-
namics approach that uses a free energy model for each phase to explore equi-
librium properties [I8], 19, [20]. This is an inverse problem approach to fitting
experimental phase composition data [2I]. Consequently we anticipate that
the advantage of CALPHAD over other curve-fitting methods is to reproduce
sensible physical limits when extrapolating beyond the range of the training
data. However, traditional CALPHAD methods do not calculate uncertainties,
so users cannot understand how trustworthy a given prediction is, which limits
the usefulness of their predictions. Recent work by Attari et al attempted to ad-
dress this issue by using a Markov Chain Monte Carlo approach to work out the
parameter values in a CALPHAD model, and hence infer uncertainties within
a Bayesian framework [22]. Another curve-fitting method is the Alloy Design
Program developed at NIMS, Japan, by Harada et al. The program calculates
the microstructure of a superalloy from its nominal composition using linear
regression models of the partitioning coefficients for each element, and was used
to design the TMS-series superalloys [23, 24 25, 26, 27, [28].

Machine learning (ML) is a new approach to curve-fitting data that has
recently gained prominence in materials science. The focus has been on us-
ing ML to predict the macroscale properties of superalloys, so that the ML
models can be used to design new alloy compositions to a given design crite-
ria [I} 2, 291 B0, BT, 32, B3] 34] B35, 36]. A wide range of ML approaches have
been used, including neural networks and Gaussian process regression (GPR).
Other researchers have applied ML to predicting different aspects of superalloy
microstructure such as the lattice misfit [37]. Yabansu et al used GPR to predict
the evolution of the microstructure morphology with ageing, taking as input the
time and temperature of the ageing heat treatment [38]. The ML approach is
appealing as it can not only address all materials properties, but also estimate
the uncertainties in its predictions [25] [39].

In this paper we combine the best of physical-based methods and machine
learning. Our approach is to develop a GPR model with a physically-informed
kernel to capture the underlying physical principles. We first compile a training
database from the freely available scientific literature. We then describe the
framework of the GPR model used to predict the chemical composition and
fractions of each phase, including a novel kernel devised to encapsulate some
basic physical principles of alloy systems. The predictions of the GPR model
are then initially compared to experimental values before being compared with
CALPHAD results on a selection of four experimentally measured SX-series
superalloys proposed in Ref. [40] as an uncertainty benchmark.



2. Data processing

Machine learning requires data to train on. For this reason it is neces-
sary to compile a database that we draw from both laboratory and commercial
superalloys: with each entry encapsulating information for both the features
that the ML method will take as inputs and also the properties that it will
predict as outputs. In this work each row in the database is a different su-
peralloy. The columns are the alloy’s descriptors comprising of composition

Xe = [1, ., zn]T (at. %), ageing heat treatment x;, = [T ... 25T "and also
its properties that are the components of both the alloy’s v (x” = [z]]T) and
v (X = [z ]T) phases and also the 4/ phase fraction f. Since the compo-

sition must sum to one, a reduced description x. — X, = [22,...,2,]T could
be used. However principal component analysis (Fig. [1)) showed that low rank
projections of x. had more explanatory power than the same rank projections
of X. (blue and red line respectively in Fig. . For this reason the full set
of descriptors were used throughout. We focus on pure /v’ alloys and there-
fore circumvent consideration of any carbides and secondary phases that could
form [2] [41], [42], (43 [44], [45], [46].

Heat treatments are applied to superalloys to control the microstructure
morphology, and can be classed as either a solution heat treatment or a pre-
cipitation/ageing heat treatment. The solution heat treatment homogenises the
microstructure so its temperature and duration is dictated by the superalloy
composition [42] (47, [48]. Therefore, we consider the solution heat treatment as
a property of the overall alloy composition, rather than as an input parameter.
Next, ageing heat treatments are applied to further optimise the morphology of
the superalloy microstructure. Six features describe the ageing heat treatment:
a heat treatment temperature and time, for up to three heat treatment stages
per alloy. For alloys with fewer total stages, the remaining ones are specified as
being at room temperature for no time.

The database comprises 97 experimental superalloy microstructures, of which
36 entries correspond to laboratory alloys, 43 to commercial (or modifications
of) single-crystal superalloys, and 18 to other commercial polycrystalline super-
alloys. All of these entries contained both Ni and Al. Other elements occurred
in a subset of database entries, between 86-times for Cr to just 5-times for
Ru [23] 140, 42} [48], [49, 50|, (11, 52} (3], 54, 55 (6L 57, (58|, B9, 60) 61, 62 63, [64, 65,
60, [67, [68], 69}, [70, [71), [72], (73}, [74) [75, [76], (77, [78, [79, [80] . See Tablefor a full
overview including summary statistics. In order to make the training procedure
as robust and user-friendly as possible, no outliers were filtered from the dataset
before use in the ML model.



Descriptors

Phase composition (at. %)

Ni Cr Co Re Ru Al Ta W Ti Mo Nb Hf
Min (>0) 4728  3.00 250 064 1.30 2.00 0.44 0.03 1.12 0.31 0.006 0.03
Max 86.50 24.47 1880 2.50 3.50 14.20 4.03 5.76 5.84 5.16 1.20  0.33
Median 66.50 12.55 6.65 2.00 3.50 11.20 1.99 1.53 2.70 1.30 0.44  0.06
Mean 67.46 12.30 820 175 3.06 9.89 1.97 1.83 2.88 1.97 0.39 0.13
Frequency 97 96 59 18 5 97 55 54 52 61 15 7

Heat treatment (°C | hrs)
#1 #2 #3
Min (> 0) 760  0.25 760  0.25 700 0.5
Max 1300 1500 1160 264 1050 100
Median 980 8 850 24 1040 16
Mean 963.8 305.2 8569 31.0 9414 24.8
Frequency 92 38 7
Properties
log partitioning coefficient P;

Ni Cr Co Re Ru Al Ta W Ti Mo Nb
Min -0.692 0.404 -0.208 0.142 1.169 -6.984 -5.711 -0.411 -5.220 -0.463 -1.872
Max 0.133 3.086 1.665 7.078 1.508 -0.488 0.489 1.329 -0.340 2.006 1.454
Median -0.154 2.038 1.077 1.794 1.218 -1.500 -1.892 0.311 -1.740 1.239 0.022
Mean -0.170 1926  1.027 2.640 1.267 -1.669 -2.337 0.355 -2.049 1.021 -0.198
Frequency 97 96 59 18 ) 97 54 52 52 59 13

log partitioning coefficient P/ 5

Ni Cr Co Re Ru Al Ta W Ti Mo Nb frac.
Min -0.297 0.274 -0.037 0.122 0.390 -1.410 -1.208 -0.446 -1.293 -0.405 -0.795 0.030
Max 0.128 2.610 1.145 3.039 0.722 0.621 0.666 1.116 -0.039 1.813 0.774 0.776
Median -0.058 1.320 0.508 0.857 0.568 -0.445 -0.356 0.100 -0.423 0.594 -0.432 0.470
Mean -0.063 1.361 0.550 1.194 0.565 -0.518 -0.371 0.173 -0.550 0.643 -0.136 0.450
Frequency 97 96 59 15 5 97 54 52 52 59 8 97

Table 1: Summary of the database.



2.1. Data parameterisation

With the data curated we are now well-positioned to reparameterise it to
both capture underlying physics and also to make it more amenable to machine
learning. To express the phase composition we adopt logarithmic partitioning
coefficients P;, P! [24 23 [62, [63, [67 [73, [76]. They are defined as:

7 o
P=log| %), P! =log | = . 1
) 7 "

Predicting the logarithm of the partitioning coefficients ensures they always
have physical positive values and preserves the symmetry between the v and +'
phases.

A superalloy comprises n elements and p phases, giving a total of np + p
variables of interest. The goal is to calculate them from the nominal composition

of the superalloy x = [21, ..., 2, 2T, ..., 28 T]T. There are also the following
physical constraints on these properties:
Total components sum to unity for
g ! et =1 @
each phase. ;
Total phases sum to unity. Z fa=1 (3)
(0%
Sum of all elements in all phases is
. . D forf = (4)
amount of element in the material. -

In our database entries f is often determined from the measured chemical com-
position of each phase using the n versions of Eq. 4] and is hence algebraically
over-determined, resulting in an approximate value determined by finding the
best fit for f to a rearrangement of Eq. || [56] [81]. Typically this means Eq.
does not hold exactly. Another reason this equation may not be fulfilled ex-
actly is that the 4’ phase fraction has been measured not only independently
of the phase compositions but also via another method—e.g. via atom probe
tomography or chemical analysis for the phase composition versus an ocular
determination from SEM imagery for the phase fraction. In both cases Eq.
should hold to within the experimental tolerances of the independent v and +/
phase composition and fraction measurements.

Relaxing Eq. [ from a strict constraint means that we need to predict all
but one phase fraction, and for each phase all but one component, i.e. a total of
np — 1 predictions. In the subsequent sections we will refer to the specific case
of superalloys, with p = 2 phases. f will refer to the fraction of 7' or precipitate
phase in the alloy, and f7 can then be inferred by by Eq. The constraints
implied by Eq. [ are revisited in section [3.2



3. Computational method

3.1. Machine learning methodology

We adopt Gaussian process regression (GPR) machine learning to predict
the log partitioning coefficients P; and ]51»’ and the ' phase fraction f (and
corresponding uncertainties) of each element ¢ in the alloy from its features.
We can then calculate the final values for the microstructure to minimise the
overall uncertainty. GPR takes a Bayesian approach to ML, in which an optimal
posterior distribution—from which predictions are made—is formed from a prior
distribution and a likelihood calculated from the training dataset. The prior
distribution is assumed to be Gaussian with covariance determined by a kernel
function. The functional form of the kernel should be chosen to suit the problem,
but its hyperparameters are optimised using the training data. In this work we
follow the standard approach of maximising the log marginal likelihood of the
training data [82] [83]. The GPR implementation in the Scikit-learn library for
Python was used [84].

Specifying the kernel provides an opportunity to incorporate our prior phys-
ical knowledge into the machine learning, which should give a more accurate
model with less data. Superalloy properties are usually determined mainly by
their composition rather than their heat treatment [52, (5l 57, 65, [68]. We
capture this physical rule of thumb in the following kernel:

k’(X, X/) = kcomp,O(Xca Xc/> + kcomp,l(XC7 Xc/) kHT(Xha Xh/) . (5)

The first kernel term captures the bulk of the variation due to composition. The
second kernel term captures the heat treatment and can be interpreted as an
AND operation for the two measures of similarity, coupling heat treatment and
composition [85]. A variation of Eq. [5| in which the second composition term
was a constant was also tested.

Three alternate kernel functions were considered in this work. A simple and
popular choice of kernel function is the Gaussian radial basis function (RBF):

k(x,x') = el IP/1? (6)

Here || || is the £ norm. The kernel has a single hyperparameter to be optimised
during fitting: the lengthscale [. Our second choice is the linear kernel:

k(x,x')=b+x-x" (7)

collapsing the method to ridge regression when b = 0 [82] [85]. This was used
as a comparison to the models with more complex kernels. The third choice is
motivated by previous work that used GPR to model the effects of alloy heat
treatments, which used the automatic relevance determination (ARD) variation
on the Gaussian RBF kernel [86] [38]. This kernel introduces a length parameter
for each feature, k(x,x’) = exp(—||(x —x') o 1_1H2).

Often the phase behaviour of an alloy is governed by the concentrations of
a few elements. This low dimensional structure can be encoded in the kernel
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Figure 1: Explained variance with the number of dimensions by principal component anal-
ysis for the composition of superalloys included in this work. The blue line is for the full
composition and the red line is for the composition excluding the base element.

by projecting the feature vector to a lower dimensional subspace, x — BX,
with B being a low rank matrix. B could be found prior to fitting the kernel
via principal component analysis, see Fig. or it could be optimised as a
hyperparameter of the kernel during training [87]. Prior knowledge tells us that
we anticipate two main groups of elements in a superalloy—Ni-like elements, and
Al-like elements—with a possible third group being the refractory elements [4T],
43, [62], 63], [88], suggesting that a matrix of around rank 3 would be suitable.

8.1.1. Ewvaluating the quality of uncertainty prediction

GPR delivers uncertainty o, estimates for each of its predictions ¢, so evalu-
ating how close the uncertainties are to the real-life validation data, y, is crucial.
The typical error in a prediction §—vy should follow a Gaussian distribution with
standard deviation o,. It follows that (y — y)/oy, ~ N(0,1). This quantity is
accumulated over all predictions and then is arranged into a histogram and com-
pared to an ideal “Gaussian” histogram with M bins of equal area A = 1/M
such that each bin has equal noise. From this a distribution of uncertainty qual-
ity (DUQ) is defined as the absolute sum of the difference in the areas of bins
between the two histograms. For NV data points this is defined as:

M
1 M Mo 1
DUQ = = —_— = 8
Q 2M71mZ:1N M| (8)

where the number of data points in each real bin, n,,, is normalised such that
> Ny = N. The number of bins is then optimised to achieve minimal value as
described in the appendix. A minimal DUQ = 0 indicates a perfect estimate



of the uncertainties whereas a peak DUQ = 1 indicates a poor estimate of
uncertainty.

3.2. Calculation of phase compositions and fractions

8.2.1. Dynamic choice of balance element

For each n component superalloy the relevant GPR models will predict all
2n partitioning coefficients {151, o, P, 151’, ,]57’1} and the + fraction, yielding
compositions £ and also f . This is more than the total number of properties
needed, meaning for each phase the amount of one element, ¢, will be calculated
using Eq. which we will call the balance element, Z,, ;. Rather than fixing
one component to be the balance element in every alloy, we instead dynamically
choose whichever minimises the difference between the component’s balance
value and the GPR value, accounting for the uncertainty prediction of the GPR
model o, that is:

Thal; — T3
— | (9)

0y

min
i

Since the numerator is the same for every element in a given alloy, this is equiv-
alent to choosing the element with maximal uncertainty in its value to be the
balance element.

For the final model presented in the next section, the dynamic choice of
balance element was compared to a static choice, in this case the conventional
choice of Ni. For Ni itself—a crucial element—the static method gave R? =
0.757 and 0.888 in the 4/ and ~ phases compared with an improvement of R? =
0.824 and 0.927 respectively for the dynamic method. For Al there was also
an improvement with the static method giving R? = 0.631 (v’) and 0.510 (v)
compared with B2 = 0.674 and 0.599 for the dynamic method. This was despite
Al being chosen as the balance element for 47 and 15 predictions (out of 97) for
the 4" and « phase respectively using the dynamic method.

8.2.2. Bayesian inferral of a consistent precipitate fraction

Predicting the precipitate fraction f , and the phase compositions X” and %
gives us a full determination of the microstructure. However the composition
for each phase may not sum to the total composition—that is Eq. [4] will not
hold exactly but it should hold approximately [56, [81]. To improve consistency
a Bayesian approach was taken to synthesise the information from the output
of the ML models for the phase compositions and for f to give the phase com-
position most likely to be consistent with a valid total composition. The output
of the GPR model for f is taken as a prior, and the likelihood is taken to be:

(i — 127 — (= pa7)’

2
20}

P <X|§<7,§<7/,f, O’Z') o Hexp —
i



With the standard deviation o; calculated from the uncertainties on the compo-
2 .

sitions as 07 = f20] +(1— f)QO';YZ we have a conjugate prior to the likelihood

and hence the posterior is also a Gaussian, with mean value and standard devi-

ation:

which are taken as the final values for the precipitate fraction and its uncertainty.
Note that in the limit o5 > 0;, Eq. agrees with the method of Reed et al [56]
81]. The method described above can be viewed as transforming Eq. [4] from a
strict constraint into a “soft” probabilistic constraint. A flowchart overview of
how the final phase compositions and fractions are predicted for a given input
composition is shown in Fig. [2}

4. Results and discussion

Variations of the GPR model with different kernels were trained on the
database described in section2l For each GPR model 5-fold cross validation was
carried out. This procedure was used to fairly assess the quality of the different
models in a way that will also highlight possible issues with over-fitting owing
to a large number of variables. The step-by-step procedure is:

1. 80% of the initial dataset it selected at random as training data, with the
remaining 20% being validation data.

2. A GPR model is trained with the training data without sight of the valida-
tion data. Here the training procedure is to fit the kernel hyperparameters
so as to maximise the log marginal likelihood of the training data [82] 83].

3. The GPR model is tested against the validation data to get a measure of
the accuracy. If the training data was over-fitted owing to a large number
of model variables then the model will deliver poor accuracy against the
blind validation data. Similarly, if the model has not captured the under-
lying physics of the dataset, it will perform comparatively poorly on the
validation data.

4. The procedure 1-3 is repeated five times with non-intersecting validation
datasets so as to produce a validation prediction for all the data that is
available, and the accuracy of each validation is stored.

5. The accuracy of predictions on each of the five validation datasets are
combined to deliver an overall coefficient of determination (R? value) cal-
culated over the entire dataset.
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Figure 3: Predicted precipitate (7' phase) fraction with error bars for validation data from
GPR models fitted across 5-folds, with kernel scheme Eq. [5| and functional form Eq.
Colours refer to different types of superalloy: blue are laboratory alloys, yellow are other
polycrystalline superalloys, and red are single-crystal superalloys. We highlight the composi-
tion of one particular superalloy.

Throughout the following section the R? value calculated in this manner has
been used as the metric to compare the different GPR models. We have also in-
troduced the distribution of uncertainty quality (DUQ) described in section[3.1.1]
as a metric to further explore the quality of a model’s predictions. Training on
the full database took two minutes on a laptop with an Intel Core i7 CPU—once
trained predictions can be made effectively instantaneously.

The Gaussian RBF (Eq. @), linear (Eq. , and ARD kernels were initially
tested for the composition only, k(x,x’) = k(x¢,xc). The results for selected
properties are shown in Table 2] Using the linear kernel is broadly the same as
the Alloy Design Program [23] 24} 25] [26] 27, 28], which gave good results for
the ~/ fraction, but was less accurate for some elements in the v phase. The
RBF kernel gave slight improvements for Ni and Al in both phases as well as the
~" fraction. The ARD kernel performed slightly worse than the standard RBF
kernel overall, this is due to overfitting, as has been noted in previous work [89].
In the case of Gaussian RBF kernels, it was found overfitting could be reduced
by setting the minimum value of the length scale to [ = 0.3, corresponding to

11
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about half the phase diagram [85].

With both linear and RBF kernels working well, a systematic approach was
then taken to combining them according to the kernel scheme given in Eq.
The best results were found for the following kernel, henceforth referred to as
the optimal kernel:

]{)(X, X/) =b+ag X¢- Xc/ + ale_”B(xc_xc/)Hz/l? . e_Hxh—Xh/Hz/lg . (]_2)

The first part is a linear kernel and the second an RBF kernel that combines
composition and heat treatment, B is a low rank matrix found from principal
component analysis [85]. A projection onto the first 3 principal components was
found to be optimal, in agreement with the discussion in section [3.1

Kernel Eq. [12| gave excellent results for the 4/ fraction with R? = 0.917, and
for all components R? > 0.8 (the full set of R? values for this model are given
in Fig. [5) except Al in the 4/ phase (R? = 0.674) and Al, Ta and Ti in the v
phase (R? = 0.599, 0.546, 0.766 respectively). This is due to the role of these
three elements as +' formers. This role leads to their at. % in the 7’ phase
being more constant between different alloys, resulting in a smaller variance

12



Kernel ~ phase elements ~' phase elements ~'

k(x,x’) Ni Al Ni Al frac.
Linear 0.921 0.040 0.669 0.591 0.900
RBF 0.940 0.371 0.704 0.676 0.905
ARD 0.936 0.349 0.724 0.658 0.896

Optimal (Eq. [12) 0.927 0.599 0.824 0.674 0.917

Table 2: Comparison of coefficients of determination (R?) for different kernels, including the
optimal final kernel. Refer to text for explicit form of kernels.

and hence lower R?, most notably for Al. Analysis of the root mean-squared
error (RMSE) showed it to be comparable to the other components. If Al, Ta,
and Ti concentrations in the 4’ phase have a strong physical correlation to the
alloy composition, this is not the case for the « phase content—the remaining
amount of each element that does not form the 7’ phase is dissolved into the
~ phase—and for this reason it is less strongly correlated to the overall alloy
composition which results in the generally lower R? values for the +' forming
elements in the v phase (Table .

The predicted «/ fractions found from this model are compared to the ex-
perimental values in Fig. 3] Agreement is on the whole excellent. The most
significant outlier is lab alloy Ni-9.1A1-4.4Ti. This alloy is peculiar in having a
low number of components with similar at. % values across both phase composi-
tions and the nominal composition, which leads to a large error and uncertainty
according to eqgs. [65]. Two other outliers are similar to training set alloys
but with the addition of Re, suggesting more data for Re-bearing alloys may be
required to explain its anomalous effect [56, 68]. Finally, two outliers correspond
to the commercial single-crystal superalloy MC2 with extreme 3rd stage heat
treatments (1050°C for 10 hours and 100 hours respectively) [49]—again, more
data is needed for extreme outlying heat treatment regimes, especially in the
3rd stage.

A variant of the optimal kernel Eq.[T2]was also tested without the heat treat-
ment term of the kernel which was set to 1. It performed similarly to the optimal
kernel for phase composition predictions but was significantly outperformed for
predictions of the 4/ phase fraction: it achieved an R? = 0.767 compared to
0.917 for the optimal kernel. This tells us the optimal model is capturing the
variance due to heat treatment, even if it is not capturing the full physics of
complex heat treatment regimes such as the case of MC2 described above.

Fig. 4] shows the predictions for one crucial component—the Al content of
the 7/ phase. Al is the principal former of the +' phase and the primary con-
stituent of the secondary sublattice in this phase [41}[42]. Significant outliers are
highlighted in the figure. Of these UMF20 and UMF31 are unusual compared to
the other alloys because Ti rather than Al is the primary ' phase forming ele-
ment in their composition [64. [73,[79]. In the case of STAL-15 and STAL-15-Re,
they have similar input compositions whilst their reported phase compositions
differ greatly hinting that they are either near to a phase transition or a possible

13
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Figure 5: Overview of R? values obtained for predictions of phase composition using the final
GPR model. Elements have their respective R? listed below them and have also been colour
coded to reflect this value (darker is better). The data has been superimposed on the periodic
table to reflect how the results correlate to element groupings (group numbers are at the top
of each column).

anomalous result [56].

A key feature of GPR is the ability to estimate uncertainty in its predictions.
Therefore, in Fig. [f] we compare the error in a prediction measured against the
experimental value to the uncertainty in the prediction, which should take a
single value. We study both the precipitate fraction and the chemical compo-
sitions. The area under each histogram in normalised to 1. For compositions
the distribution is symmetrical and similar to the Gaussian distribution, with a
comparatively small DUQ = 0.075 (see Eq. . For the precipitate fraction f the
DUQ is larger at 0.220, and the distribution has a skew to under/overestimation.

A practical advantage of having quantified uncertainties is that predictions
can be filtered based on this uncertainty [90} [01]. Fig. El shows an example of
this for the precipitate fraction. By focusing on only the most certain results,
the RMSE reduces significantly, and is closer to the theoretical lower bound for
the reduction than the upper bound. The lower and upper bound are given
by filtering the data in the order that minimises or maximises respectively the
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Figure 6: Histograms for the uncertainties associated with predictions. The yellow histogram
is for the data and the hatched histogram is for an ideal normal distribution (solid bold line)
with the same bins. Left (a): histogram for precipitate fraction data. Right (b): Histogram
for all the chemical composition data (all elements across both phases).

RMSE. The steps in the blue curve in Fig. [7| occur as significant outlying pre-
dictions are filtered out. Each step corresponds to a significant outlier that can
be identified on Fig. [3] by the magnitude of its uncertainty; for example the step
at the highest fraction of data predicted corresponds to Ni-8.5Cr-10A1-2Re, the
next MC2, then Ni-9.1A1-4.4Ti, etc. Step-like behaviour would vanish if all the
predictions with the largest errors had the largest uncertainties, i.e. the lower
bound curve in yellow. This method is useful when the model’s predictions
are to be used to choose new alloy compositions for experimental testing, as
it allows the alloy designer to only test compositions below a certain predicted
error threshold and to focus on the predictions most likely to fulfil the target
tolerance in an experiment.

4.1. Comparison to CALPHAD

The final GPR model was trained on the full database with 93 entries. It was
then tested against unseen experimental atom probe tomography data collected
by Sulzer et al for the SX-series alloys specifically for benchmarking the perfor-
mance of CALPHAD [40] (data highlighted with an asterisk in [Appendix B]).
In that test two thermodynamic databases were tested, TTNi8 and TCNi8 [16].
For each prediction tool, the root mean-squared error (RMSE) was calculated
over all the elements in each phase in each SX-series alloy, as well as the precip-
itate fraction f, giving three metrics for each method (Table . For both the v
and ' phases and the precipitate fraction f, the GPR model is more accurate
than CALPHAD.

The composition of the SX series alloys in Ref. [40] had been chosen to ex-
plore a new region of composition space with high Cr content, and consequently
both the GPR model and the two CALPHAD models were extrapolating in
this region. Due to the inherent inclusion of physical laws it was anticipated
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Figure 7: Plot of the calculated RMSE when predictions with the highest uncertainty are
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~' phase ~ phase ~' fraction f
Method  (RMSE) (RMSE)  (RMSE)

TCNi8 0.0106 0.0354 0.0371
TTNi8 0.0072 0.0324 0.0205
This work 0.0065 0.0321 0.0201

Table 3: Root mean-squared error (RMSE) for the predictions of the GPR model of this work
and CALPHAD models on the SX-series superalloys using the TCNi8 and TTNi8 databases.

that CALPHAD would be superior for extrapolative predictions, so it is par-
ticularly impressive that the GPR model outperforms CALPHAD. A further
advantage of the GPR method is that it quantifies the uncertainty associated
with predictions.

5. Conclusion

A Gaussian process regression model was developed to predict the composi-
tional microstructure of nickel-base superalloys. It inputs the nominal composi-
tion of a superalloy and the ageing heat treatments, to then predict the chemical
composition of the key v and v’ phases, and their relative abundance. The com-
position predictions are combined via a probabilistic approach to produce the
final output composition. Cross-validation was used to compare a number of
different kernel schemes for the GPR models, with the optimal kernel achieving
a coefficient of determination R? = 0.917 for the precipitate fraction.
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The real life utility of the GPR model was demonstrated by predicting the
composition of the benchmark SX-series superalloys. The GPR model outper-
formed CALPHAD predictions using both the TTNi8 and TCNi8 databases [40].
This demonstrates the benefits of combining the best of physical and statisti-
cal approaches. The GPR model has a number of additional advantages over
CALPHAD:

e Returns quantified uncertainty estimates for each prediction.

e No prior thermodynamic knowledge is required to construct the model.
e Model can easily be retrained as more data becomes available.

e Additional non-equilibrium effects can be incorporated in the model.

e Once trained, no free energy minimisation step is required to make pre-
dictions from the model.

e The trained model can be used to identify outliers in the initial dataset
by highlighting property entries that lie the furthest from the model’s
predictions [92].

As discussed above our GPR model made better predictions when the kernel
included a heat treatment component, however further work is required to deter-
mine whether it can precisely capture the evolution of an alloy’s microstructure
with different applied ageing heat treatments. Training and assessing the model
on this problem is difficult due to the paucity of experimental data where phase
composition has been determined for superalloys with the same nominal com-
position but different ageing heat treatments [49] 57]. A better representation
of the heat treatment descriptors could improve this. Thermodynamic mod-
elling approaches to predicting the effects of heat treatments do exist but their
use in optimising heat treatments for alloys of pre-determined composition is
involved [93] [04].

In this work we opted for the most straightforward dynamic method that
makes use of the uncertainty in the initial predictions, Eq. [0} We found that
this gave improved results for crucial elements such as Ni and Al compared to
a fixed balance element model (Section . Alternate dynamic schemes for
balancing the total phase composition in order to fulfil Eq. [2] can be devised,
which may produce further improvements.

The GPR model is completely generic and can be applied to other material
systems, meaning that it can be extended to predict other properties as well as
thermodynamic ones. This would enable the development of a complete machine
learning tool able to design practical alloys that simultaneously satisfy a range
of target properties.
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Appendix A. Distribution of uncertainty quality

The distribution of uncertainty quality (DUQ) as defined in Eq. [§ has a
minimum value of 0 and a maximum value of 1 which can be seen by considering
the 1 norm on the vectors n = [n1, ..., iy, ..., nas] - . For both the ideal and real
histogram the edges of each bin z,, are defined such that:

/ T s)dr= A (A1)

m—1

where ¢(z) is the PDF for the Gaussian distribution N (0,1), and the area of
each ideal bin is A = 1/M. This ensures the histogram for the ideal distribution
has a total area of 1. For an odd number of bins the rightmost edges z,, with
zm > 0 are given by:

Fpp—— <(2m _ 1)]\14) , (A2)

where m =1,2,..., (M +1)/2.
The number of bins is optimised by minimising a quantity related to the
DUQ:

kg A CECIL o (A3)

1 M X
§M—1Z

m

where h(z) is the height of the ideal bin at position z. The second term accounts
for the difference in area between the ideal bins and the normal distribution,
which favours larger numbers of bins. Minimising the DUQ directly will always
lead to the minimum number of bins being used.

Eq. leads to the outermost bins having infinite width and zero height.
For visualisation purposes this is undesirable so a cutoff can be introduced that
gives all the bins finite width whilst not affecting the optimal number of bins.
We found a cutoff z. = £ erf~1(0.999999) = £3.459 to be a suitable choice.
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Appendix B. Database of alloys

The full database of alloys as described in section[2] The SX-series alloys have been highlighted in each table with an asterisk.

# Ref. Composition at. %

Ni Cr Co Re Ru Al Ta W Ti Mo Nb Hf
1 [49] 65.90 9.30 5.10 - - 11.20 2.00 2.60 2.50 1.30 - -
2 [49] 65.90  9.30 5.10 - - 1120 2.00 2.60 2.50 1.30 - -
3 [49] 65.90  9.30 5.10 - - 11.20 2.00 2.60 2.50 1.30 - -
4 [49] 65.90 9.30 5.10 - - 11.20 2.00 2.60 2.50 1.30 - -
5 [50] 66.50 8.87 5.38 - - 1281 1.11 156 241 1.35 - -
6 [51] 72.00 7.80 - - - 1270 2.80 - - 4.60 - -
7 [23] 65.30 6.75 8.12 - - 1229 1.80 5.76 - - - -
8 23] 64.66 11.68 5.15 - - 1125 4.03 1.32 1.90 - - -
9 [23] 66.29 9.22 5.09 - - 1355 1.99 261 - 1.25 - -
10 [23]195] 59.89 17.67  8.23 - - 719 0.54 0.81 4.05 1.07 0.55 -
11 23] [77) 62.81 9.19 9.72 - - 1233 125 0.03 1.15 3.51 0.01 -
12 [23196] 61.22 9.17 10.11 - - 1325 099 324 124 043 - 0.33
13 [23] 67.77 9.19 4.66 - - 1240 191 257 1.12 0.37 - -
14 52] 67.77 9.19 4.66 - - 1240 191 257 1.12 0.37 - -
15 52] 67.77 9.19 4.66 - - 1240 191 257 1.12 0.37 - -
16 [48] 71.38 9.22 - - - 1355 1.99 261 - 1.25 - -
17 [48] 66.29 9.22 5.09 - - 1355 1.99 261 - 1.25 - -
18 [48] 63.74 9.22 7.63 - - 1356 1.99 261 - 1.25 - -
19 B3] 65.10 11.50 5.10 - - 11.00 4.00 1.40 1.90 - - -
20 53] 65.10 11.50 5.10 - - 11.00 4.00 1.40 1.90 - - -
21 [54] 65.60 870  6.60 - - 1180 270 1.80 1.50 1.30 - -
22 [B5) 65.54 9.04 6.65 - - 1162 263 187 1.39 1.26 - -
23 [55] 65.54 9.04 6.65 - - 1162 263 187 1.39 1.26 - -
24 [55] 65.54 9.04 6.65 - - 1162 263 1.87 139 1.26 - -
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

BE

REEREEEREEEEEEEEEEEEEEEEEREEEEEE

77.80
76.16
74.67
64.66
64.67
67.33
67.35
62.94
61.24
47.28
86.50
52.60
79.50
79.50
79.50
79.50
79.50
79.50
79.50
63.19
67.00
59.00
65.50
57.50
53.05
52.68
62.87
63.32
59.99
60.15
59.93

14.93
14.59
14.25
11.68
11.68
9.22
9.22
3.00
3.00
24.47

15.90
8.50
8.50
8.50
8.50
8.50
8.50
8.50
7.26
8.00
8.00
8.00
8.00

19.39

19.57
9.18
8.71

17.65

17.57

17.61

2.00
2.20
2.10
11.26
11.26
12.21
12.21
14.00
14.20
3.98
9.10
8.50
10.00
10.00
10.00
10.00
10.00
10.00
10.00
12.86
13.90
13.80
13.70
13.70
5.43
5.39
12.32
12.23
7.04
7.11
7.35



e¢

87 [77] 60.23 17.46 8.30 - - 717 053 079 398 154 0.01 -
88 [78] 63.54 8.02 9.13 0.94 - 1344 224 181 - 0.88 - -
89 [79] 56.06 17.92 12.85 - - 4.53 - 127 450 243 044 -
90 [80] 48.50 18.90 18.50 - - 790 0.70 1.00 4.30 - - -
91 [80] 48.50 18.60 18.60 - - 7.90 0.60 0.90 4.00 - 040 -
92 [80] 49.40 18.60 18.30 - - 7.60 0.60 0.90 3.30 - 0.80 -
93 [80] 48.10 18.90 18.80 - - 8.10 0.60 0.90 2.90 - 1.20 -
94*  [40] 64.20 14.20 4.99 - - 1200 2.60 1.12 - 092 - -
95*  [40] 63.60 14.30 5.02 - - 1210 262 1.13 - 093 - 033
96*  [40] 63.50 14.00 4.93 - - 1080 193 1.11 291 091 - -
97*  [40] 59.20 14.20 9.98 - - 1200 2.60 1.12 - 092 - -

# Ref. Precipitation heat treatment temp.|time (°C|hrs)

#1 #2 #3

1 A9 1100 1 850 24 - -

2 [49] 1100 4 850 24 1050 0.5

3 [49] 1100 4 850 24 1050 10

4 [49] 1100 4 850 24 1050 100

5 B0 1100 4 850 24 - -

6 [51] 982 5 870 20 1040 3

7 23] 900 1500 - - -

8 23] 900 1500 - - - -

9 [23] 900 1500 - - - -

10 [2395 900 1500 . . ; ;

11 23177 900 1500 . . - -

12 [23]96] 900 1500 . . - _

13 [23] 900 1500 - - - -

14 52 980 5 850 48 - -

15 52 1050 16 850 48 - -

16 [48 1100 4 850 24 - :



28

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

BEEEEEEEEEEEEEEEEREREEEREEEEEERER

1100
1100
1079
1079
1050
1000
1100
1180
1300
1100

870
1080
1080

760

760

760

760

760

760

760

760

760

760

760

760

760

760

760

760

927

N
O U O U R R

o
o

—
= O

32
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

100



q¢

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

EEEEEEEEEEEEEE%EEEEEEEEEEEEEEEE

927
927
927
927
927
927
927
927
927
927
927
1100
1100
1100
1100
1140
1140
1000

980
980
980
980
980
980
980
1140
1100
1100
1100

100
100
100
100
100
100
100
100
100
100
100

O Ul U R

0.5
0.5
0.5
0.5
0.5
0.5
0.5

o 0o 0o



9¢

79 [73] 1100 8 - - - -

80 [77] 1066 4 760 16 - -

81 irded| 1066 4 760 16 - -

82 [77] - - - - - -

83 [77 - - - - - -

84 17 843 24 - - - -

85 [r7] 843 24 - - - -

86 [77) 843 24 - - - -

87 77 843 24 - - - -

88 [78] 1130 4 900 16 - -

89 [79] 760 8 - - - -

90 [80] 850 4 - - - -

91 [80] 850 4 - - - -

92 [80] 850 4 - - - -

93 [80] 850 4 - - - -

94*  [40] 1120 4 845 24 - -

95%  [0] 1120 4 845 24 - -

96*  [40] 1120 4 845 24 - -

97* [0 1120 4 845 24 - -
# Ref. log at. v/v" partitioning coefficient P

Ni Cr Co Re Ru Al Ta \WY% Ti Mo Nb Hf

1 [49] -0.250 2.666  0.956 - -1.862 -1.992  0.280 -2.335  1.540
2 [49] -0.189 2.188  0.752 - -1.120 -1.792 0.460 -1.735  0.938
3 [49] -0.154 1.689  0.610 - -0.544 -0.894 0.405 -0.693  1.041
4 [49] -0.185  2.064 0.727 - -0.882 -1.344 0.365 -1.417 1.273
5 [50] -0.326  2.946 1.454 - -1.497  -1.253 -0.055 -2.199 1.398
6 [51] 0.016  1.577 - - -0.962 -5.617 - - 0.795
7 23] -0.146  1.785  0.905 - -1.424 -1.386  0.392 - -
8 23] -0.118 2.030  1.039 - -1.627 -1.331 0916 -1.350 -



L€

] -0.214 2174 1.177 - - -1.529 -1.081 -0.115 - 1.262
1@5] -0.267 2.109 1.125 - - -1.394 -1.504 0.588 -1.665 1.609

3 -0.101  1.471 1.008 - - -1.276 -1.504 - -1.386  0.759
J196]  -0.167 1.668  0.929 - - -1.146 -1.386  0.134 -1.447 0.916
] -0.130 2.285  0.878 - - -1.672 -5.704 0.168 -2.683 1.311

-0.132  2.307  0.879 - - -1.697 -5.711  0.214 -3.307 1.416
-0.132  2.307  0.879 - - -1.697 -5.711  0.214 -3.307 1.416
-0.086  2.187 - - - -1.849 -0.955  0.162 - 1.594
-0.218  2.211 1.163 - - -1.561 -1.210 -0.145 - 1.456
-0.266  2.371 1.129 - - -2.598  -1.135 -0.039 - 1.350
-0.270  2.444  1.009 - - -1.478 -1.232 0.916 -1.569 -
-0.226  2.929  1.369 - - -1735  -1.792  1.329 -2.037 -
-0.289  2.520  1.665 - - -1.623 -1.665 0.140 -1.658  1.273
-0.244 2.711  0.850 - - -2.063 -1.598 0.311 -1.509 1.239
-0.244 2711 0.850 - - -2.063 -1.598 0.311 -1.509  1.239
-0.244 2.711  0.850 - - -2.063 -1.598 0.311 -1.509  1.239
-0.278  2.775  1.358 - - -1.656 -3.201  0.673 - 1.738
-0.083  2.551 1.555 3.834 - -1.860 -3.511  0.217 - 1379
-0.167  2.025  1.077 - - -2419 -4.868  0.520 -2.688 -
-0.186 2.315  1.238 - - -3.458 -4.868 0.610 -3.977 -
-0.220 2314 1.343 - - -6.733 -4.868 0.669 -5.220 -
-0.201  1.969  1.085 - - -1.048 -1.329 0373 -1.329 -
0.027  0.763 - - - -0.985 - - - -
-0.001  1.322 - - - -1.123 - - - -0.463
0.000 1.331 - - - -1.239 - - - -0.033
-0.038  1.508 - - - -1.307 - - - 0397
0.006 0.787 - - - -0.846 - - - -
-0.023  1.124 - - - -0.900 - - - -0.324
-0.042  1.448 - - - -1.126 - - - 0.083
-0.088  1.768 - - - -1.130 - - - 0.367

-0.050  0.927 - - - -0.561 - - - -



8¢

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

-0.111
-0.151
-0.145
0.037
0.028
-0.031
-0.044
0.055
0.015
-0.041
-0.071
-0.019
-0.050
-0.102
-0.107
0.019
0.017
0.023
-0.019
-0.353
-0.381
-0.168
-0.148

98] -0.311

O8] -0.362
-0.456

0.133
-0.294
0.056
0.057
0.052

BEEEEEEEERRRREEEEEEEEEEEEEEEEEEE

1.455
2.074
1.545
2.039
2.132
2.567
2.635
0.595
0.779
1.092
1.342
0.708
1.015
1.341
1.390
2.002
1.950
2.256
2.629
2.753
2.696
2.363
1.916
1.930
1.959
2.999

2.385
0.404
0.578
0.681

-0.610 -
-0.832 -
-0.704 -
-1.864 -
-1.799 -
-1.780 -
-1.977 -
-0.840 -
-0.791 -
-0.721 -
-0.764 -
-0.488 -
-0.549 -
-0.494 -
-0.564 -
-1.411 -
-1.474 -
-1.500 -
-1.675 -
-1.708 -2.104
-1.799  -2.839
-1.684 -3.401
-1.314  -1.749
-1.699  -2.347
-1.681 -2.383
-2.343 -
-0.609 -
-1.337 -
-0.700 -
-0.827 -
-0.887 -



6¢

71 [68] 0.054 0.677 - 0.7rr - -0.914 - - - - - -
72 [68] 0.0564 0.691 - 0.841 - -0.916 - - - - - -
73 [68] 0.060 0.669 - 0.847 - -0.944 - - - - - -
74 [68] 0.060 0.649 - 0925 - -0.943 - - - - - -
75 [69] -0.393 2.371 1.207 3.134 - -1.819 -3.095 0.638 -2.525 1.212 - -1.209
76 [73] -0.257 1.701 0.722 6.367 1.218 -1.058 -2.312 0.595 - - - -
7 [73] -0.375  1.783 0.807 4.474 1.169 -1.195 -2.011 0.636 - - - -
78 [73] -0.400 2.036 0.839 7.029 1.508 -1.341 -1.765 0.769 - - - -
79 [73] -0.544  1.888 0.780 7.078 1.245 -1.299 -2.105 0.931 - - - -
80 [77] -0.297  1.845 0.714 - - -2.040 - -0.111  -1.895 1.269 0.022 -
81 ried -0.304 2.072 0.768 - - -3.346 - - -2.059 2.006 0.010 -
82 ried -0.159  1.659 1.016 - - -6.984 -1.435 - -2.792 1.715 1.173 -
83 rdrd -0.039 1.128 0.733 - - -2.614 - - -0.340 0.941 1.454 -
84 ried -0.264 1.812 1.117 - - -1.936 0.489 0.542 -1.582 1.385 0.168 -
85 ried -0.185  2.098 1.279 - - -6.768 -0.161 - -2.005 1.068 1.103 -
86 [77] -0.184  2.183 1.303 - - -6.847 - 0.486 -1.659 1.095 0.981 -
87 rded -0.168  1.778 1.169 - - -3.063 -0.130 0.683 -1.745 0.873 0.747 -
88 [78] -0.113  2.072 -0.208 1.641 - -1.045 -1.407 -0.307 - 0.787 - -
89 [79] -0.347  2.398 1.273 - - -1.694 - 0.213 -2.505 1.658 -1.625 -
90 [80] -0.692  2.928 1.151 - - -1.694 -2.485 0.000 -3.308 - - -
91 [80] -0.647  2.827 1.133 - - -1.580 -2.303 0.201 -2.862 - -1.792 -
92 [80] -0.576  2.733 1.122 - - -1.708 -2.398 0.000 -2.741 - -1.872 -
93 [80] -0.652 2.816 1.079 - - -1.705 -2.485 0.452 -2.944 - -1.846 -
94*  [40] -0.333  2.492 1.294 - - -1.678 -3.559 -0.411 - 1.067 - -
95%  [40] -0.313  2.729 1.449 - - -1.933 -3.515 0.174 - 1.327 - -3.466
96*  [40] -0.431 3.086 1.435 - - -1.699 -3.784 0.561 -3.013 1.680 - -
97*  [40] -0.250 2.531 0.520 - - -1.953 -3.250 -0.070 - 1.583 - -
Ref. log at. nom./+’ partitioning coefficient P’ ~" at. fraction
Ni Cr Co Re Ru Al Ta \WY% Ti Mo Nb Hf
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-0.073
-0.062
-0.063
-0.043
-0.084

0.008
-0.045
-0.056
-0.062
-0.156
-0.045
-0.083
-0.039
-0.040
-0.040
-0.027
-0.062
-0.071
-0.116
-0.048
-0.094
-0.067
-0.067
-0.067
-0.143
-0.010
-0.045
-0.051
-0.051
-0.064

1.642
1.355
1.165
1.314
1.829
0.956
0.953
1.326
1.229
1.678
0.994
1.022
1.343
1.361
1.361
1.263
1.253
1.351
1.609
2.106
1.421
1.651
1.651
1.651
2.208
2.227
1.068
1.306
1.232
1.130

0.376
0.218
0.148
0.148
0.668

0.389
0.575
0.528
0.773
0.588
0.457
0.376
0.378
0.378

0.517
0.481
0.376
0.565
1.145
0.338
0.338
0.338
0.948
1.067
0.446
0.545
0.580
0.511

-0.279
-0.251
-0.244
-0.338
-0.255
-0.280
-0.276
-0.401
-0.278
-0.584
-0.469
-0.267
-0.298
-0.300
-0.300
-0.315
-0.279
-0.319
-0.303
-0.435
-0.253
-0.304
-0.304
-0.304
-0.526
-0.916
-0.306
-0.336
-0.336
-0.249

-0.095
-0.182
-0.095
-0.140
-0.232
-0.675
-0.289
-0.275
-0.229
-0.518
-0.368
-0.194
-0.449
-0.457
-0.457
-0.220
-0.243
-0.223

0.511
-0.588
-0.315
-0.274
-0.274
-0.274
-0.792
-0.879
-0.368
-0.368
-0.368
-0.288

-0.176
0.080
0.080
0.039

-0.016

0.141
0.502
-0.034
0.479
0.146
0.067
0.085
0.085
0.055
-0.043
-0.011
0.000
0.442
-0.105
0.104
0.104
0.104
0.508
0.047
0.182
0.223
0.266
0.143

-0.215
-0.307
-0.182
-0.278
-0.298

-0.350
-0.602
-0.039
-0.312
-0.354
-0.369
-0.369

-0.234
-0.191
-0.336
-0.266
-0.266
-0.266

-0.315
-0.342
-0.315
-0.288

0.773
0.368
0.773
0.619
0.633
0.427

0.580
1.272
0.468
0.776
0.625
0.692
0.692
0.815
0.699
0.611

0.619
0.552
0.552
0.552
1.355
0.527

0.690
0.640
0.480
0.510
0.710
0.580
0.640
0.590
0.690
0.420
0.520
0.590
0.680
0.680
0.680
0.679
0.692
0.705
0.700
0.700
0.700
0.700
0.700
0.700
0.460
0.320
0.710
0.705
0.730
0.660



v

0.026  0.747 - - - -0.936 - - - - - - 0.030
-0.001  1.246 - - - -0.935 - - - -0.405 - - 0.100
0.000 1.222 - - - -0.944 - - - -0.029 - - 0.140
-0.031  1.348 - - - -0.894 - - - 0333 - - 0.190
0.005 0.684 - - - -0.632 - - - - - - 0.180
-0.018  0.955 - - - -0.611 - - - -0.240 - - 0.230
-0.029 1.188 - - - -0.640 - - - 0.059 - - 0.300
-0.058  1.449 - - - -0.604 - - - 0.260 - - 0.330
-0.033  0.697 - - - -0.333 - - - - - - 0.340
-0.063  1.066 - - - -0.308 - - - -0.123 - - 0.420
-0.077  1.545 - - - -0.356 - - - 0.088 - - 0.470
-0.073  1.071 - - - -0.305 - - - 0187 - - 0.480
0.033  1.929 - - - -1.361 - - -1.209 - - - 0.120
0.025 2.010 - - - -1.295 - - -1.261 1.116 - - 0.130
-0.026  2.418 - - - -1.226 - - -1.109  1.547 - - 0.150
-0.037  2.474 - - - -1.286 - - -1.129  1.660 - - 0.160
0.052  0.572 - - - -0.776 - - - - - - 0.050
0.014 0.735 - - - -0.699 - - - 0.166 - - 0.080
-0.035 1.002 - - - -0.592 - - - 0.300 - - 0.130
-0.058  1.208 - - - -0.586 - - - 0437 - - 0.170
-0.015 0.601 - - - -0.370 - - - - - - 0.200
-0.036  0.810 - - - -0.357 - - - -0.043 - - 0.290
-0.067  1.062 - - - -0.302 - - - 0.128 - - 0.330
-0.071  1.115 - - - -0.347 - - - 0301 - - 0.320
0.018 1.975 - - - -1.322 - - -1.157 - - - 0.030
0.017 1.915 - - - -1.348 - - -1.182  1.447 - - 0.040
0.022 2.210 - - - -1.340 - - -1.293  1.647 - - 0.050
-0.018  2.561 - - - -1.410 - - -1.182 1.813 - - 0.070
-0.081  1.683  0.508 - - -0.313 -0.130 -0.241 -0.405 - - - 0.711
-0.079 1.621  0.581 0.544 - -0.310 -0.336 - -0.486 - - - 0.719

-0.046  1.346  0.462 - - -0.313 -0.410 0.084 -0.247 - - - 0.680
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] -0.039 1.049  0.441 1.146 - -0.344 -0.407  0.368 -0.403 - - - 0.662
|08 -0.063 0.777 0.401 1.609 - -0.188 -0.278  0.081 - - - - 0.773
98] -0.076 0.806 0.391 1.543 0.390 -0.153 -0.355  0.046 - - - - 0.776
-0.261  2.610  0.469 - - -1.144 - - -1.075 - - - 0.344
0.128 - - - - -0.564 - - -0.585 - - - 0.040
-0.160 1.905  0.397 - - -0.558 - - -0.760  0.535 - - 0.420
0.043 0.274 - 0.122 - -0.445 - - - - - - 0.180
0.041 0.443 - 0.439 - -0.526 - - - - - - 0.203
0.035 0.523 - 0.693 - -0.542 - - - - - - 0.229
0.036  0.520 - 0.717 - -0.547 - - - - - - 0.247
0.036  0.533 - 0.766 - -0.556 - - - - - - 0.246
0.040 0.517 - 0.760 - -0.564 - - - - - - 0.253
0.041  0.486 - 0.857 - -0.566 - - - - - - 0.254
-0.068 1.255 ~ 0.457 1.559 - -0.269 -0.357 0.148 -0.318 0.424 - 0.019 0.761
-0.101  0.796 -0.037 - 0598 0.621 -1.208  0.057 - - - - 0.680
-0.111 0.953  0.323 3.039 0.568  0.069 -1.026  0.095 - - - - 0.680
-0.063 1.052  0.109 - 0.722 -0.053 -1.031 0.235 - - - - 0.680
-0.113  1.006  0.319 - 0545 -0.020 -1.037 0.234 - - - - 0.680
-0.165 1.426  0.481 - - -0.725 - -0.064 -0.701  0.922 - - 0.407
-0.170  1.637  0.524 - - -0.856 - - -0.734  1.576 - - 0.404
-0.028 0.844  0.465 - - -0.561  0.666 - -0.440 1.033 - - 0.621
-0.016 0.632  0.376 - - -0.496 - - -0.130  0.506 - - 0.578
-0.137  1.343  0.758 - - -0.639 0299 0.334 -0.577 0.976  0.096 - 0.448
-0.101  1.634  0.919 - - -0.895 -0.090 - -0.672 0.774 0.774 - 0.420
-0.098 1.708  0.944 - - -0.940 - 0311 -0.577 0.861  0.679 - 0.417
-0.094 1.351  0.829 - - -0.809 -0.073 0451 -0.655  0.594 - - 0.418
-0.154 1.072  1.131 1.339 - -0.062 -0.628 1.116 - 0.036 - - 0.626
-0.242  2.062  0.987 - - -0.613 - 0.388 -0.857 1.236 -0.795 - 0.311
-0.297  2.297  0.766 - - -0.543 -0.539  0.223 -0.646 - - - 0.487
-0.297  2.230  0.760 - - -0.543 -0.511  0.000 -0.560 - -0.405 - 0.469

-0.276  2.181  0.755 - - -0.597 -0.606  0.000 -0.631 - -0.486 - 0.453
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94%*
95%
96*
97*

EBEEE

-0.296
-0.095
-0.103
-0.111
-0.140

2.197
1.631
1.895
2.091
1.757

0.759
0.671
0.853
0.758
0.687

-0.568
-0.449
-0.410
-0.401
-0.457

-0.693
-0.078
-0.720
-0.467
-0.398

0.251
-0.446
0.990
0.366
-0.061

-0.676

-0.475

0.551
0.298
1.110
0.884

0.031

0.471
0.592
0.562
0.627
0.585




