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METHOD AND SYSTEM FOR DESIGNINGA 
MATERAL 

FIELD OF THE INVENTION 

0001. The present invention relates to a method and a 
system for designing a material. Such as an alloy. 

BACKGROUND OF THE INVENTION 

0002. When designing new materials in complex material 
systems, such as nickel-based Superalloys, there may be tenor 
more constituent elements whose relative amounts must be 
determined. Changing the material composition can affect 
properties such as strength, creep resistance, and oxidation 
and corrosion resistance. In addition, one must determine the 
optimum processing conditions such as heat treatment times 
and temperatures that can have a profound effect on micro 
structure and material performance. 
0003. Thus, due to the number of possible design vari 
ables, historically material design has tended to proceed by a 
trial-and-error process. 
0004. However, with improvements in computational 
power, the potential exists to put material design on a more 
systematic footing. For example, R. C. Reed, T. Tao and N. 
Warnken, Materials-By-Design. Application to nickel-based 
single crystal superalloys, Acta Materialia 57, 5898 (2009) 
propose a systematic design approach for nickel-based single 
crystal Superalloys which makes use of modelled composi 
tion-microstructure-property relationships. In particular, cal 
culations are shown for the Ni–Cr—Co—Re—W Al Ta 
system in which data are plotted for various predicted char 
acteristics of around 100,000 materials in the compositional 
space under consideration. By cycling over this wide compo 
sitional space, and eliminating from it materials which are 
deemed to be unsuitable it is possible to identify a number of 
prototype alloys for future testing. 
0005. A problem with this approach is that there are inher 
ent uncertainties in the models used to make the alloy prop 
erty predictions. For example, the uncertainty in a model 
varies as a function of multi-dimensional design space, with 
the uncertainty being higher in regions of extrapolation. 
Nonetheless, for many design scenarios a new material is 
being sought that has an optimal balance of properties for a 
given application, and which is an incremental, rather than a 
step-change, improvement over known materials. Material 
optimisation is therefore likely to seek sets of design variables 
with better balances of properties within well-characterised 
design space. Therefore, the models can mainly be used to 
interpolate, rather than to extrapolate. 
0006. However, significant sources of uncertainty still 
exist Such as: the experimental input data used for the models, 
and the property model fitting process. Thus, in general, if a 
predicted property matches a target property there is a 50% 
probability that the real-life property will actually exceed the 
target property. It follows that if there are ten properties for 
which targets need to be satisfied, and if the predicted prop 
erty matches the target property for each of them, then in the 
real-life material there is only a 0.5'-0.001 probability that 
all of the target properties have been matched or exceeded. 

SUMMARY OF THE INVENTION 

0007 Material optimisation approaches that do not take 
account of the uncertainty in the model properties are at a 
significant disadvantage. 
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0008 Accordingly, in a first aspect, the present invention 
provides a method of designing a material by optimising 
values for a plurality of design variables, the method includ 
ing the steps of 
I0009 (i) providing one or more property models, the i' 
property model (where i is an integer from 1 to n, the 
number of property models) producing a prediction P, for a 
value of a respective property of the material as a function of 
the design variables, and further producing a value for the 
uncertainty O, in the prediction P. 
0010 (ii) for each property, setting a specification target 
To for a desired value of the property and a probability p, for 
that specification target To to be met or exceeded, 
0011 (iii) for each property, determining a probabilistic 
target T, for a value of the property, the probabilistic target T. 
being based on the specification target To and the probability 
p, and further defining a merit index factor G, based on the 
degree to which a given prediction P, satisfies the probabilis 
tic target T. 
0012 (iv) constructing an overall merit factor G from the 
individual merit index factors G, of the properties, and 
0013 (V) determining a set of optimal design variables that 
optimise the overall merit factor G. 
0014 Each of the property models produces a prediction 
P, along with an uncertainty O, in the prediction as a function 
of design space. Since the uncertainty generally varies as a 
function of design space, it is not appropriate to just set a 
constant specification target, since the probability of the 
exceeding that target will vary. For speculative areas of design 
space it is likely that the uncertainty on many of the predic 
tions will be higher than for regions of design space that have 
been well investigated. However, by specifying the probabil 
ity p, that a target is met or exceeded, the probabilistic target 
T, which will vary as a function of design space, can be 
determined, allowing regions with high uncertainty to be 
avoided in favour of more certain regions. 
0015. A second aspect of the present invention provides a 
method of producing a material including: 
0016 performing the method of the first aspect to identify 
a material having optimised values of the plurality of design 
variables in order to meet or exceed material property speci 
fication targets, and 
0017 preparing the material. 
0018. The method of the second aspect may further 
include testing the prepared material to determine whether its 
material properties meet or exceed the specification targets. 
0019. Further aspects of the present invention provide: a 
computer program comprising code which, when run on a 
computer, causes the computer to perform the method of the 
first aspect; a computer readable medium storing a computer 
program comprising code which, when run on a computer, 
causes the computer to perform the method of the first aspect; 
and a computer system programmed to perform the method of 
the first aspect. 
0020 For example, a computer system can be provided for 
designing a material by optimising values for a plurality of 
design variables, the system including one or more process 
ing cores configured to: (i) provide one or more property 
models, the i' property model (where i is an integer from 1 to 
in the number of property models) producing a prediction 
P, for a value of a respective property of the material as a 
function of the design variables, and further producing a value 
for the uncertainty O, in the prediction P., (ii) for each prop 
erty, set a specification target To for a desired value of the 
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property and aprobability p, for that specification target To to 
be met or exceeded, (iii) for each property, determine a proba 
bilistic target T, for a value of the property, the probabilistic 
target T. being based on the specification target To, and the 
probability p, and further defining a merit index factor G, 
based on the degree to which a given prediction p, satisfies 
the probabilistic target T. (iv) construct an overall merit 
factor G from the individual merit index factors G, of the 
properties, and (V) determine a set of optimal design variables 
that optimise the overall merit factor G. The system thus 
corresponds to the method of the first aspect. The system may 
further include: a computer-readable medium or media 
operatively connected to the processing cores, the medium or 
media storing the property models. The system may further 
include: a display device for displaying the results of the 
optimisation and/or for setting the specification targets. 
0021 Optional features of the invention will now be set 
out. These are applicable singly or in any combination with 
any aspect of the invention. 
0022. The type of material that can be optimised is not 
limited as long as the property models exist. Typically, how 
ever, the material can be a metal alloy, Such as a Superalloy. 
0023 The design variables may include relative amounts 
of constituent elements of the material (i.e. relative amounts 
of alloying elements in the case of an alloy). There may be two 
or more, or five or more, and preferably ten or more, or twenty 
or more Such elements. 

0024. The design variables may include values of process 
ing conditions of the material, such as heat treatment tem 
perature(s) and heat treatment duration(s). 
0025. A plurality of property models may be provided. For 
example, two or more, or five or more properties may be 
provided, or preferably ten or more, or twenty or more prop 
erty models may be provided. 
0026. The property models may include neural network 
models. Advantageously, such models generally provide fast 
predictions of material properties. Also neural network mod 
els are suitable for providing values for the uncertainty in 
their predictions. Furthermore, neural network models may 
be used to interpolate for more computationally expensive 
models (such as e.g. CALPHAD models). Advantageously, 
neural network machine learning of more computationally 
expensive models can be amenable to automation. However, 
recourse to a more computationally expensive calculation of 
a property may be desirable if a neural network prediction has 
a greater effect on the overall merit factor than the sum of all 
of the merit index factors for the other properties. 
0027. The property models may include one or more 
mechanical property models, physical property models, ab 
initio models (e.g. models that use underlying behaviour of 
electrons to calculate material properties—e.g. using density 
functional theory), phase diagram (e.g. CALPHAD) models 
and/or any other model that describes a materials behaviour. 
0028. Each merit index factor G, may take a substantially 
constant optimal value (e.g. Zero) whenever the given predic 
tion P, meets or exceeds the probabilistic target T. Thus, the 
merit index factor is generally flat so that the optimisation is 
not placed under further bias when the probabilistic target is 
satisfied. However, a slight slope may be placed upon selected 
individual merit index factors, e.g. when their respective pre 
dictions strongly exceed their probabilistic targets. This can 
then facilitate the optimisation of other properties whilst still 
satisfying all the probabilistic targets. 
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0029 Conveniently, in step (v), the set of optimal design 
variables may be determined by performing a multi-variable 
optimisation based upon simulated annealing. 
0030. In step (v), the set of optimal design variables may 
be determined by performing a multi-variable optimisation in 
which a value of each design variable is adjusted by a respec 
tive step length, the size of each step length being adjustable 
to improve the search efficiency of the optimisation. For 
example, in “flatter regions of overall merit index space, the 
step sizes may be increased, and in 'steeper regions, the step 
size may be reduced. 
0031. The method may include a further step of (vi) deter 
mining the design variables which define the boundary of the 
region of multi-dimensional design variable space which 
includes the set of optimal design variables and which, for 
each property, produces a prediction P, which meets or 
exceeds the respective specification target To. For example, 
the determination may be accomplished by performing an 
acclivous search, in which the merit index factor for each 
property is adjusted in turn to SG, and further optimisation of 
the design variables is performed, biasing each merit index 
factor by an amount that is insufficient to push the other 
properties below their probabilistic targets T. The method 
may also include a further step of (vii) identifying a set of 
design variables within said region of multi-dimensional 
design variable space which is most likely to produce predic 
tions P, which meet or exceed the specification targets To. 
Within the region there may be a set of design variables which 
provide better properties than those determined at step (v), 
and further step (vii) can allow that set to be found. 
0032. This can be achieved by adjusting the merit index 
factor for each design property in turn, where S-10 is an 
aggression factor and is chosen to be small so that the bias 
introduced on any individual merit factor is not sufficient to 
push other properties below their probabilistic targets T. The 
use of the adaptive searching technique automatically adopts 
to the new slope and allows efficient exploration of the opti 
mum value for each property whilst retaining all other prop 
erties to be above their probabilistic targets 
0033. The term “computer readable medium may repre 
sent one or more devices for storing data, including read only 
memory (ROM), random access memory (RAM), magnetic 
RAM, core memory, magnetic disk storage mediums, optical 
storage mediums, flash memory devices and/or other 
machine readable mediums for storing information. The term 
“computer-readable medium' includes, but is not limited to 
portable or fixed storage devices, optical storage devices, 
wireless channels and various other mediums capable of stor 
ing, containing or carrying instruction(s) and/or data. 
0034) Furthermore, embodiments may be implemented by 
hardware, Software, firmware, middleware, microcode, hard 
ware description languages, or any combination thereof. 
When implemented in software, firmware, middleware or 
microcode, the program code or code segments to perform the 
necessary tasks may be stored in a machine readable medium 
Such as storage medium. A processing core(s) may perform 
the necessary tasks. A code segment may represent a proce 
dure, a function, a Subprogram, a program, a routine, a Sub 
routine, a module, a software package, a class, or any com 
bination of instructions, data structures, or program 
statements. A code segment may be coupled to another code 
segment or a hardware circuit by passing and/or receiving 
information, data, arguments, parameters, or memory con 
tents. Information, arguments, parameters, data, etc. may be 
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passed, forwarded, or transmitted via any Suitable means 
including memory sharing, message passing, token passing. 
network transmission, etc. 
0035. Further optional features of the invention are set out 
below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0.036 Embodiments of the invention will now be 
described by way of example with reference to the accompa 
nying drawings in which: 
0037 FIG. 1 is a schematic illustration of overall merit 
factor global optimisation to find optimal design space; 
0038 FIG. 2 is a probability distribution f(Property) for 
the probabilistic target T, in relation to the specification target 
To: 
0039 FIG.3 is a flow diagram showing the architecture of 
an embodiment of the optimisation approach; and 
0040 FIG. 4 shows a merit index function for defining 
minimum properties. 

DETAILED DESCRIPTION AND FURTHER 
OPTIONAL FEATURES OF THE INVENTION 

0041. The present invention provides a probabilistic and 
automated approach to material (e.g. alloy) optimisation. The 
optimisation can find, within a design space encompassing all 
possible composition and processing conditions (design Vari 
ables), a composition and set of processing conditions that are 
predicted to produce a material capable of exceeding, by a 
user-defined probability, a set of material property specifica 
tion targets. Once an optimal set of design variables is found, 
an acclivous search can then be conducted to explore the 
boundaries of multi-dimensional design space which satisfy 
the specification targets. 
0042. A schematic illustration of the approach is shown in 
FIG. 1, whereby a single overall description of the materials 
likelihood of exceeding the specification targets, the “proba 
bilistic overall merit factor', is constructed as a function of 
multi-dimensional design space, taking into account uncer 
tainty in property models, and then optimised using an effi 
cient global optimisation method. When a region has been 
found which satisfies the specification targets to the user 
defined probability, the extent of the region can be deter 
mined, and the set of design variables that has the highest 
overall probability of exceeding the specification targets can 
be found. 

Property 

(specific) Ultimate 
tensile stress 
(specific)Yield stress 
(specific) Stress 
rupture life 
Elongation 
Total stable Y + y' 
mol.% fraction 

Stable y' mol.% fraction 
Single phase window 
Weldability (prevention 
of hot cracking) 
Elemental cost 
Density 
Unconstrained lattice 
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0043. A more detailed description of the approach follows 
and, for convenience, is divided into sections on: property 
acquisition from property models, selection of property 
specification targets and probabilities, optimisation of design 
variables, search of optimal design space region. Following 
this is a brief discussion of computational speed issues, 
results of an example optimisation performed based on the 
commercial alloy "AstroLoy, and a Summary of advantages 
associated with the approach. 
Property Acquisition from Property Models 
0044) The properties of a material are a function of its 
composition (i.e. relative amounts of constituent elements) 
and processing conditions, together these being termed the 
"design variables'. A particular property can either be mea 
Sured in an experiment from a representative sample of the 
material or estimated through computer modelling using the 
design variables as an input along with any required Static 
variables (such as test temperature, test frequency or strain 
rate). Table 1 lists a number of property models that have been 
integrated into the material optimisation system. The major 
ity of the neural network property models were constructed 
using publicly available data. The CALPHAD simulations 
were made using the commercially available Thermo-CalcTM 
software. 

0045. The use of neural networks to predict materials 
properties is well known, and described for example in H. K. 
D. H. Bhadeshia, R. C. Dimitriu, S. Forsik, J. H. Pak and J. H. 
Ryu, Performance of neural networks in materials science, 
Materials Science and Technology, 25, 5004 (2009). The 
number of hidden neurons was selected using sensitivity cal 
culations to determine the effect of adding and removing 
hidden neurons and variables, the aim being to achieve the 
simplest property model possible that is an accurate reflection 
of the dataset to minimise the probability of overfitting. 
0046. The neural network models have defined bound 
aries, which limits the range within which the material opti 
mization system can search. The data underpinning the neural 
network can be non-uniformly distributed over design space 
so there will be some regions of the multi-dimensional design 
space which are better described than others. To avoid poorly 
defined regions, an uncertainty function is employed to 
describe the accuracy of the model. For all of the neural 
network models, uncertainty can thus be predicted as a func 
tion of any combination of design variables and then used to 
set probabilistic targets, as described below. 

TABLE 1. 

No. datapoints 
Major applications Type of model (where applicable) 

Niyy'alloy Neural network 2114 

Niyy'alloy Neural network 2248 
Niyy'alloy Neural network 2O68 

Niyy'alloy Neural network 1037 
Niyy'alloy CALPHAD 

Niyy'alloy CALPHAD 
Niyy'alloy CALPHAD 
Niyy'alloy CALPHAD 

Any alloy Rule of mixtures 
Any alloy Rule of mixtures 
Niyy'alloy CALPHAD, Vegard 
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TABLE 1-continued 

Property Major applications Type of model 

misfit Law 
Totaly phase amount Ni Y single phase CALPHAD 
Creep model Niyy'alloy Neural network 
Low cycle fatigue Niyy'alloy Neural network 
High cycle fatigue Niyy'alloy Neural network 
Total stable Y + y' Niyy'alloy Auto learning neural 
mol.% fraction network, CALPHAD 
Totaly phase amount Ni Y single phase Auto learning neural 

network, CALPHAD 
Oxidation Niyy'alloy Neural network 
Stable y' mol.% fraction Niyfy'alloy Auto Learning Neural 

network, CALPHAD 
Stable y'-C mol.% Ni Y'-C (Mo) alloy CALPHAD 
Y' yield stress Alloy with y' Neural network 
C (Mo) ultimate tensile Alloy with C. (Mo) Neural network 
strength 
Stress rupture life Y'-C. Ni–Al-Mo alloy Neural network 
Oxidation Y'-C. Ni–Al-Mo alloy Neural network 
Y' solvus yfy'alloy CALPHAD 
Molecular dynamics Any alloy Auto learning neural 
energy network. MD simulator 
Molecular dynamics Any alloy Auto learning neural 
lattice misfit network. MD simulator 
Minimum protective Nialloy Minimum targets 
Scale formers targets 

Selection of Property Specification Targets and Probabilities 

0047. To enable the optimisation of materials, the specifi 
cation targets for the various properties which are to be met or 
exceeded in the optimised material are set. The selection of 
these targets is important; if over-ambitious targets are set, 
then the search for an optimal set of design variables is likely 
to be unsuccessful. To increase the likelihood that the opti 
misation results in the identification of a successful material, 
probabilities that the specification targets are met or exceeded 
are also set and used to determine probabilistic targets. 
0048 More particularly, since the property models are 
generated using incoherent experimental data gathered from 
a population of samples, the central limit theorem can be 
applied. The central limit theorem states that if X is a sequence 
of n independent and identically distributed random vari 
ables, each having meanu and variance of, then: 

k=1 (1) 

1/ Vn X(x, -u- N (A, C) 

0049. Therefore, the uncertainty of predictions can be 
assumed to obey a normal distribution N(, of). Using the 
normal distribution, a probabilistic target can be set which has 
a fixed probability, p, of exceeding the specification target. 
This is illustrated in FIG. 2 by a Gaussian curve, f(Property), 
which describes the probability distribution for a property 
model. The probabilistic target, T, for a particular property 
prediction, P., is given by the probit function, 

where i is an integer which identifies each different property, 
p, is the probability defined for exceeding the given specifi 
cation target, and O, is the standard deviation for the property 
for a particular set of design variables. 
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No. datapoints 
(where applicable) 

6948 
15105 
31 O2 

37082 

1296.51 

915 
54.695 

807 
740 

82 
891 

0050. Using a power series to represent the inverse error 
functionerf" for computational purposes with coefficients 
i? and taking into account that some properties are maximum 
specification targets whilst others are minimum specification 
targets, the probabilistic target T, for a property i is given by: 

(3) init 
W2 T = To + V2 MO, (()(?, 1) 

=0 

(2) indicates text missing or illegiblewhen filed 

where To is the specification target of a given property, M. 
takes the value of +1 if the target is a minimum specification 
target or -1 if the target is a maximum specification target, 
and n is the limit of the power series. In addition to using 
probability p, to set probabilistic targets, the probability p, 
that any particular modelled property i will exceed its speci 
fication target is 

4 
p = 0.5 + oster?' t (4) V2 or 

0051. If it is assumed that all the material properties are 
independent, the probabilities p, can multiplied together to 
give an overall estimate for the probability that a set of design 
variables will exceed all the defined properties. 
0.052 The use of probabilistic targets is generally suffi 
cient to prevent searching within parts of multi-dimensional 
design space where extreme extrapolation of the property 
models occurs. However as an additional safeguard, the prop 
erty models that are being searched can each have a range 
over which they are valid. This is of particular helpful when 
using a Thermo-CalcTM property model for which a nominal 
probability was defined which does not vary as a function of 
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design space. The range can also used to set each design 
variable's initial step length for the optimisation (discussed 
below). 

Optimisation of Design Variables 

0053 FIG.3 is a flow diagram showing the architecture of 
an embodiment of the optimisation approach. 
0054. A first stage is to set the initial values of the design 
variables of the material. For example, these can be based on 
the design variables of a known material having properties 
close to those targeted. Further, the initial step length in each 
design variable used for searching design space can be set, or 
a default value can be set. For example, the initial step length 
can be, for example, a fraction of the range of each design 
variable. 

I0055) Next, specification targets To are set for the prop 
erties, and probabilities p, for meeting or exceeding those 
targets are also set, as determined by the user. Modelling of 
the physical demands of an actual component would be a 
Suitable way of determining the specification targets. Alter 
natively, they can be determined by adjusting the properties of 
a known (e.g. commercial) material. 
0056. The probabilistic targets T, can then be determined, 
e.g. using equation (3). 
0057 For each probabilistic target T. that the material is 
required to satisfy, each property P, is modelled as a function 
of multi-dimensional design space. FIG. 4 shows a curve for 
a respective property P, which returns a merit index factor G, 
based on whether a particular combination of composition 
and processing conditions (design variables) satisfies the 
probabilistic target T. G. can, for example, be defined by 
equations (5) and (6) below in which, when P.<T: 

for 

P.M & T. 

0058 but otherwise: 
G=0 (6) 

where, P, is the minimum property value that a property 
model can take and M, takes the value of +1 if the target is a 
minimum specification targetor-1 if the target is a maximum 
specification target. FIG. 4 shows that the merit index factor 
has two regimes. When the property satisfies the target, then 
the merit function is flat so that the optimisation is not placed 
under further bias. When the property does not satisfy the 
target, a linear sloped section reduces the computational 
workload of the adaptive optimisation by reducing the auto 
mated alteration required for the optimisation parameters. 
0059 An overall merit factor is then constructed from the 
sum of all the individual merit index factors for each property 
as shown in equation (7). 

prop (7) 
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where n is the number of properties being optimised. A 
Summation can be used rather than any other means of com 
bining the merit indices so that the partial derivatives of the 
combined merit indices with respect to any designed variable 
remain well behaved. text missing or illegible when 
filed 
0060. To accelerate the search, properties that strongly 
exceed their probabilistic targets can initially have a negative 
slope 0G, imposed on their merit index factors to deliberately 
sacrifice their values in favour of properties that fall below 
their probabilistic targets. For example, 0 may be about 1. 

0061. Thereafter, the overall merit factor G is maximised 
using an automated optimisation approach. This can be based 
on the well-known “simulated annealing technique (which 
to avoid confusion with actual annealing of the Subject mate 
rials, we prefer to term “adaptive stochastic optimisation'). 
The current combination of design variables and the overall 
merit factor are stored. Then a new combination of design 
space variables is chosen by random steps. As mentioned 
above the step lengths, can initially be set equal to a fraction 
of the range of each design variable, which is approximately 
equal to the accuracy that the design variable can be experi 
mentally evaluated. The proposed new design variable X, for 
each can be set in the following way: 

xi = xioid + (RAND - 0.5).si (8) 

where j represents each design variable and RAND is a ran 
dom number between unity and Zero. 
0062. The property values are calculated for each model, 
each returning the value P, for this new set of design variables 
and the merit index factor is evaluated for each model, the 
overall merit factor being the sum of all the individual merit 
index factors. If this overall merit factor is greater than the 
previous overall merit factor then the step is always accepted. 
If the overall merit factor is less than the previous overall 
merit factor then equation (9) can determine the acceptance 
likelihood E for a transition, where G is the previous overall 
merit factor, and G is the overall merit factor of the proposed 
transition. If E is greater thana random number between 0 and 
1 then the step is accepted, otherwise it is rejected. This 
process is repeated until the merit index factor for each prop 
erty is equal to zero or until a user defined number of itera 
tions is completed. Typically 500-1000 iterations are required 
to find a set of design variables which satisfy all the targets. 

E exp((G-G)/A) (9) 

0063. The acceptance factor A can be automatically cho 
Sen to optimise the searching efficiency. This can be been 
determined as the optimal fraction of jumps that should be 
accepted to text missing or illegible when filedensure 
all local minima can be successfully explored. The accep 
tance factor can be readjusted if the average acceptance rate is 
further than a standard deviation O, away from the optimal 
acceptance rate of 0.352 (A. Gelman, G. O. Roberts, and W. 
R. Gilks, Bayesian Statistics. 5, 599 (1996)). This allows for 
rapid adjustment according changes in the combination of 
functions being evaluated, but retains acceptance factor sta 
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bility with minimisation oscillation in the average number of 
steps accepted. Thus if E-O->0.352 then 

A:=CLA (10) 

or if E+O-0.352 

0.064 

(11) : 

where Cls0:8 is a response factor set according to the optimi 
sation behaviour, and := is an assignment operator. 
0065. In addition to adjusting the acceptance factor, the 
step length can be automatically adjusted for each design 
variable to optimise the exploration of merit space based upon 
the average length of each accepted step. This is to optimise 
the search efficiency, so that in say “flatter regions of merit 
index space, the step size is increased, and in “steep’ regions 
or regions where only a small fraction of proposed steps are 
being accepted, the step size is reduced. Assuming a uniform 
probability distribution well describes the number of 
accepted steps, the step size can be adjusted in the following 
way. 

I0066. An upper permitted limit U, and a lower permit 
ted limit L. are calculated from the sum of the moving 
average accepted step length for each design variable lo, and 
the standard deviation of these average accepted design Vari 
ables Os29 

Ultra-la;+o, LLA -la-ho (12) 2. 

0067. The distribution of accepted step lengths is assumed 
to correspond to a uniform probability distribution, since the 
actual proposed step is a random number multiplied by a 
maximum possible step lengths, as illustrated in equation (8). 
If all steps are accepted, the expected fraction within these 
bands is given by text missing or illegible when filed 

0.5 (13) 

S 

I0068. Therefore, the current step lengths, should not be 
greater or less than a quarter of the average accepted step 
length within a standard deviation. So if 

() > (2) 
(3) indicates text missing or illegiblewhen filed 

then, 

s = 4a (14) 
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LL.M. < (2), 
() indicates text missing or illegiblewhen filed 

sp. fs; (15) 

where f3-2, is a constant factor for which the step size s, 
should be increased to speed up the optimisation process, if 
calculated to be too small. 
0069. If, after the user defined number of iterations is 
completed, the merit index for each property does not equal to 
Zero, the process can be recommenced with different initial 
values of the design variables of the material can be 
attempted, and/or different specification targets, or it may be 
concluded that no suitable material can be developed. 

Search of Optimal Design Space Region 
0070. Once a combination of design variables which is 
predicted to meet or exceed the set of specification targets by 
the user stated probability is identified, an acclivous search 
can be conducted to search for the range of each property 
whilst simultaneously satisfying all the other property targets. 
This can be achieved by adjusting the merit index factor for 
each property in turn to SG, where S-10 is an aggression 
factor and is chosen to be small so that the bias introduced on 
any individual merit index factor is not sufficient to push other 
properties below their probabilistic targets T. The use of the 
adaptive searching technique automatically adopts to the new 
slope and allows efficient exploration of the optimum value 
for each property whilst retaining all other properties to be 
above their probabilistic targets. 
0071 Similarly to an unsuccessful optimisation, if the 
acclivous search does not proceed due to impossible sets of 
probabilistic property targets, the process can be recom 
menced with different initial values of the design variables of 
the material, and/or different specification targets. 

Computational Speed 
0072 The rate-determining step in the multi-dimensional 
sampling process is generally the rate at which properties can 
be evaluated. For models such as neural networks or analyti 
cal calculations, evaluation of a property takes a very Small 
fraction of a second. For more computationally expensive 
models, property evaluation can take anything from a few 
seconds to several hours. If thousands of property evaluations 
are required, then the overall optimisation process will be 
impractically slow. 
0073. Thus to increase the speed of the optimization pro 
cess, neural network models can be used to replace more 
computationally expensive models, such as Thermo-CalcTM. 
However, at Some point during the optimization process, the 
neural network may no longer be able to accurately describe 
the data set because extreme extrapolation will be required to 
obtain the property in question. This can be determined to be 
the case if the uncertainty on any property has a greater effect 
on the overall merit index than all the other merit index factors 
added together. When this occurs, a property calculation can 
be activated for that particular set of design variables using 
the more computationally expensive model, and the result of 
the new property calculation added to the neural network 
data-set. The neural network can then be automatically 
retrained, and used to evaluate the design space Surrounding 
the new point that has been calculated. 
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0074 
processors with multiple cores and hyper-threading, and 
which can execute some operations (such as property calcu 
lations) simultaneously. By use of parallelisation and hyper 
threading, threads can exchange information with other 
threads and dramatically reduce the number of serial itera 
tions that need to be performed. 

Example Optimisation 

0075. The commercial alloy “Astroloy has the wt % com 
position and is subjected to the heat treatments set out in Table 
2. It also has the predicted properties set out in Table 3. 

TABLE 2 

Astroloy wt.% 

N SS.430 
Co 16.800 
Cr 14.6OO 
Mo S.200 
Al 4.1OO 
T 3.540 

B O.OOO 
Cu O.OOO 
Hf O.OOO 
Mn O.OOO 
N O.OOO 
Nb O.OOO 
P O.OOO 
Tal O.OOO 
V O.OOO 
W O.OOO 

Heat treatment 1 temperature? C. 1200 
Heat treatment 1 duration hrs 2 
Heat treatment 2 temperature? C. 800 
Heat treatment 2 duration hrs 8 

TABLE 3 

Property Prediction Uncertainty 

Cost/SIb 10.3 O.OO 
Density/kgm 8070 O.OO 
Low Cycle Fatigue 10 cycles 4.95 1.O 
High Cycle Fatigue 10 cycles 6.40 1.O 
(specific) Ultimate Tensile Stress/MPakg'm O.139 O.O16 
(specific)Yield Stress/MPakg'm O.095 O.O13 
(specific) Stress Rupture/MPakg'm O.O84 O.O14 
(specific) Elongation/%kg'm O.OO2 O.OO1 

0076. By way of an example, the optimisation approach 
descried above was used to search for an alloy in which the 
ultimate tensile strength was raised from 0.139 MPakg'm 
to 0.150 MPakg'm. All the other specification targets were 
set to Astroloys properties, the heat treatment was fixed, and 
the composition was allowed to vary. After running the pro 
gram for 5000 “adaptive stochastic optimisation' iteration 
cycles, it was predicted that an alloy having the composition 
set out in Table 4 would have the properties set out in Table 5, 
thereby satisfying the specification targets including the 
enhanced ultimate tensile strength. 

Parallelisation can also be adopted to make use of 
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TABLE 4 

“Improved alloy wt.% 

N 41.049 
Co 18.991 
Cr 18.249 
Mo 4.367 
Al 4.021 
T 4.310 
Fe 8.324 

Si O.O33 

Cu O.OOO 
Hf O.OOO 

N O.OOO 
Nb O.101 

Tal O.470 

Heat treatment 1 temperature? C. 1200 
Heat treatment 1 duration hrs 2 
Heat treatment 2 temperature? C. 800 
Heat treatment 2 duration hrs 8 

TABLE 5 

Property Prediction Uncertainty 

Cost/SIb 9.95 O.O 
Density/kgm 7900 O.O 
Low Cycle Fatigue 10 cycles 4.96 1.O 
High Cycle Fatigue 10 cycles 9.90 1.O 
(specific) Ultimate Tensile Stress/MPakg'm 0.177 O.O16 
(specific)Yield Stress/MPakg'm O.1SO O.O13 
(specific) Stress Rupture/MPakg'm O.096 O.O14 
(specific) Elongation?%kg'm O.OO2 O.OO1 

Summary 

0077 Significant advantages of this approach to material 
optimisation are: 

0078. Optimisation of multiple properties of a material. 
0079 Generation and use of property models that cal 
culate uncertainties in their predictions, allowing the 
uncertainties in the predicted properties of the optimised 
material to be provided. 

0080 Use of probabilistic targets that guide the optimi 
sation to regions of design space where material prop 
erties are more certain, thereby increasing the likelihood 
that an optimised alloy will have the desired target prop 
erties. 

0081 Amenability to techniques that can accelerate the 
optimisation. 

I0082 To produce fast, robust, and accurate optimisations, 
amenable to automation, the approach can be implemented 
using: 

0.083 Adaptive stochastic optimisation, or alternatives 
Such as (but not limited to) genetic algorithms, particle 
Swarm, quantum stochastic optimisation, and multilevel 
coordinate search for which optimisation parameters are 
automatically determined. 

0084. Machine learning (i.e. neural networks) to pro 
vide faster alternatives to computationally expensive 
models. 
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I0085 Automated prediction of optimisation algorithm 
parameters. 

I0086 Acclivous searching to place boundaries on 
acceptable material compositions. 

I0087 Parallelisation of operations. 
0088 While the invention has been described in conjunc 
tion with the exemplary embodiments described above, many 
equivalent modifications and variations will be apparent to 
those skilled in the art when given this disclosure. Accord 
ingly, the exemplary embodiments of the invention set forth 
above are considered to be illustrative and not limiting. Vari 
ous changes to the described embodiments may be made 
without departing from the spirit and scope of the invention. 
0089 All references referred to above are hereby incorpo 
rated by reference. 

1. A method of designing a material by optimising values 
for a plurality of design variables, the method including the 
steps of: 

(i) providing one or more property models, the i” property 
model (where i is an integer from 1 to n, the number 
of property models) producing a prediction P, for a value 
of a respective property of the material as a function of 
the design variables, and further producing a value for 
the uncertainty O, in the prediction P. 

(ii) for each property, setting a specification target To for a 
desired value of the property and a probability p, for that 
specification target To to be met or exceeded, 

(iii) for each property, determining a probabilistic target T. 
for a value of the property, the probabilistic target T. 
being based on the specification target To, and the prob 
ability p, and further defining a merit index factor G, 
based on the degree to which a given prediction P, sat 
isfies the probabilistic target T. 

(iv) constructing an overall merit factor G from the indi 
vidual merit index factors G, of the properties, and 

(V) determining a set of optimal design variables that opti 
mise the overall merit factor G. 

2. A method according to claim 1, wherein the design 
variables include relative amounts of constituent elements of 
the material. 

3. A method according to claim 1, wherein the design 
variables include values of processing conditions of the mate 
rial. 

4. A method according to claim 1, wherein the property 
models include neural network models. 
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5. A method according to claim 4, wherein one or more of 
the neural network models interpolate for more computation 
ally expensive models. 

6. A method according to claim 1, wherein the property 
models include one or more mechanical property models, 
ab-initio models, physical property models and/or 
CALPHAD models. 

7. A method according to claim 1, wherein each merit index 
factor G, takes a substantially constant optimal value when 
ever the given prediction P, meets or exceeds the probabilistic 
target T. 

8. A method according to claim 1, wherein, in step (V), the 
set of optimal design variables are determined by performing 
a multi-variable optimisation based upon simulated anneal 
1ng. 

9. A method according to claim 1, wherein the method 
includes a further step of: 

(vi) determining the design variables which define the 
boundary of the region of multi-dimensional design 
variable space which includes the set of optimal design 
variables and which, for each property, produces a pre 
diction P, which meets or exceeds the respective speci 
fication target To. 

10. A method according to claim 9, wherein the method 
includes a further step of: 

(vii) identifying a set of design variables within said region 
of multi-dimensional design variable space which is 
most likely to produce predictions P, which meet or 
exceed the specification targets To. 

11. A method of producing a material including: 
performing the method of any one of the previous claims to 

identify a material having optimised values of the plu 
rality of design variables in order to meet or exceed 
material property specification targets, and 

preparing the material. 
12. A computer system programmed to perform the method 

of claim 1. 
13. A computer program comprising code which, when run 

on a computer, causes the computer to perform the method of 
claim 1. 

14. A computer readable medium storing a computer pro 
gram comprising code which, when run on a computer, 
causes the computer to perform the method of claim 1. 

k k k k k 


