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The contact interaction is often used in modeling ultracold atomic gases, although it leads to pathological
behavior arising from the divergence of the many-body wave function when two particles coalesce. This
makes it difficult to use this model interaction in quantum Monte Carlo and other popular numerical methods.
Researchers therefore model the contact interaction with pseudopotentials, such as the square well potential,
whose scattering properties deviate markedly from those of the contact potential. In this article, we propose a
family of pseudopotentials that reproduce the scattering phase shifts of the contact interaction up to a hundred
times more accurately than the square well potential. Moreover, the pseudopotentials are smooth, resulting in
significant improvements in efficiency when used in numerical calculations.
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I. INTRODUCTION

Interactions between particles are central to our under-
standing of correlated phenomena. The contact potential is
often used to model interactions in ultracold atomic gases
but, despite its widespread use, it displays pathological
behavior: both the potential and wave function diverge when
two particles coalesce. These divergences impede numerical
methods and are commonly handled by replacing the contact
potential by a pseudopotential, such as a hard sphere or a
square well potential. However, these approximations to the
contact potential display incorrect variations in the scattering
phase shift with incident particle energy [1–6]. In this article,
we adapt methods commonly used for the development
of electron-ion pseudopotentials in the electronic structure
community to propose an atom-atom pseudopotential whose
scattering properties agree closely with those of the contact
interaction.

Ultracold atomic gases have delivered many important in-
sights into strongly correlated systems. They can both provide
clean model Hamiltonians and introduce the ability to tune the
strength of the contact interactions. Ultracold atoms interact
through an underlying attractive van der Waals interaction. An
external magnetic field can be used to tune the energy of the
bound molecular state to approach the energy of the scattering
state, causing the states to couple resonantly. The effect of the
resonance on the scattering state can be modeled by an effective
interparticle potential [7]. In the case of broad Feshbach res-
onances, the scattering can be described by a single universal
scattering length a which describes the scattering phase shift
arising from a contact interaction. There are three types of
contact interaction: sufficiently deep to trap a two-body bound
state (a > 0), weakly attractive with no bound state (a < 0),
and repulsive (excited state of the a > 0 potential).

Contemporary numerical simulations of the first two types,
the bound state (a > 0) and weak attractive interactions
(a < 0), normally adopt a finite-ranged square well or Pöschl-
Teller interaction. Such simulations have delivered crucial
insights into Bose gases [2] and the crossover from a gas
of weakly coupled Bardeen-Cooper-Schrieffer pairs to a
strongly interacting Bose-Einstein condensate [1,8], as well
as few-atom physics [9–11]. However, the finite range imbues
the potential with incorrect scattering properties. Reducing

the range of the potential alleviates this problem, but slows
numerical calculations.

The third type of contact potential gives repulsive in-
teractions that drive itinerant ferromagnetism in Fermi
gases [4,5,12], a Tonks-Girardeau gas [1], and a Bose gas [6].
The repulsive interaction emerges from the first excited state of
the bound-state potential. Both the repulsive contact potential
and the bound-state potential therefore have a > 0. In ultracold
atomic gas experiments [13] the excited state (also called the
upper branch) is protected from decay to the ground state
by a slow three-body loss process, allowing the study of
repulsive interactions. To simulate these repulsive interactions,
one can adopt a finite-ranged attractive potential and study
the first excited eigenstate [4,5]. However, studying excited
states in quantum Monte Carlo (QMC) methods often requires
restricting the excited-state wave function to be orthogonal
to the lower energy states. Variational estimates of excited-
state energies calculated within the widely used diffusion
quantum Monte Carlo (DMC) method [14–16] are discussed in
Ref. [17]. The fixed node constraint used in the DMC method
prevents collapse into the ground state, but it is still difficult to
calculate reliable excited-state energies within the framework
of DMC. An alternative approach is to use a repulsive top-hat
potential [12] whose ground state resembles the first excited
state of the contact potential. However, this potential has a
finite range greater than the scattering length, resulting in an
incorrect scattering phase shift.

The difficulty in simulating repulsive interactions means
that there are important open questions about fermionic gases:
Is the ground state of a strongly interacting fermionic system
ferromagnetic [3,12,18–23]? Is the ferromagnetic transition
first or second order? And do exotic phases emerge around
the quantum criticality such as spin spirals [12], nematic
phases [21,24,25], and a counterintuitive p-wave supercon-
ducting state [26–32]? The development of a pseudopotential
that is better able to reproduce the scattering properties of the
contact interaction will help resolve these open questions.

In Sec. II, we present two pseudopotentials for the in-
teratomic interaction in a cold atom gas. We first adapt
norm-conserving pseudopotentials [33–35], developed by the
electronic structure community for electron-ion interactions,
to deal effectively with scattering states. We then present a
pseudopotential constructed to minimize the scattering phase
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shift error for all wave vectors in a Fermi gas. In Sec. III,
we test the accuracy of the proposed formalism using the
exactly soluble system of two trapped atoms. In Sec. IV, we
investigate how the pseudopotential performs in a many-body
setting by calculating the equation of state of the weakly
repulsive Fermi gas and comparing results to a perturbation
expansion.

II. DERIVATION OF THE PSEUDOPOTENTIALS

To construct the pseudopotential we study the two-body
problem: two identical fermions in their center-of-mass frame
with wave vector k � 0. The Hamiltonian in atomic units (� =
m = 1) in the center of mass frame is

−∇2

2μ
ψ + V (r)ψ = k2

2μ
ψ ,

where V (r) = 4πaδ(r)(∂/∂r)r is the contact potential for
scattering length a and interparticle separation r [36], and
μ = 1/2 is the reduced mass.

The scattering states for the contact potential are ψcont
k,� =

sin[kr − �π/2 + δcont
� (k)]/kr , where

δcont
� (k) =

{
arctan(−ka), � = 0,

0, � > 0,

is the scattering phase shift in the angular momentum channel
�. We seek a pseudopotential that

(1) reproduces the correct phase shifts over the range of
wave vectors 0 � k � kF present in a Fermi gas with Fermi
wave vector kF,

(2) supports no superfluous bound states to be compatible
with ground state methods, and

(3) is smooth to accelerate numerical calculations.
We start by developing pseudopotentials for the repulsive

branch, then the attractive branch, and finally the bound
state. When developing pseudopotentials, we benchmark their
quality by looking at how closely the phase shift of the wave
function for the relative motion of two particles interacting via
the pseudopotential reproduces the phase shift of the contact
interaction for all wave vectors 0 � k � kF present in a Fermi
gas, as shown in Figs. 2 and 3.

A. Repulsive branch

We first focus on developing a pseudopotential for the
repulsive branch of the contact interaction. This branch
offers a particular challenge. The bare potential is strongly
attractive, harboring exactly one bound state, as shown in
Fig. 1(a). The excited states of this potential must maintain
orthogonality to the bound state, resulting in a positive phase
shift. The scattering states have one more node than the
noninteracting state with the same wave vector, as shown in
Fig. 1(a).

We describe four families of pseudopotentials: hard sphere,
soft sphere (top hat), the Troullier-Martins form of norm-
conserving pseudopotential [33,37], and a pseudopotential that
aims to minimize the error in the scattering phase shift over
all wave vectors occupied in the Fermi gas. The first two
families (the hard sphere and top hat) have frequently been
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FIG. 1. (Color online) (a) Bound- and scattering-state wave func-
tions for contact interactions at kFa = 0.5, offset by their respective
eigenvalues (dashed lines) as a function of interparticle separation.
The bare contact potential (represented by the gray area) is strongly
attractive and harbors a single bound state. The scattering states
incident on the potential incur a positive phase shift with respect
to the noninteracting scattering wave function (dotted line). rn

denotes the first node of the scattering wave function and rc

denotes the first antinode, which we use as the cutoff radius when
constructing pseudopotentials, as described in Sec. II A. (b) The
pseudopotentials at kFa = 1/2 on the repulsive branch. The potential
labeled “Troullier” denotes the pseudopotential derived using the
Troullier-Martins formalism. The line labeled “UTP” denotes the
pseudopotential derived using the UTP formalism. These formalisms
are described in Sec. II. (c) The wave functions for the relative motion
of two particles interacting with a contact potential, the hard sphere,
Troullier-Martins pseudopotential, and UTP, at k = kF.

used as approximations to the contact potential in numerical
calculations [3–5,11,12].

The usual approach [4,12] to the construction of pseudopo-
tentials for the contact interaction starts from the low-energy
expansion for the s-wave scattering phase shift,

cot δ0(k) = − 1

ka
+ 1

2
kreff − Pr3

effk
3 + O(k5) , (1)

where reff is the “effective range” of the potential and P is the
“shape parameter.” For a contact potential, reff and all higher
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FIG. 2. (Color online) The errors in phase shifts |δPP
0 (k) −

δcont
0 (k)| for the repulsive branch at kFa = 1/2. δcont

0 is the s-wave
scattering phase shift for the contact interaction and δPP

0 is the
scattering phase shift for each of the pseudopotentials. The Troullier-
Martins formalism is approximately two orders of magnitude more
accurate than the hard and soft-sphere pseudopotentials commonly
used as approximations to the contact interaction. The UTP for-
malism offers an additional factor of 2 improvement. The dotted
green line labeled UTP-max denotes the phase-shift error of a
variant of the UTP developed by minimizing the peak phase-shift
error.

order terms are zero. Perhaps the simplest pseudopotential
is a hard-sphere potential with radius a. This reproduces the
correct scattering length a, thereby delivering the correct phase
shift for k = 0. However, the hard sphere has an effective range
reff = 2a/3. To study the impact of the pseudopotential on the
scattering states, we calculate the phase shifts at kFa = 1/2
for all wave vectors between 0 and kF and compare them to
the contact phase shifts. Figure 2 shows that the finite effective
range of the hard-sphere potential causes significant deviations
in the scattering phase shift for k > 0.

To reduce the error in the scattering phase shift, Ref. [12]
adopted a soft-sphere potential: V (r) = V0�(r − R), with
V0 and R chosen to reproduce the contact scattering
length a = R(1 − tanh γ /γ ) and effective range reff = R[1 +
3 tanh γ−γ (3+γ 2)

3γ (γ−tanh γ )2 ] = 0, where γ = R
√

2μV0. The first two terms
in the low-energy expansion of the phase shift are now correct,
leading to a small reduction in phase-shift error as shown in
Fig. 2.

The two potentials considered so far display incorrect
behavior at large wave vectors due to the focus on reproducing
the correct k = 0 scattering behavior. To improve the accuracy
we turn to the Troullier-Martins [37] formalism developed
for constructing attractive electron-ion pseudopotentials [33–
35,38–40]. These pseudopotentials reproduce both the correct
phase shift and its derivative with respect to energy at a
prescribed calibration energy. The Troullier-Martins form
of norm-conserving pseudopotential can readily be applied
to the construction of a pseudopotential for the contact
interaction. We choose a calibration energy and cutoff radius as
follows:

Calibration energy. The pseudopotential will have scat-
tering properties identical to the contact potential at the
calibration energy. For electron-ion pseudopotentials, the
bound-state energy in an isolated ion is a natural choice.

For example, in a homogeneous fermionic gas the scat-
tering of states with incident momenta less than ∼ kF is
particularly important, and therefore we choose a calibration
energy equal to the median energy of the occupied states,
(3/5)EF.

Cutoff radius. The Troullier-Martins pseudo-wave-function
is identical to the contact wave function outside of the cutoff
radius, but has no nodes inside the cutoff radius, as shown
in Fig. 1(c). We can therefore choose the cutoff radius to
eliminate the bound state: by selecting a radius rc > rn, where
rn is the position of the first node in the wave function, we
construct a pseudopotential that does not have a bound state,
as shown in Fig. 1(b). We choose the first antinode of the wave
function at the calibration energy as the cutoff radius for the
pseudopotential.

Having chosen a suitable calibration energy and cutoff
radius, we construct the pseudo-wave-function. The contact
potential exhibits a nonzero phase shift only when the par-
ticles are incident with angular momentum quantum number
� = 0. We therefore concentrate on reproducing the correct
� = 0 behavior in this section. We demonstrate how to
eliminate scattering in higher angular momentum channels in
Sec. II D.

The functional form of the pseudo-wave-function in the
� = 0 channel at the calibration energy is

ψPP(r) =
{

exp
(∑6

i=0 cir
2i
)

Y0(θ,φ), r < rc,

ψcont
k,�=0(r), r � rc,

where k = √
(3/5)EF is the wave vector at the calibration

energy and r = (r,θ,φ) is the relative position of the interacting
particles. The coefficients ci are calculated by demanding
continuity of the pseudo-wave-function and its first four
derivatives at the cutoff radius, and requiring that the derivative
of the phase shift with respect to energy, ∂(cot δ)/∂E|(3/5)EF ,
be the same as that of the contact interaction at the calibration
energy. This last condition, called the norm-conservation
condition, is equivalent to demanding that the total density
enclosed by r < rc for the pseudo-wave-function matches that
of the contact wave function,∫

|r|<rc

|ψPP(r)|2 dr =
∫

|r|<rc

∣∣ψcont
k,�=0(r)

∣∣2
dr .

Finally, we demand that c2
2 = −5c4, to guarantee that the

pseudopotential has zero curvature at the origin. Having con-
structed the pseudo-wave-function at the calibration energy,
we invert the Schrödinger equation to obtain the pseudopo-
tential V PP(r). The formalism for the contact interaction is
detailed in the Appendix. We also provide a computer program
to generate the pseudopotential [41].

By calibrating the pseudopotential at the median incident
scattering energy E = (3/5)EF, we reduce the error in the
scattering phase shift over a broad range of wave vectors.
This generates the pseudopotential shown in Fig. 1(b), whose
smoothness leads to improved numerical stability and effi-
ciency. Figure 2 demonstrates that this potential is exact at the
calibration energy E = (3/5)EF and delivers a hundredfold
decrease in phase-shift error across all wave vectors, compared
to the soft-sphere pseudopotential.
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The Troullier-Martins formalism yields a pseudopotential
that reproduces the contact behavior exactly at the calibration
energy, but deviates at other energies. One approach for
reducing the deviation is to ensure that higher order derivatives
of the phase shift with respect to energy are equal to those of
the contact interaction. A second option is to impose accurate
scattering at multiple energies through additional parameters.

Here we pursue the natural conclusion of these approaches
by constructing a pseudopotential that minimizes the error in
the phase shifts over all the wave vectors occupied in a Fermi
gas. We derive this pseudopotential below, referring to it as an
“ultratransferable pseudopotential” (UTP).

The UTP is identical to the contact potential outside of a
cutoff radius rc, but has a polynomial form inside the cutoff,

V (r)

EF
=

{(
1 − r

rc

)2[
v1

(
1
2 + r

rc

) + ∑Nv
i=2 vi

(
r
rc

)i]
, r � rc,

0, r > rc,

with Nv = 9. The term (1 − r/rc)2 ensures that the potential
goes smoothly to zero at r = rc and the term v1(1/2 + r/rc)
constrains the potential to have zero gradient at r = 0 to allow
the pseudo-wave-function to be as smooth as possible. This
is advantageous in quantum chemistry methods in which the
absence of a cusp improves convergence with respect to the
basis set size. As with the Troullier-Martins pseudopotential,
we choose a cutoff radius that corresponds to the first antinode
of the true wave function, removing the node at r = rn

and therefore eliminating the bound state. To calculate the
coefficients {vi}, we minimize the total squared error in the
phase shift over all wave vectors between 0 and kF,

〈(
δPP
� − δcont

�

)2〉 =
∫ kF

0

[
δPP
� (k) − δcont

� (k)
]2

w(k) dk∫ kF

0 w(k) dk
,

where the phase shift δPP
� (k) is determined from a numerical

calculation of the scattering solution of the pseudopotential
and w(k) = k2 is a positive weighting function. We include a
computer program to generate the UTP in the supplemental
material [41]. The computer program starts with coefficients
determined from the Troullier-Martins pseudopotential, but we
verified that the optimization was not stuck in a local minimum
by repeating the process with different initial coefficients.

As demonstrated in Fig. 2, this potential gives an error in
δ0 of less than 10−3 for all wave vectors 0 � k � kF found in
a Fermi gas, corresponding to an improvement of two orders
of magnitude over previously used pseudopotentials, and an
approximate twofold improvement over the Troullier-Martins
pseudopotential.

We test the robustness of the UTP construction by generat-
ing two additional variants of the formalism. The first, inspired
by the Troullier-Martins pseudopotential, contains only even
terms in the polynomial functional form of the potential. For
the second variant, rather than minimizing the total squared
phase-shift error

∫ kF

0 [δPP
� (k) − δcont

� (k)]2w(k) dk, we instead
minimize the maximum phase-shift error max0�k�kF (|δPP

� (k) −
δcont
� (k)|). Including only even terms in the polynomial

functional form of the pseudopotential delivers a 1% poorer
quality pseudopotential for the same number of variational
parameters. Minimizing the maximum phase-shift error leads
to a similar pseudopotential, with a slightly smaller peak
error, but the phase shifts deviate more from those of the
contact interaction elsewhere. Ultimately the selection of
the optimization strategy depends on the physics of the
system: for density waves one should minimize the error

around k = 0, while for s-wave superconductivity one should
minimize the error around k = kF. However, having verified
that different optimization procedures lead to similar high-
quality pseudopotentials, we continue with the optimization
of the total squared phase-shift error.

B. Attractive branch

We can use a similar procedure to derive Troullier-
Martins and ultratransferable pseudopotentials for the attrac-
tive branch, a < 0. The main difference from the repulsive
branch lies in the choice of cutoff: for the repulsive branch,
the cutoff must lie beyond the first node of the wave function,
while for the attractive branch there is no lower bound on the
cutoff.

The smaller the cutoff, the closer the scattering proper-
ties of the pseudopotential approach those of the contact
potential. However, reducing the cutoff comes at the cost
of computational efficiency. For example, in quantum Monte
Carlo simulations, the sampling efficiency of a potential is
proportional to the fraction of configuration space volume in
which the potential is finite, r3

c /�, where � is the simulation
cell volume.

In Fig. 3(a) we adopt a cutoff rc = 1/2kF, and compare
the results to the square well potential with cutoff rc =
0.01 3

√
3π2/kF used in Ref. [1]. Both the Troullier-Martins

pseudopotential and the UTP have an average error approx-
imately 10 times smaller than the square well potential, but
their larger cutoff allows them to be sampled 4000 times
more efficiently in QMC. Reducing the cutoff used for the
Troullier-Martins pseudopotential or the UTP would further
increase their accuracy, at the cost of a reduction in sampling
efficiency.

In Fig. 3(b), we compare the phase-shift accuracy of the
pseudopotentials as a function of cutoff. Both the Troullier-
Martins and ultratransferable formalisms result in pseudopo-
tentials whose scattering phase shifts converge to those of the
contact interaction considerably faster than the square well
potential. We find that the average error in phase shift of
both the Troullier-Martins pseudopotential and UTP tends
to zero as r3

c . By contrast, the square well converges as
rc. The improved convergence can be understood as a con-
sequence of imposing norm-conservation, which guarantees
the correctness of ∂(cot δ)/∂E|(3/5)EF around the calibration
energy (3/5)EF. Equation (1) then shows that the leading
error in the phase shifts is approximately proportional to
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FIG. 3. (Color online) (a) The errors in phase shift for the
attractive branch at kFa = −1/2, for different pseudopotentials. The
Troullier-Martins formalism yields phase shifts that are 10 times
closer to those of the contact interaction than the square well
approximation. For all pseudopotentials described here, the quality
of the potential depends on the choice of spatial cutoff. The Troullier-
Martins and UTP were constructed with cutoff rc = (1/2)kF. By
contrast, the square well potential was constructed with rc � 0.03kF.
(b) Convergence of the phase shifts with decreasing pseudopotential
radius for kFa = −1/2.

cot(δPP) − cot(δcont) ∝ r3
c for both the Troullier-Martins and

UTP. By contrast, for the square well potential, the error
is proportional to the effective range, which, in turn, is
proportional to rc.

C. Bound state

We now construct a pseudopotential for the bound state
(corresponding to a > 0). Unlike the repulsive and attractive
branches described above, all particles in the bound state exist
as tightly bound dimers, with energy E ∼ −1/2a2 per particle.
This situation is analogous to that of a valence electron orbiting
an ionic core. The Troullier-Martins formalism therefore lends
itself well to the construction of a pseudopotential for this
branch. We calibrate the Troullier-Martins pseudopotential at
the binding energy (per particle) E = −1/2a2. The cutoff is
constructed in the same manner as for the attractive branch,
delivering a similar improvement in efficiency. We note that
the UTP form is not advantageous for this branch since all
particles have approximately the same energy.

D. Nonlocal pseudopotentials

The pseudopotentials constructed in the previous sec-
tions have finite scattering amplitude in the p-wave and

higher angular momentum channels. The contact potential,
by contrast, scatters only in the s-wave channel |s〉. This
problem can be solved by using a nonlocal pseudopotential
V̂ NL = |s〉 V (r) 〈s|, where |s〉 〈s| serves to project out the
s-wave component of the wave function for the relative
motion of the interacting particles, and V (r) is the Troullier-
Martins pseudopotential or UTP constructed to reproduce the
scattering properties of the contact interaction in the s-wave
channel [42–44].

Nonlocal pseudopotentials have been used effectively
in quantum Monte Carlo calculations for the electron-ion
interaction [45]. Adapting the formalism to interparticle
pseudopotentials is straightforward. The total contribution to
the local energy from the nonlocal pseudopotential can be
written as a double sum over particles in each spin channel,

V̂ NL�

�
=

∑
i∈↑

∑
j∈↓

V̂ NL
ij �

�
,

where � is the many-body wave function. To calculate the
contribution V̂ NL

ij �/� that arises from the interaction between
an up-spin particle at ri and a down-spin particle at rj , it is
convenient to translate all particle positions by −ri , such that
particle i is located at the origin. Then,

V̂ NL
ij �

�
= 1

4π
V (rj )

∫
�(R↑ ; . . . ,r′

j , . . .)

�(R↑; . . . ,rj , . . .)
d�r′

j
,

where rj = |rj |, V (rj ) is the value of the pseudopotential at
rj , R↑ denotes the positions of all up-spin particles, and the
integration runs over all solid angles on a sphere or radius rj

centered at the origin. We note that, inasmuch as the proposed
pseudopotentials are short-ranged, we need only carry out the
spherical integration for a small number of pairs of atoms: all
those with |ri − rj | < rc.

Additional accuracy could be gained by using different
projectors for different energy ranges [46,47]. Nonlocal pseu-
dopotentials have been used successfully to describe electron-
ion interactions in numerical calculations. The formalism nec-
essary to implement the projectors is therefore already in place.

III. ATOMS IN A TRAP

We have developed a pseudopotential that delivers the
correct scattering phase shift for an isolated system. To test
the pseudopotential we turn to an experimentally realizable
configuration [48,49]: two atoms in a spherical harmonic
trap with frequency ω and characteristic width d = 1/

√
ω.

For all three types of contact interaction, this system has
an analytical solution plotted in Fig. 4(a) [36] that we can
benchmark against. Moreover, the exact solution extends to
excited states, allowing us to test the performance of the
pseudopotential across a wide range of energy levels to provide
a firm foundation from which to study the many-body system.

A. Ground state

We first compare the pseudopotential estimates of the
ground-state energy to the exact analytical solution [36]. For
the repulsive and attractive branches, both the hard- and soft-
sphere potentials deliver a ∼1% error in the energy, while both
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FIG. 4. (Color online) (a) Band diagram for two atoms in a
harmonic trap, calculated following Ref. [36]. (b) Mean-squared error
in total energy for two atoms in a harmonic trap, for all bands below
Emax (solid lines), for repulsive interactions (kmaxa > 0). UTP denotes
the ultratransferable pseudopotential. The dashed line denotes the
error in the ground-state energy with the UTP. The labels −d/a and
−1/kmaxa describe the x axis, which can be interpreted as either a
change in trap size for constant interaction strength (varying d/a

where d = 1/
√

ω), or a change in interaction strength for constant
trap size (varying 1/kmaxa, where kmax = √

Emax). The horizontal
solid black line shows the typical many-body accuracy goal of 0.01%.
(c) The pseudopotential error for attractive interactions (kmaxa < 0).
(d) The pseudopotential error in the bound-state energy.

the Troullier-Martins and ultratransferable pseudopotentials
[shown in Figs. 4(b) and 4(c)] are significantly more accurate,
each giving an error smaller than ∼0.01%. For the attractive
branch, we could have created more accurate pseudopotentials
by decreasing the cutoff rc, as demonstrated in Fig. 3(b).
Finally we examine the bound-state energy in Fig. 4(d).
Both the square well and Troullier-Martins formalism give

the exact ground-state energy for two atoms in a vacuum.
However, the trapping potential introduces inhomogeneity, and
the square well potential gives a ∼10% error in the ground-
state energy, whereas the Troullier-Martins pseudopotential
delivers errors of less than ∼0.01%. This affirms the benefits
of using a pseudopotential that is robust against changes in the
local environment. The success of the Troullier-Martins and
ultratransferable formalisms in describing the ground state is
all the more significant considering that these pseudopotentials
aim to describe the correct scattering properties over a range
of energies. We would therefore expect them to perform even
better when modeling the excited states of the trap.

B. Excited states

We now examine the predictions for the excited states
in the repulsive and attractive branches. Due to the shell
structure, the excited states of a few-body system are related
to the ground state of a many-body system [9], allowing us
to probe the performance expected from the pseudopotential
in a many-body setting. We consider states up to a maximum
energy of Emax = 7.5�ω, corresponding to 112 noninteracting
atoms in the trap. In Figs. 4(b) and 4(c) the Troullier-Martins
pseudopotential has a mean-squared error averaged over all
bands below Emax between 10 and 100 times lower than
the hard sphere and square well pseudopotentials. The UTP
is a further factor of 2 more accurate. Additionally, when
modeling the attractive branch, the Troullier-Martins and
ultratransferable formalisms produce pseudopotentials that
converge to the contact limit more rapidly than the attractive
square well, resulting in improved efficiency when used in a
QMC simulation. For the cutoff radii used in Fig. 4(c), using
the Troullier-Martins pseudopotentials or the UTP results in
QMC calculations that are 4000 times more efficient than the
equivalent calculation with the square well.

The pseudopotentials deliver energies with better than
∼0.01% accuracy, a significant improvement over existing
pseudopotentials. This means that they are no longer the
limiting factor in studies of ultracold atomic gases with
state-of-the-art computational methods. For example, exact
diagonalization calculations have been performed at a similar
∼0.01% accuracy [11], and high-fidelity many-body QMC can
also achieve ∼0.01% stochastic error [3–5]. We are therefore
well positioned to test the pseudopotential in a many-body
setting.

IV. CASE STUDY: FERMI GAS

Having demonstrated the efficacy of the Troullier-Martins
and UTP formalisms for an inhomogeneous two-body system,
we now test the pseudopotentials using quantum Monte Carlo
methods. We calculate the equation of state of a Fermi gas
with weak interactions. Fermi gases serve as models for free
electrons in a conductor, for nucleons inside a large nucleus,
and for liquid He3 [50].

For the attractive Fermi gas, the quality of a pseudopotential
can be systematically improved by reducing the cutoff radius.
We therefore concentrate on the repulsive branch of the
Feshbach resonance, for which the top-hat pseudopotential
cannot be systematically improved. We compare the energies
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FIG. 5. (Color online) (a) Deviation of the equation of state from
that predicted by third-order perturbation theory, as given by Eq. (2).
The gray region denotes the confidence intervals in E(3). The line
denoted E(2) is the equation of state derived from second-order
perturbation theory [59]. We note that the equation of state obtained
by using a soft-sphere pseudopotential deviates significantly from the
line predicted by the perturbation expansion. (b) Standard deviation
of the local energy EL for the ground state of the soft sphere and the
UTP. The soft-sphere pseudopotential exhibits a much larger standard
deviation, which can be explained by the abrupt changes in potential
energy when particles overlap.

predicted by DMC calculations with exact perturbation ex-
pansions calculated with the contact potential. The main result
is shown in Fig. 5: energies calculated using the UTP and
top hat differ significantly for kFa � 0.3. The equation of
state calculated using the UTP formalism agrees well with
third-order perturbation theory, confirming the accuracy of the
formalism.

A. Formalism

We use the DMC method [14–16], as implemented in the
CASINO code [51] with a Slater-Jastrow trial wave function and
a backflow transformation [52]. The wave function takes the
form � = eJ D↑D↓, where D↑ and D↓ are Slater determinants
of plane-wave orbitals for each of the spin channels. The
Jastrow factor eJ describes the interparticle correlation

J =
∑
j 
= i

α,β ∈ {↑ , ↓}

(
1 − |ri − rj |

Lu
αβ

)2

uαβ(|ri − rj |)

×�
(
Lu

αβ − |ri − rj |
)

,

where uαβ is a polynomial whose parameters we optimize
in a variational Monte Carlo (VMC) calculation, Lu

αβ is a
cutoff length that we also optimize variationally, and � is
the Heaviside step function [53]. The backflow transformation

shifts electron positions in the Slater determinant as

riσ → riσ +
∑
j 
= i

α,β ∈ {↑ , ↓}

(ri − rj ) η
αβ

ij (|ri − rj |) ,

where

η
αβ

ij (r) =
(

1 − r

L
η

αβ

)2

�
(
L

η

αβ − r
)

pαβ(r) ,

pαβ is a polynomial whose parameters are optimized in VMC,
and L

η

αβ is a cutoff length that we also optimize. The backflow
transformation allows the description of further correlation,
reducing the final DMC energy [5,52].

We calculate the equation of state of the Fermi gas
with 81 up-spin and 81 down-spin particles. We use twist
averaging [54–56] and correct the noninteracting kinetic
energy with that of the corresponding infinite system [4] to
reduce finite-size effects. We use a control variate method to
reduce the stochastic error resulting from the twist-averaging
procedure [57]. We find that the control variate method leads
to a fivefold reduction in stochastic error for this system at no
additional computational cost.

B. Results

We compare the equations of state of the UTP and soft-
sphere pseudopotential in Fig. 5. The two differ significantly
for kFa � 0.3, highlighting the importance of using an accurate
pseudopotential. To establish which potential reproduces the
equation of state of the contact potential more closely, we
compare the results to a third-order perturbation theory
calculation of the equation of state [50,58],

E(3) = 3

5
EF

[
1 +

E(2)︷ ︸︸ ︷
10

9π
kFa + 4(11 − 2 ln 2)

21π2
(kFa)2

+ (0.076 ± 0.005 − 1/3π )(kFa)3

]
. (2)

Figure 5(a) shows that the equation of state calculated using
the UTP remains within the stochastic error of E(3) up to
kFa ∼ 0.6. In contrast, the equation of state for the soft-sphere
system deviates significantly from the perturbation result
for kFa � 0.3. The energy E(2) obtained using second-order
perturbation theory [59], which is used frequently in the
literature [18,23], differs markedly from both the UTP and soft-
sphere pseudopotential energy. These significant differences in
energy affirm the importance of using a pseudopotential whose
scattering properties accurately replicate those of the contact
interaction.

In Fig. 5(b), we compare the variance in the local energy
EL = Ĥ�/� of the ground-state wave function for different
pseudopotentials. The stochastic error for a quantum Monte
Carlo calculation is proportional to

√
Var(EL). A smoother

local energy will therefore result in more accurate results for
the same computational expense. By virtue of its smoothness,
we find that the UTP leads to smoother local energies than
the soft-sphere pseudopotential. In particular, the variance
of the local energy at small kFa diverges for the zero-range
soft-sphere pseudopotential. Even at kFa = 0.6, we find that
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the standard deviation of the UTP ground state is about five
times smaller than that of the soft-sphere ground state, resulting
in a 25-fold improvement in efficiency in quantum Monte
Carlo calculations.

The computational expense, for a fixed number of VMC or
DMC samples, of all the pseudopotentials considered in this
article scales as O(N2) with particle number N . This quadratic
dependence arises from the need to check the separation of all
pairs of particles to decide whether the particles are close
enough to interact. The prefactor of this term is therefore
identical for all pseudopotentials. We must therefore consider
the prefactor of the O(N ) term to discern a difference in
the computational expense of using the pseudopotentials. The
square well or top hat potential scales more favorably, both
because it is easier to compute the value of the pseudopotential
and because, by virtue of its smaller cutoff radius, fewer
pairs of particles interact. In practice, we find that for the
162-particle system considered in this section at kFa = 0.6, it
takes approximately 25% less CPU time to acquire the same
number of VMC samples with a top-hat potential than with a
UTP. This difference is far outweighed by the lower variance
in local energy of the UTP: QMC calculations with a top-hat
pseudopotential are approximately 19 times more costly than
calculations with a UTP, to obtain the same level of accuracy.

V. DISCUSSION

We have developed a high-fidelity pseudopotential for the
contact interaction inspired by pseudopotentials common in
the electronic structure community. We tested the pseudopo-
tential by examining the scattering phase shifts, the energy of
two trapped particles, and the ground-state energy of a Fermi
gas, finding the new pseudopotentials to be approximately 100
times more accurate for the repulsive branch, and 10 times
more accurate for the attractive and bound-state branches of the
Feshbach resonance, while also 4000 times more efficient than
contemporary approximations. The pseudopotential delivers
accurate scattering properties over all wave vectors 0 � k �
kF in a Fermi gas. Its smoothness also greatly accelerates
computation: for instance, for the repulsive branch of the
Feshbach resonance, calculations are accelerated by a factor
of at least 19.

The performance and transferability of the pseudopotential
makes it widely applicable across first-principles methods
including VMC, DMC, coupled cluster, and configuration
interaction methods. The formalism developed can also be
applied more widely to generate pseudopotentials for narrow
Feshbach resonances, the repulsive Coulomb interaction, or
the dipolar interaction. The formalism could also be extended
by using more projectors or the ultrasoft [46] or augmented
plane-wave [47] formalisms popular in the electronic structure
community.
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APPENDIX: CONSTRUCTION OF THE
TROULLIER-MARTINS PSEUDOPOTENTIAL

The equations in the Troullier-Martins paper pertain to
electron-ion pseudopotentials in the context of the Born-
Oppenheimer approximation [37]. They therefore consider the
interaction of an electron with a much heavier nucleus. By
contrast, in this paper, we are interested in the interaction
between two particles of equal mass. This corresponds to
using a reduced mass μ = 1/2 in the center-of-mass frame,
rather than μ � 1 for electron-ion pseudopotentials. We adapt
the Troullier-Martins formalism to the construction of a
pseudopotential for two particles of equal mass interacting
with a contact interaction.

The Schrödinger equation for relative motion with reduced
mass of 1/2 and a spherically symmetric interparticle potential
is

[−∇2 + V (r)]ψE,�(r) = EψE,�(r),

where r = r1 − r2 is the relative position of the two particles
and ψE,� is the relative wave function associated with energy
eigenvalue E and angular momentum channel �. We only
consider particles with relative angular momentum quantum
number � = 0, since the contact interaction only scatters in
this channel.

By expanding the relative wave function ψE,�=0(r) =
RE,�=0(r)Y0, where Y0 = 1/

√
4π is the zeroth spherical

harmonic and r = |r|, we can recast the three-dimensional
Schrödinger equation as a radial equation,[

− 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ V (r)

]
RE,�=0 = E RE,�=0 . (A1)

We choose a calibration energy Ec, as described in the
main text, and construct the pseudopotential by choosing a
pseudo-wave-function that matches the exact form beyond
a cutoff radius rc, at the calibration energy. Following
Troullier-Martins, we define the pseudo-wave-function at the
calibration energy as ψPP

Ec,�=0 = RPP
Ec,�=0Y0 with the radial

component

RPP
Ec,�=0(r) =

{
Rcont

Ec,�=0(r), r � rc,

exp[p(r)], r < rc,

where p(r) = ∑6
i=0 cir

2i is a polynomial and Rcont
Ec,�=0 is the

radial wave function for the contact interaction at the calibra-
tion energy Ec. Inserting this form into the radial equation,
Eq. (A1), we calculate an expression for the pseudopotential
V PP as a function of p(r),

V PP(r) =
{

0, r � rc,

Ec + p′′ + p′2 + 2
r
p′, r < rc,

(A2)

where the primes indicate derivatives.
To proceed further, we must consider an explicit functional

form for Rcont
Ec,�=0. This depends on whether we are constructing

a pseudopotential for a scattering state or the bound state
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of the contact interaction. We consider these two cases in
Appendices 1 and 2.

1. Scattering states

The relative wave function for two particles interacting via
contact interactions is

Rcont
E,�=0(r) = sin[kr + δ0(k)]

kr
,

where δ0(k) = arctan(−ka) and k = √
E. The continuity

equations at the cutoff are

p(rc) = ln

{
sin[krc + δ0(k)]

rc

}
,

p′(rc) = k

tan(krc + δ)
− 1

rc
,

p′′(rc) = − k2 − 2

rc
p′ − p′2,

p(3)(rc) = 2

r2
c

p′ − 2

rc
p′′ − 2p′p′′,

p(4)(rc) = − 4

r3
c

p′ + 4

r2
c

p′′ − 2

rc
p(3) − 2p′′2 − 2p′p(3),

where p(i) denotes the ith derivative of p and all derivatives
are evaluated at r = rc. To obtain the pseudo-wave-function at

the calibration energy, we solve this system of five equations,
as well as the norm-conservation condition and impose
c2

2 = −5c4 to guarantee ∂2V PP/∂r2|r=0 = 0. This uniquely
determines the polynomial p(r), which, in turn, determines
the pseudopotential, following Eq. (A2).

2. Bound state

The relative wave function for two particles in the bound
state of the contact interaction is

Rcont
E,�=0(r) =

(
k3

2π

)1/2 exp(kr)

kr
,

where k = √
E and E = −1/a2 for scattering length a. The

continuity equations at the cutoff r = rc are

p(rc) = − k

rc
− ln(rc),

p′(rc) = −k − 1

rc
,

p′′(rc) = −k2 − 2

rc
p′ − p′2,

p(3)(rc) = 2

r2
c

p′ − 2

rc
p′′ − 2p′p′′,

p(4)(rc) = − 4

r3
c

p′ + 4

r2
c

p′′ − 2

rc
p(3) − 2p′′2 − 2p′p(3) .
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