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Abstract 

Machine learning models that establish the relationships 
between materials processing and properties can enable inverse 
design of materials through active learning. AlchemiteTM

 is a 
commercial software that can perform inverse materials design 
on sparse data. Here we evaluate AlchemiteTM’s performance 
on a dataset of shape memory alloys and a dataset of heat 
exchangers compared to baseline random forest models. 
AlchemiteTM had higher accuracy when making predictions on 
sparse data and was more accurate or nearly as accurate as 
random forests on complete datasets while also quantifying 
uncertainty. The software was also used to suggest processing 
steps and design parameters to optimize properties and 
performance; however, physical validation of the suggested 
design parameters was beyond the scope of this work. Several 
useful design insights were gained about the impact of the 
design parameters on properties and performance including the 
importance of dopant choice and amount for shape memory 
alloys and the importance of height and weight on the thermal 
resistance of heat exchangers. 

Introduction 
Machine learning and informatics have greatly accelerated 

the developmental pace of new materials (Refs. 1 and 2). New 
materials are developed and optimized by fine-tuning 
processing parameters (e.g., material chemistry, manufacturing 
steps) to achieve desired properties. Until recently, this has been 
a forward process where processing parameters, often selected 
based on theory or computational tools, are tested to determine 
their properties. Inverse design of materials through active 
learning allows a practitioner to start with the desired properties 
and determine optimal processing parameters that will most 
likely achieve those properties (Refs. 3 to 5). However, 

applying the inverse design methodology is time consuming 
and requires expert knowledge from outside the typical 
materials science domain. Here we evaluate Alchemite™, a 
commercially available inverse design software by Intellegens, 
on two datasets. The primary purpose of this document is to 
report the results of the Alchemite™ software evaluation and 
not to perform a rigorous scientific study of the datasets used in 
the evaluation. Results show that Alchemite™ performed 
similarly well or better than random forest models on both 
datasets when performing continuous or categorical 
predictions. On sparse data, Alchemite™ performed 
significantly better than data imputation with k-nearest 
neighbors (Ref. 6) and regression using random forest models. 
Critically, Alchemite™ quantified the uncertainty of 
predictions, which is necessary for inverse design and allows 
users to know how much to rely on an individual prediction. 
Material experiments are expensive and often destructive to the 
sample, making sparsity a common feature of material’s data.  

Alchemite™ is a commercial deep learning software tool 
specifically designed to handle sparse and noisy experimental 
data. The method was originally developed in the alloy design 
space (Refs. 7 and 8) and has since seen further applications in 
the drug discovery (Refs. 9 to 12) and industrial chemistry 
(Refs. 13 and 14) domains, in each case guiding the design of 
new formulations and processing conditions to maximize 
product performance. Alchemite™ is a multi-target method and 
is capable of handling sparse training data on both the input and 
output side: the ability to handle sparse data is a key 
requirement for handling historical materials data that may not 
be characterized to current standards or may be missing 
expected information. The multi-target predictions from 
Alchemite™ are able to leverage nonlinear inter-target 
correlations, which also requires the ability to manage sparse 
property measurement data. Other machine learning methods, 
such as the random forests considered here, require pre-
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processing to remove this sparsity, whereas Alchemite™ can 
handle the sparse data directly. Alchemite™ is accessed either 
via a server-based application programming interface (API), 
hosted on-site or in the cloud with an optional web interface, or 
(as in this work) via a Docker image running directly on the 
user’s machine. 

Inverse design of materials can be achieved with active 
learning (sometimes called sequential learning). Materials 
discovery through active learning is becoming increasingly 
popular due to its experimental efficiency (Refs. 1, 7, 8, 15 to 
31). Active learning leverages information from previous 
experiments to recommend an optimal experiment to achieve 
target properties. It requires some initial data, a machine 
learning model that captures processing/property relationships 
with uncertainty, and an optimization algorithm to optimize 
some acquisition function. Active learning is an iterative 
process where a surrogate model is trained from the initial data 
to predict target properties with uncertainty. Then an optimizer 
is used to find the optimal inputs (processing steps) to the 
surrogate that maximizes the acquisition function. If the target 
properties are not achieved, the new experimental observation 
is added to the dataset and a new surrogate model is trained. 
This process repeats until the target is achieved or the 
experimental budget is exhausted. In the latter case, active 
learning should produce a superior material than would be 
discovered through trial and error. The initial data can be 
obtained from public or legacy data, a small design of 
experiments, or through the Latin hypercube sampling method. 
The acquisition function can be chosen for exploration 
(maximum uncertainty) or exploitation (maximum expected 
improvement), but optimizing for the processing parameters 
that give the highest likelihood of achieving the target 
considering uncertainty (maximum likelihood of improvement) 
has been shown to achieve the target with fewer experiments 
(Ref. 30). Several open-source packages are available for 
inverse design of materials (Refs. 32 to 35). By optimally 
sampling the vast materials design space through active 
learning, target material properties can be achieved with far 
fewer experiments, saving time and money. 

Methods 
Datasets 

Two datasets were evaluated in this study. The first was 
extracted from datasheets of general-purpose heat exchangers 
sold by Cool Innovations. The datasheets were provided to 
NASA Glenn Research Center for a machine learning hackathon.  

The extracted and cleaned dataset contains 12 variables (three 
categorical and nine continuous) shown in Table 1. The four 
target variables for prediction are area, thermal resistance, 
configuration, and material. The configuration is the type of heat 
exchanger and can be moderate, splayed, sparse, flared, LED fan 
sinks, standard fan sinks, high power fan sinks, and integrated fan 
sinks. Figure 1 illustrates the size dimension variables of the 
dataset. Data sheets and illustrations of all the heat sink 
configurations can be found on the Cool Innovations website 
(www.coolinnovations.com). 

The second dataset is a compilation of processing and 
property variables of shape memory alloys (SMA) extracted 
from numerous scientific sources and compiled as part of the 
NASA shape memory materials database and analysis tool 
(Ref. 36). The SMA dataset used in the work is a cleaned subset 
of a larger SMA dataset from the NiTi-based alloy system. The 
dataset contains a total of 15 variables including two categorical 
variables, 13 continuous variables, twelve input variables, and 
four target variables. Each SMA in the dataset is composed of 
three elements including Nickel and Titanium (Ni100-a-bTiaXb). 
Table 1 describes the dataset variables in detail. 
 

TABLE 1.—HEAT EXCHANGER DATASET VARIABLES. 
BLUE COLORING INDICATES THAT THE VARIABLE  

IS A TARGET TO BE PREDICTED 
Variable Type Description 

Height Continuous Heigh of heat exchanger (mm), 
see Figure 1 

Weight Continuous Weight of heat exchanger (g) 
Base width Continuous Long base dimension (mm), 

see Figure 1 
Base length Continuous Short base dimension (mm), 

see Figure 1 
Splay width Continuous Width of fins (mm), 

see Figure 1 
Splay length Continuous Length of fins (mm), 

see Figure 1 
Airflow Continuous Airflow through fins during 

test (cubic feet per minute, 
CFM) 

Area Continuous Area of base (mm2) 
Thermal 
resistance 

Continuous Resistance to heat exchanging 
(°C/W) 

Base shape Categorical Square or Circular 
Configuration Categorical One of eight including: 

moderate, splayed, integrated 
fan 

Material Categorical Aluminum or Copper 
 

 
 

http://www.coolinnovations.com/
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Figure 1.—Illustration of heat exchangers and size variables. 

 
Alchemite™ Training 

The Alchemite™ deep learning algorithm is described in 
detail elsewhere (Refs. 7 and 9); and only a brief description is 
provided here in the context of the particular heat exchanger 
and SMA dataset discussed above. As Alchemite™ is a multi-
target method, one model was trained for all four target 
properties of the heat exchanger dataset simultaneously (two 
continuous variables, thermal resistance and area; and two 
categorical variables, configuration and material) based on all 
of the sparse input data available. As described elsewhere 
(Refs. 9 to 11, 37) Alchemite™ predictions for each of these 
outputs are based on an ensemble of sub-models, with each 
element of the ensemble trained on bootstrap samples of the 
training data, generating distributions of predicted values. 
Bootstrapping is a resampling method that randomly samples 
from the dataset with replacement, potentially allowing for 
individual observations to be repeated. For continuous 
variables, the Alchemite™ predicted value is the mean of the 
predictions across this distribution with the uncertainty in the 
prediction given by the standard deviation across these samples. 
For categorical variables the modal predicted class across the 
distribution is returned as the model prediction, with the 
complement of the probability of this class being selected taken 
as the uncertainty estimate in the result. The combination of the 
uncertainty estimates from the ensembling approach with the 
extrapolatory ability of deep learning methods combines to give 
an accurate understanding of the confidence in each prediction, 
including the reduction in confidence due to extrapolating 
beyond the support of the training set. This enables the 
probabilistic prioritization of predictions, enabling scientists to 
focus on only the most confident predictions and prioritize these 
for experimental validation. 

To enable deeper insights into the model behavior, 
Alchemite™ also reports the relationships that it has identified 
between input and output variables. This is measured by 
evaluating the relative weight assigned to each input variable 

for predicting each output variable, on average across the whole 
model, using the information gain attributable to each input 
feature (Refs. 13 and 38).  

All data for training and prediction is input to Alchemite™ 
from comma-separated values (CSV) files. Any categorical 
variables must be replaced with integer indexes. For example, 
the heat exchangers have eight categorical configurations 
(moderate, splayed, sparse, flared, LED fan sinks, standard fan 
sinks, high power fan sinks, and integrated fan sinks) which 
must be replaced with the values 0 to 7 in the CSV file. This 
can be achieved easily in Python using the pandas library 
factorize command. Factorization should be done before any 
splitting of the data.  

Before model training, hyperparameter optimization was 
performed with Alchemite™ to determine the best 
hyperparameters for the model. Hyperparameters are adjustable 
configurations of the model architecture such as the number of 
layers in a neural network or the number of decision trees in a 
random forest. Hyperparameter optimization is performed by 
training numerous models and selecting the hyperparameters of 
the model with the least error or highest accuracy. 
Alchemite™’s accuracy metric is the median coefficient of 
determination of selected target variables which the trained 
model should predict well. 

After the best hyperparameters are selected, the model is 
trained using the training data. Alchemite™ performs an 
internal train/validation data split, therefore a separate 
validation set is not required. A hold out test set was withheld 
from Alchemite™ for an unbiased accuracy estimation for 
comparison with the random forest models. Once a model is 
trained, the model can be used to make new predictions. 

Training Random Forests 

Random forests are tree based ensemble models capable of 
classification and regression (Ref. 39). They are composed of 
many decision trees that are trained on sub-samples of the 
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training data. By averaging the predictions of the individual 
decision trees, overfitting is reduced and the predictive 
accuracy is increased. Decision trees contain sequential nodes 
that split the data into increasingly pure class separation using 
the Gini index (a measure of class purity within a set) until the 
final node makes a classification or regression prediction 
(Ref. 40). Each split is made based on a single input variable 
and the split value and variable is chosen to maximize the class 
purity after the split. Data normalization was not performed 
because it does not affect the Gini index and does not benefit 
the training of random forest models. Random forests were 
trained in this work using the scikit-learn library in Python 
(Ref. 41). 

Random forests require complete observations in the training 
data and to make predictions (i.e., there can be no missing 
values for any of the variables). To evaluate performance on 
sparse data as a baseline, the sparse datasets were pre-processed 
to impute the missing values. Data imputation was performed 
with a k-nearest neighbors approach using the scikit-learn 
library. The k-nearest neighbors model was fit to the training 
set and applied to impute missing values on both the training 
and test sets.  

Statistical Metrics 

The accuracy of models in predicting continuous variables is 
measured with the coefficient of determination (R2), which is 
the proportion of variance in the target variable that is explained 
by the input variables (Ref. 42). When R2 = 1, the model is 
perfectly accurate. A model that always predicts the mean of 
the target value, has an R2 of 0. The equation for R2 is given by: 
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where y is the true value of the target variable, 𝑦𝑦� is the mean of 
the target value in the data, and 𝑦𝑦� is the predicted value for each 
𝑖𝑖th sample. 

Two accuracy metrics are reported for categorical variables: 
precision and F1 score. Precision is simply the number of 
correct model predictions divided by the total number of 
predictions. The F1 score accounts for precision and recall 
equally by the harmonic mean of precision and recall: 

 1
precision*recallscore 2*
precision + recall

F =   (2) 

where recall is the number of true positive predictions for each 
class divided by the number of samples in that class (Ref. 43). 

For multi-label categorical predictions (more than 2) the F1 
score is given by the average F1 score of each class. 

Two metrics are used to quantify the strength of the 
relationship between two variables. The Pearson’s correlation 
coefficient, r, is a measure of the linear correlation between two 
variables and is given by: 

 
( )( )

( ) ( )2 2

i i

i i

x x y y
r

x x y y

− −
=

− −

∑
∑ ∑

  (3) 

where x and y are two variables, 𝑥̅𝑥 and 𝑦𝑦� are the mean of the 
two variables, and 𝑖𝑖 gives the sample index. Alchemite™’s 
importance index is a proprietary measure of the importance of 
each input variable in predicting each target variable. 

Results 
Shape Memory Alloy Data 

Alchemite™ and random forest models were trained to 
predict the target variables of the SMA dataset. The four target 
variables are indicated in blue in Table 2. 

Figure 2 shows the prediction accuracy of each model on the 
four targets. In each case the random forest model had a slightly 
higher R2 than the Alchemite™ models, but the results were 
comparable. Alchemite™’s slightly reduced accuracy is likely 
due to reporting uncertainty in the predictions, which requires 
training ensembles of sub-models on bootstrap samples of the 
data. Because each sub-model is trained on fewer unique 
observations, the overall accuracy is reduced compared to if 
uncertainty was not calculated. The value of uncertainty 
prediction is demonstrated in Figure 2(a) where poor 
predictions given by each model are indicated by blue and 
orange arrows for Alchemite™ the random forest respectively. 
The blue error bars around the Alchemite™ predictions show 
the model’s uncertainty about the prediction. Predictions far 
from the actual value (large error) typically have higher 
uncertainty. This is extremely valuable from a design 
perspective. It is impossible to know how confident to be in any 
given prediction from the random forest or whether the model 
is extrapolating far outside the training domain. By reporting 
uncertainty, Alchemite™ allows a user to make an informed 
decision about the amount of risk associated with relying on a 
particular prediction. 

In order to evaluate the performance of Alchemite™ in 
imputing missing values, 20 percent of the data values in each 
attribute were randomly removed. To predict the target 
variables with the random forest models, the data was pre-
processed to impute the missing values using a k-nearest 
neighbors approach. Alchemite™ imputed the sparse data 
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TABLE 2.—DESCRIPTION OF SHAPE MEMORY ALLOY 
DATASET VARIABLES. BLUE COLORING INDICATES 

THAT THE VARIABLE IS A TARGET TO BE PREDICTED 
Variable Type Description 

Ni % Continuous Percent nickel in alloy 
(implicitly assumed during 
analysis) (at.%) 

Ti % Continuous Percent titanium in alloy 
(at.%) 

Element 3 
percent 

Continuous Percent element 3 in alloy 
(at.%) 

Heat treatment 1 
time 

Continuous 

Time and temperature of 
alloy heat treatment steps 
(°C, h) 

Heat treatment 1 
temperature 

Continuous 

Heat treatment 2 
time 

Continuous 

Heat treatment 2 
temperature 

Continuous 

Heat treatment 3 
time 

Continuous 

Heat treatment 3 
temperature 

Continuous 

Austenite start 
temperature 

Continuous Temperature at which the 
martensite to austenite 
transformation begins on 
heating (°C) 

Austenite finish 
temperature 

Continuous Temperature at which the 
martensite to austenite 
transformation is completed 
on heating (°C) 

Martensite start 
temperature 

Continuous Temperature at which the 
transformation from austenite 
to martensite begins on 
cooling (°C) 

Martensite finish 
temperature 

Continuous Temperature at which the 
transformation from austenite 
to martensite is completed on 
cooling (°C) 

Element 3 Categorical Third element type added to 
the alloy 

Processing 
method 

Categorical Alloy processing (e.g., 
vacuum arc remelting, 
sputtering) 

 
directly. Figure 3 shows the prediction accuracy of each model. 
As expected, both models saw a reduction in accuracy, but the 
random forest models showed a much larger decrease. For 
example, when predicting the martensite start temperature 
Alchemite™ exhibited a 0.15 reduction in R2 (0.89 to 0.74) 
while the random forests recorded a 0.35 reduction in R2 (0.92 
to 0.57), which is a 233 percent larger reduction in accuracy. 

Other target predictions had similar results. Overall, 
Alchemite™ performed significantly better than random forests 
with k-nearest neighbor imputation when making predictions 
with sparse data. 

Figure 4 shows the relationships between the variables using 
two forms of exploratory data analysis. Figure 4(a) shows the 
Pearson correlation coefficient between all the continuous 
variables, which is a measure of normalized linear correlation 
with negative numbers indicating inverse correlation. 
Categorical variables are not quantified by Pearson correlation. 
The fraction of titanium or nickel in the alloy is inversely 
correlated with the fraction of the third element. Depending on 
the atomic site preference of the third element, some will 
replace nickel and others will replace titanium. Although 
increasing the dopant fraction does not always reduce titanium, 
Pearson’s correlation does not consider interaction or non-
linear effects between variables and a mild inverse correlation 
exists across the dataset. Similarly, there is a positive Pearson’s 
correlation between doping with a third element and the 
austenite and martensite start and finish temperatures. Although 
this is not always the case and these temperatures may decrease 
depending on the element and amount of the dopant.  
Figure 4(b) shows the importance of each input variable 
(horizontal axis) at predicting each target variable (vertical 
axis). The chemistry of each sample had the largest impact on 
the target properties. The Element 3 percent had a greater 
impact than the Ti %. The third element type had the most 
impact on predicting the target variables. The first heat 
treatment time and temperature had a moderate impact and 
subsequent heat treatments had a reduced impact. This result is 
likely an artifact of the dataset and preprocessing. Often the first 
heat treatment is homogenization while the second and third 
heat treatments affect the properties by changing the 
microstructure through annealing and aging. Many of the 
observations in the training data had only one heat treatment 
and very few had three, thereby reducing the apparent 
importance of the third heat treatment across the dataset. 
Feature engineering, perhaps by adding a categorical variable 
indicating the type of heat treatment performed, could 
potentially increase the signal for the importance subsequent 
heat treatments. Pearson’s correlations can only account for 
linear relationships between two variables and cannot quantify 
non-linear or interaction effects which is very common in 
materials systems. Higher order and nonlinear importance 
relationships can be calculated with random forests using Gini 
importance, permutation importance (Ref. 39), or Shapley 
Additive exPlanations (SHAP) (Ref. 44) which are not 
evaluated here. Alchemite™ provides a global view of the 
importance of each variable in predicting the others and 
accounts for nonlinear and interaction effects. 
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Figure 2.—Prediction accuracy on SMA dataset of Alchemite™ (blue) is compared to random forest models 

(orange). (a) to (d) show the predicted values versus the actual values of the four target variables in the 
SMA dataset. Alchemite™ predictions display error bars which represent the models’ prediction 
uncertainty. The blue arrow in (a) indicates an Alchemite™ prediction with uncertainty while the yellow 
arrow indicates a random forest prediction without uncertainty. 
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Figure 3.—Prediction accuracy on SMA dataset with 20 percent missing values of Alchemite™ (blue) 

compared to random forest models (orange). (a) to (d) show the predicted values versus the actual 
values of the four target variables in the SMA dataset. Alchemite™ predictions display error bars which 
represent the model’s prediction uncertainty. 
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Figure 4.—Plots of relationships between variables in the SMA dataset. (a) shows the 

Pearson’s correlation between the continuous variables. (b) shows Alchemite™’s importance 
metric of each input variable (horizontal axis) in predicting each target variable (vertical axis). 
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TABLE 3.—SUGGESTED EXPERIMENT TO PRODUCE 
AN SMA WITH MAXIMUM AUSTENITE FINISH 

TEMPERATURE. THE SUGGESTED EXPERIMENTAL 
SETTINGS AND PREDICTED OUTCOME WITH 

UNCERTAINTY ARE SEPARATED BY THE 
BOLD HORIZONTAL LINE IN THE TABLE 

Parameter Value 

Ni % Balance (8.55 percent) 

Ti % 49.79 percent 

Element 3% 41.66 percent 

Heat treatment 1 temperature 822.5 

Heat treatment 1 time 75.66 

Heat treatment 2 temperature 162.3 

Heat treatment 2 time 1685 

Heat treatment 3 temperature 322.4 

Heat treatment 3 time 3482 

Element 3 Au 

Processing method Vacuum arc melting 

Austenite start temperature 465.6±54.25 

Austenite finish temperature 487.4±51.13 

Martensite start temperature 452.5±62.58 

Martensite finish temperature 413.7±42.36 
 

Alchemite™ was used to suggest an optimal experiment to 
iteratively approach the goal of producing a SMA with a 
maximum austenite finish temperature, targeting a minimum of 
250 °C. To ensure a composition summing to 100 percent, the 
“sum below” target was used in the Alchemite™ configuration 
to ensure that Ti %, and Element 3 percent totaled less than 
100 percent. Ni % was considered the balance. Notably, 
Alchemite™ chose Au for Element 3. The chosen alloy was 
Ni8.6Ti49.8Au41.7 and had a predicted austenite finish temperature 
of 487.4±51.13 °C with a probability of hitting the target 
property of 56.2 percent. The predicted heat treatment 2 and 3 
temperatures are too low to have any real effect at any time 
scale. Since most of the data did not specify heat treatment 2 
and 3, it is not surprising that the model didn’t make meaningful 
predictions for those parameters. This chemistry prediction is a 
reasonable adjustment of data seen by the model to achieve the 
target austenite finish temperature (Ref. 45). The processing 
parameters and predicted outcome of the suggested experiment 
are shown in Table 3. 

Heat Exchanger Data 

The heat exchanger data was used to evaluate Alchemite™’s 
predictive performance on both categorical and continuous 
targets. Alchemite™ and random forests were used to predict 
two categorical variables (material and configuration) and two 

continuous variables (thermal resistance and area). The results 
of the predictions are shown in Figure 5. The random forest 
models were slightly better, but comparable, at predicting the 
configurations with a precision of 0.99 and F1 score of 0.87 
compared to Alchemite™ with a precision of 0.98 and F1 score 
of 0.83. As with continuous variables, Alchemite™ quantified 
uncertainty for each prediction which typically comes at a slight 
cost in accuracy. When predicting the material, both 
Alchemite™ and random forests were 100 percent accurate. 
Alchemite™ performed significantly better than random forests 
when predicting the continuous target, thermal resistance, even 
while accounting for uncertainty. Alchemite™ predictions had 
an R2 of 0.79 compared to 0.70 for the random forest model. 
Both models were 100 percent accurate when predicting area. 
This was expected because area is easily calculated using 
simple geometry from the base width, base length, and base 
shape. 

The Pearson’s and Alchemite™ importance relationships 
between the variables are shown in Figure 6. From the 
Pearson’s correlations in Figure 6(a), thermal resistance is 
inversely correlated to height, weight, widths, and lengths. This 
is expected because larger heat exchangers can transfer more 
heat (i.e., less thermal resistance). The area was also heavily 
correlated to the size features of the heat exchanger including 
height, weight, and splay size. This is because heat exchangers 
in the dataset often had increased height and splay dimensions 
when increasing the base dimensions and is a prime example 
that correlation is not causation. The Alchemite™ importance 
metric is shown in Figure 6(b). As expected, the base width and 
base length were highly important to predicting the area. 
Interestingly, the base shape was not used to predict the area, 
which would have been expected to choose between calculating 
the area of a circle or a rectangle. Instead, the model appears to 
have made use of the weight information, perhaps to infer the 
shape. Weight was the primary feature used to predict the 
material along with height and width (presumably to estimate 
density). Height, weight, splay width, and base width were the 
primary features used to predict thermal resistance. Lengths 
may not have been as important because the heights and widths 
were highly correlated (i.e., the dataset contained heat 
exchangers with similar aspect ratios) so the two variables 
contained a large proportion of redundant information. 

To test optimization with constraints, Alchemite™ was asked 
to produce a heat sink with a thermal resistance below 1 °C/W 
with the following constraints: a maximum airflow of  
800 CFM, max base size of 75×75 mm, and splay size of 
100×100 mm. These are realistic constraints when designing a 
component that may have limited space for the sink or limited 
power or space for a stronger fan. When limiting the airflow, 
the optimizer converged on a heatsink with an integrated fan! 
The full results of the optimization are shown in Table 4. If 
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Figure 5.—Prediction accuracy of Alchemite™ and random forest models on the heat exchanger dataset. (a to d) 

show categorical predictions on the configuration (a, b) and material (c, d) by Alchemite™ shown in blue (a, c) and 
the random forest shown in orange (b, d). (e and f) show the models’ predictions on the thermal resistance I and 
area (f).  
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Figure 6.—Plots of relationships between variables in the heat exchanger dataset. 

(a) shows the Pearson’s correlation between the continuous variables. Correlations 
involving categorical variables are not true Pearson correlations. (b) shows 
Alchemite’s™ importance metric of each input variable (horizontal axis) in 
predicting each target variable (vertical axis). 
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TABLE 4.—RESULT OF OPTIMIZATION TO PRODUCE A 
HEAT EXCHANGER WITH A THERMAL RESISTANCE 
BELOW 1 °C/W (TARGET INDICATED IN ORANGE). 
SEVERAL CONSTRAINTS TO THE OPTIMIZATION 

ARE SHOWN IN BLUE. THE OPTIMAL PARAMETERS 
ARE SHOWN IN BLACK TEXT 

Parameter Value 
Height 63.04 mm 
Weight 3729.0 g 
Base width 37.80 mm (max: 75 mm) 
Base length 55.96 mm (max: 75 mm) 
Splay width 49.18 mm (max: 100 mm) 
Splay length 58.47 mm (max: 100 mm) 
Airflow 513.2 CFM (max: 800 CFM) 
Base shape Rectangle 
Material Aluminum 
Configuration Integrated Fan Sink 
Thermal resistance 0.261±0.037 °C/W (Target: < 1 °C/W) 

 
the design could not afford power or an additional power cable 
for the heat sink fan, the optimization could be constrained to 
not use an integrated fan sink. In the training dataset the base 
and splay width was always larger than the lengths by design. 
However, this optimal design had the lengths larger than the 
width which may therefore suggest that the model is 
extrapolating outside of the training data. This could be fixed 
by adding a constraint that forces the lengths to be less than the 
widths. Admittedly, the optimization produces a couple of 
dubious results which may stem from this extrapolation. For 
example, 8.1 lb (3.7 kg) is quite heavy for a 2.2×1.5 in. 
(37.8×55.7 mm) aluminum heat exchanger. It is also 
unexpected that the optimizer didn’t use to the maximum 
allowed constraints, to reduce the thermal resistance. This 
accentuates the need for sound statistical and data science 
principals when setting up the Alchemite™ model and 
optimization to avoid strange results which may stem from 
allowing the model to extrapolate, especially in nonphysical 
ways. 

Conclusion 
Alchemite™ was successful in predicting desired targets of a 

materials and a non-materials dataset. Alchemite™ was able to 
handle inputs and predictions of both continuous and 
categorical variables. As a result of initial analysis during this 
work, improvements were made to Alchemite to increase 
categorical prediction accuracy. Compared to random forest 
baseline models, Alchemite™ was far superior when operating 
on sparse data and better than or nearly equivalent to random 

forests on the full datasets while also quantifying uncertainty. 
Alchemite™ was also used to suggest optimal experiments for 
inverse design, perform design optimization, and rank 
important features. Physical validation of suggested parameters 
was not performed. Alchemite™’s uncertainty quantification is 
useful to know when the model may be extrapolating and how 
much to rely on a given prediction and is critical for performing 
active learning. 

Several insights about the datasets were gained from this 
analysis. The thermal resistance of the heat exchangers was 
highly correlated with height; however, the Alchemite™ 
importance index showed that weight was a stronger predictor. 
Surprisingly, airflow was not a strong predictor of thermal 
resistance. In order to maximize thermal resistance when 
airflow was limited in the design, a heat exchanger with an 
integrated fan was suggested as being optimal. The choice and 
amount of dopant in NiTi SMAs had the largest impact on the 
austenite and martensite start and finish temperatures, which 
was not apparent from Pearson’s correlation alone. To 
maximize the austenite finish temperature, Alchemite™ 
suggested replacing a large amount of Ni with Au.  
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