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Supplementary Material: Absence of diagonal force constants in cubic Coulomb
crystals
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SI. PROOF THAT
∑
α ΦIiα,0iα = 0 FOR I 6= 0

The diagonal matrices of force constants, ΦI ≡ ΦIiα,0iβ , corresponding to the diagonal dynamical matrix, Diα,iβ ,
are computed by Taylor expanding a crystal with respect to atom perturbations, as discussed in Sec. I. In order
to demonstrate Poisson’s law,

∑
α Φ0iα,0iα = 0, it is sufficient to perturb only the central atom, since

∑
α Φ0iα,0iα

corresponds to the Laplacian. In order to show
∑
α ΦIiα,0iα = 0 for I 6= 0, however, we need to subsequently perturb

a second atom to compute the mixed second derivatives ΦIiα,0iα.
For symmetry, let us consider a crystal of atoms consisting of superimposed positive and negative charges, and choose

to perturb the positive charges. After displacing the central positive charge by u1 = (x1, y1, z1), we subsequently
displace a positive charge at RI = (X,Y, Z) by u2 = (x2, y2, z2). The negative shadow charges remain fixed. In
this notation, RI denotes the separation vector between unit cells 0 and I in the crystal. Examining the symmetric
interaction between these two atoms (four charges), yields the potential energy contribution

EI =
1

|RI + (u2 − u1)|
− 1

|RI + u2|
− 1

|RI − u1|
+

1

|RI |
=

1

2
uᵀ

1ΦIu2 +O(cubic),

where

ΦI =
2

(X2 + Y 2 + Z2)5/2

−2X2 + Y 2 + Z2 −3XY −3XZ
−3XY X2 − 2Y 2 + Z2 −3Y Z
−3XZ −3Y Z X2 + Y 2 − 2Z2

 .

The trace of this matrix is zero for any separation vector RI . Hence, the formula
∑
α ΦIiα,0iα = 0 holds for all integer

I 6= 0 and any crystal structure.
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SII. HIGHER-ORDER DERIVATIVE TEST

For a single-variable, real-valued and sufficiently differentiable function, f , let the first (n − 1) derivatives vanish
such that

f ′(c) = · · · = f (n−1)(c) = 0 and f (n)(c) 6= 0,

where c is a constant in the domain of the function, and n ∈ Z+. In this case, the nth derivative may be used as a
discriminant to determine the nature of the turning points.

If n is even:

• f (n)(c) < 0 ⇒ c is a local maximum,

• f (n)(c) > 0 ⇒ c is a local minimum.

If n is odd:

• f (n)(c) < 0 ⇒ c is a strictly decreasing point of inflection,

• f (n)(c) > 0 ⇒ c is a strictly increasing point of inflection.

Hence, this test can classify the critical points of f in all cases, provided f (n)(c) 6= 0 for some value of nS1.

The higher-order derivative test may be generalized to multi-dimensional problems. Denoting D(p)f as the pth-order
multivariate derivative of f , it can be shown that under corresponding conditions:

• D(p)f(c) is negative definite ⇒ c is a strict local maximum.

• D(p)f(c) is positive definite ⇒ c is a strict local minimum,

• D(p)f(c) is indefinite ⇒ c is a saddle point,

• D(p)f(c) is zero or semidefinite ⇒ the test is inconclusive.

Note that, unlike the single-variable test, this test is not conclusive in all casesS2.

SIII. HIGHER-ORDER MATRICES OF FORCE CONSTANTS

In this paper we consider the effect of displacing atoms originally at {R0
Ii}, on their nearest neighbors, with a

energy E and general displacements {RIi}. We may expand the energy such that:

E({RIi}) =E({R0
Ii}) +

∑
Iiα

∂E

∂uIiα

∣∣∣∣
u=0

uIiα +
1

2!

∑
Iiα

∑
Jjβ

ΦIiα,JjβuIiαuJjβ

+
1

3!

∑
Iiα

∑
Jjβ

∑
Kkγ

∂3E

∂uIiα∂uJjβ∂uKkγ

∣∣∣∣
u=0

uIiαuJjβuKkγ

+
1

4!

∑
Iiα

∑
Jjβ

∑
Kkγ

∑
Llδ

XIiα,Jjβ,Kkγ,LlδuIiαuJjβuKkγuLlδ + . . . ,

where {I, J,K,L} are unit cell indices, {i, j, k, l} are basis atom indices, and {α, β, γ, δ} are Cartesian directions. As
stated in the main text, translational invariance allows us to consider ΦIiα,0jβ and XIiα,0jβ,Kkγ,Llδ without loss of
generality. Furthermore, exploiting the symmetry of the system, we additionally contract the fourth-order matrix of
force constants such that XIiα,0jβ,Kkγ,Llδδ

0
Kδ

K
L δ

α
β δ

γ
δ = XIiα,0jα,0kγ,0lγ , which allows us to write the diagonal force

constant matrices analogously as ΦI ≡ ΦIiα,0iβ and XI ≡ XIiα,0iβ . Both of these matrices are symmetric in (α, β).
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FIG. S1. Breakdown of crystal structures (by Bravais lattice) for the most thermodynamically stable allotropes of elements in
the periodic table, at standard temperature and pressure. The number of elements exhibiting each crystal structure is given in
the corresponding section of the chart. Crystal structure data is provided for an unambiguous subset containing 94 out of the
118 elements, using Mathematica’s ElementData functionS3.

SIV. CRYSTAL STRUCTURES IN THE PERIODIC TABLE

Sufficiently stable elements in the periodic table may be grouped in accordance with their crystal structure. A
breakdown of the crystal structures (by Bravais lattice) in the periodic table is presented in Fig. S1. In the cases where
an element exhibits multiple crystal structures at standard temperature and pressure, the most thermodynamically
stable allotrope is given.

In three-dimensions, all crystal structures are derived from fourteen possible Bravais lattices. However, some of
the derived crystal structures are worth studying separately, either due to their ubiquity (e.g. in the case of the hcp
structure: the most common crystal structure in nature) or interesting properties (e.g. in the case of diamond). The
cub, bcc, fcc, dia, hcp, and dhcp crystal structures are studied in particular in this paper because they only have one
free parameter: the lattice constant. Furthermore, this group of crystal structures accounts for approximately three
quarters of the known crystal structures in the periodic table.

SV. NUMERICAL MODEL

In this section, we outline the numerical details of how the crystal structure summations were performed. In
the interests of clarity, we use simplified notation in this section and consider a one-component crystal with the
displacement of a single ion at the origin by a displacement vector R and total potential energy E.

A. Ewald summation

Ewald summation is the standard method to compute Coulomb interactions in infinite periodic systems, such as
crystalsS4. The method works by splitting the Coulomb potential into a singular short-range term, which is evaluated
in real space, and a continuous long-range term, which is evaluated in momentum space. The split is performed such
that V (r) = 1/r = f(αr)/r − (1 − f(αr))/r, where f(r) = erf(r) is the error function, 1 − f(r) = erfc(r) is the
complementary error function, and α > 0 is the Ewald splitting parameter. The error function is typically chosen
because it corresponds to a Gaussian spreading function for the point charges and its Fourier coefficients are known
analytically.

In the 3D periodic Coulomb problem, the total potential may be written as

E =
∑
I

∑
i<j

1

|RI + rij |
,
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where rij ≡ ri − rj and we sum over all distinct pairs of identical unit charges. Rewriting the total potential in the
Ewald formalism yields

E =
1

2

∑
I

′∑
i,j

erfc(α|RI + rij |)
|RI + rij |

+
1

2

∑
I 6=0

∑
i,j

4πe−k
2
I/(4α

2)

k2
Ia

3
e−ik·rij − αNu√

π
,

where kI = 2πRI/a is the momentum, a is the unit cell length, and Nu is the number of ions per unit cellS5.
The first term is short-range and evaluated directly by summing concentric shells, as discussed in the following
sections. The second term is summed analogously in reciprocal space with a cutoff empirically set such that the
Ewald splitting parameter α ≈ 2S6. The final term is the self energy, which cancels the corresponding contribution
from the momentum sum. Depending on the exact parameters chosen for the cutoffs, the scaling of the classical Ewald
summation is between O(N3/2) and O(N2), where N is the number of ions in the system.

To demonstrate the convergence of the classical Ewald method, we show in Fig. S2 the computation of the trace
of the diagonal matrices of force constants with respect to the motion of a single ion, ΦIiα,Iiβ , against the number of
shells in the real-space summation, n, for a variety of perturbation centers, RI = ixa + iyb + izc, where {a,b, c} are
the crystal basis vectors. For cubic crystals, it can be seen that

∑
α ΦIiα,Iiα = 0 by Poisson’s law and ΦIiα,Iiα = 0

by symmetry. For hexagonal crystals, we again note that
∑
α ΦIiα,Iiα = 0 by Poisson’s law, however the diagonal

elements ΦIiα,Iiα 6= 0. In this paper, we sum shells up to and including n = 8, which is deep into the converged
region.

B. Cubic systems (cub, bcc, fcc, dia)

In this paper, we consider unit cells with an ion situated at the origin in all cases. We refer to these as origin-centric
unit cells, and we choose these in order to minimize finite system size error when summing radially outwards over
many shells, as well as to simplify the computations. The unit cell for the simple cubic crystal consists of one ion
situated at the origin. The unit cells for the bcc, fcc, and dia crystal lattices are shown in Fig. S3.

In order to sum to n shells, we include all ions in units cells whose origins are situated within a radius of n lattice
constants, as illustrated in Fig. S4. We continue to sum in this fashion until the properties of interest, such as the
diagonal force constant matrices, converge to the desired precision.

The coordinates of the unit cell sites for these cubic systems is shown in Table S1a and the corresponding potentials
are given in Table S1b. Hence, the summation over n shells may be written explicitly as

EC =
∑
I

VC(RI −R) =
∑

i2x+i2y+i2z≤n2

VC

a
ixiy
iz

−
XY
Z

− V
XY

Z

 ,

where C ∈ {cub, bcc, fcc, dia} denotes the cubic crystal structure under consideration, and {ix, iy, iz} are integers.
The complete summation, including the long-range contribution, yields the potential energy of displacing the ion at
the origin to a position R. The converged expression can then be expanded to quadratic order in R, for example, to
extract the diagonal force constant matrix.

C. Hexagonal systems (hcp, dhcp)

Hexagonal systems are treated in an analogous fashion to cubic systems, except now more care is needed since the
vectors to neighboring unit cells are not orthogonal. The origin-centric unit cells for the hcp and dhcp crystal lattices
are shown in Figs. S5a & S5b and the corresponding displacement vectors and potentials are presented in Table S2.
Hence for these systems, the (unnormalized) basis set, to go from one unit cell to another, may be denoted as

{a,b, c} =
a

2


 3

−
√

3
0

 ,

 3√
3

0

 ,

 0
0

4
√

6
3

 , (S1)

where a is the lattice constant in the xy-plane. In this case, the summation over n shells may be explicitly written as

EH =
∑
I

VH(RI −R) =
∑

(√
3

2 (ix+iy)
)2

+
(

iy−ix
2

)2
+i2z≤n2

VH

a
2

 3(ix + iy)√
3(iy − ix)

4
√

6
3 iz

−
XY
Z

− V
XY

Z

 ,
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FIG. S2. The trace of the diagonal matrix of force constants, ΦIiα,Iiβ , for all RI satisfying 0 < |RI | ≤
√

3 – excluding those
related by inversion symmetry RI ↔ −RI – against the number of shells in the summation, n, for the (a) cub, (b) bcc, (c)
fcc, (d) dia, (e) hcp, and (f) dhcp crystal structures. To explicitly show the convergence, we also present the diagonal matrix
elements (dashed lines): ΦIi0,Ii0 (triangles), ΦIi1,Ii1 (squares), and ΦIi2,Ii2 (crosses) for each RI and crystal structure.
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(a) (b) (c)

FIG. S3. Origin-centric unit cells for the (a) bcc, (b) fcc, and (c) dia, crystal structures. These structures have two, four, and
eight ions per unit cell, respectively. All lengths are given in units of the lattice constant, and the coloring distinguishes the
position along the z-axis. The displacement vectors for these plots are given in Table S1a.

(a) (b) (c) (d)

FIG. S4. Illustration of the points included in a one-shell summation of the (a) cub, (b) bcc, (c) fcc, and (d) dia, crystal
structures. All points from the nearest-neighbor unit cells are plotted. The centers of neighboring unit cells lie within a unit
sphere (light orange). All lengths are given in units of the lattice constant, and the coloring of points distinguishes their position
along the z-axis.

where H ∈ {hcp, dhcp} denotes the hexagonal crystal structure under consideration, and {ix, iy, iz} are integers.
Figures S5c & S5d show the sites included in these summations up to eight shells, which is typically the number at
which the desired precision converged. Note the approximate spherical symmetry of these systems.

SVI. DETAILS OF THE DENSITY TIGHT-BINDING MODEL

In this section, we outline the details of the density tight-binding configuration. As in Sec. SV, we use simplified
notation for clarity. In our model, we have a crystal of ions with tightly-bound electrons at each site. We consider
each atom to be composed of a pseudopotential, which takes into account the potential of the nucleus screened by
the inner electrons, and one outermost electron. As before, we employ the classical Ewald method to incorporate the
long-range contribution.
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(a) Displacement Vectors

Crystal Plane Displacement Vectors of Sites in the Unit Cell

bcc
z = a/2 rbcc1 = a

2
(1, 1, 1), rbcc2 = a

2
(−1, 1, 1), rbcc3 = a

2
(1,−1, 1), rbcc4 = a

2
(−1,−1, 1),

z = −a/2 rbcc5 = a
2
(1, 1,−1), rbcc6 = a

2
(1,−1,−1), rbcc7 = a

2
(−1, 1,−1), rbcc8 = a

2
(−1,−1,−1)

fcc
z = 0 rfcc1 = a

2
(1, 1, 0), rfcc2 = a

2
(−1, 1, 0), rfcc3 = a

2
(1,−1, 0), rfcc4 = a

2
(−1,−1, 0),

y = 0 rfcc5 = a
2
(1, 0, 1), rfcc6 = a

2
(−1, 0, 1), rfcc7 = a

2
(1, 0,−1), rfcc8 = a

2
(−1, 0,−1),

x = 0 rfcc9 = a
2
(0, 1, 1), rfcc10 = a

2
(0,−1, 1), rfcc11 = a

2
(0, 1,−1), rfcc12 = a

2
(0,−1,−1)

dia

z = 0 rdia1 = a
8
(4, 4, 0), rdia2 = a

8
(−4, 4, 0), rdia3 = a

8
(4,−4, 0), rdia4 = a

8
(−4,−4, 0),

y = 0 rdia5 = a
8
(4, 0, 4), rdia6 = a

8
(−4, 0, 4), rdia7 = a

8
(4, 0,−4), rdia8 = a

8
(−4, 0,−4),

x = 0 rdia9 = a
8
(0, 4, 4), rdia10 = a

8
(0,−4, 4), rdia11 = a

8
(0, 4,−4), rdia12 = a

8
(0,−4,−4),

z = a/4 rdia13 = a
8
(2, 2, 2), rdia14 = a

8
(−2,−2, 2),

y = a/4 rdia15 = a
8
(−2, 2,−2),

x = a/4 rdia16 = a
8
(2,−2,−2)

(b) Potentials

Crystal Atoms per Unit Cell Potential

bcc 2 Vbcc(R) = V (R) +
1

8

8∑
i=1

V (R + rbcci )

fcc 4 Vfcc(R) = V (R) +
1

4

12∑
i=1

V (R + rfcci )

dia 8 Vdia(R) = V (R) +
1

4

12∑
i=1

V (R + rdiai ) +

16∑
i=13

V (R + rdiai )

TABLE S1. (a) Displacement vectors for sites in a unit cell, and (b) corresponding unit cell potentials, for the bcc, fcc, and
dia crystal structures. For the displacement vectors, the site at the origin is omitted and all vectors are given in terms of the
lattice constant, a.

(a) (b) (c) (d)

FIG. S5. [(a), (b)] Origin-centric unit cells for the (a) hcp, and (b) dhcp, crystal structures. These structures have six and
twelve ions per unit cell, respectively. [(c), (d)] Illustrations of the (c) hcp, and (d) dhcp, crystal structures plotted up to eight
shells. All lengths are given in units of the lattice constant, and the coloring distinguishes the position along the z-axis. The
displacement vectors for these plots are given in Table S2.

A. Definitions

1. Wavefunction

We start by taking a simplified ansatz for the wavefunction of the valence electron orbital under the potential of
the ion:

Ψ(R; c, ae) = A

√√√√ 1

1 + exp
(

2(|R|−c)
ae

) ,
where A is a normalization constant, ae � RI is the width of the valence electron cloud, and 0 ≤ c < ae is the
width of the core electron cloud. We choose this ansatz so that the electron density is analytically well behaved in
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(a) Displacement Vectors

Crystal Plane Displacement Vectors of Sites in the Unit Cell

hcp
z = 0

rhcp1 = a(1, 0, 0), rhcp2 = a
2
(1,
√

3, 0), rhcp3 = a
2
(−1,

√
3, 0),

rhcp4 = a(−1, 0, 0), rhcp5 = a
2
(−1,−

√
3, 0), rhcp6 = a

2
(1,−

√
3, 0),

z = 2
√

6/3 rhcp7 = a
6
(3,
√

3, 2
√

6), rhcp8 = a
6
(−3,

√
3, 2
√

6), rhcp9 = a
3
(0,−

√
3,
√

6),

z = −2
√

6/3 rhcp10 = a
6
(3,
√

3,−2
√

6), rhcp11 = a
6
(−3,

√
3,−2

√
6), rhcp12 = a

3
(0,−

√
3,−
√

6)

dhcp

z = 0
rdhcp1 = a(1, 0, 0), rdhcp2 = a

2
(1,
√

3, 0), rdhcp3 = a
2
(−1,

√
3, 0),

rdhcp4 = a(−1, 0, 0), rdhcp5 = a
2
(−1,−

√
3, 0), rdhcp6 = a

2
(1,−

√
3, 0),

z =
√

6/6 rdhcp7 = a
6
(3,
√

3,
√

6), rdhcp8 = a
6
(−3,

√
3,
√

6), rdhcp9 = a
3
(0,−

√
3,

√
6
2

),

z = −
√

6/6 rdhcp10 = a
6
(3,
√

3,−
√

6), rdhcp11 = a
6
(−3,

√
3,−
√

6), rdhcp12 = a
3
(0,−

√
3,−

√
6

2
),

z =
√

6/3 rdhcp13 = a
6
(3,−

√
3, 2
√

6), rdhcp14 = a
6
(−3,−

√
3, 2
√

6), rdhcp15 = a
3
(0,
√

3,
√

6),

z = −
√

6/3 rdhcp16 = a
6
(3,−

√
3,−2

√
6), rdhcp17 = a

6
(−3,−

√
3,−2

√
6), rdhcp18 = a

3
(0,
√

3,−
√

6)

(b) Potentials

Crystal Atoms per Unit Cell Potential

hcp 6 Vhcp(R) = V (R) +
1

3

6∑
i=1

V (R + rhcpi ) +
1

2

12∑
i=7

V (R + rhcpi )

dhcp 12 Vdhcp(R) = V (R) +
1

3

6∑
i=1

V (R + rdhcpi ) +

12∑
i=7

V (R + rdhcpi ) +
1

2

18∑
i=13

V (R + rdhcpi )

TABLE S2. (a) Displacement vectors for sites in a unit cell, and (b) corresponding unit cell potentials, for the hcp and dhcp
crystal structures. For the displacement vectors, the site at the origin is omitted and all vectors are given in terms of the lattice
constant, a.

-4 -2 2 4
R

0.05

0.10

0.15

0.20

Ψ

c=0.1

c=0.5

c=0.7

c=0.9

c=1

(a)

-2 -1 1 2
R

10

20

30

40

50

60

Ψ

ae=0.1

ae=0.2

ae=0.3

ae=0.4

ae=0.5

(b)

FIG. S6. Plots of the normalized wavefunction of the valence electron under the pseudopotential of the ion, Ψ. The behavior
of the wavefunction is shown as we (a) vary c with ae = 1, and (b) vary ae with c = 0.1.

subsequent calculations, and that in the limit of vanishing radius and large distances we recover the wavefunction of
a particle in a Dirac delta potential well:

lim
c�ae�|R|

Ψ ∝ e−|R|/ae . (S2)

This is the limit around which we will expand in the following sections. Plots of this wavefunction are shown in
Fig. S6. Since it is not possible to analytically derive an expression for the normalized wavefunction, we expand the
probability density, |Ψ|2 up to first order in the small parameter (c/ae) and then solve the normalization condition∫∞
−∞ |Ψ|

2dR = a0/ae, where a0 is the Bohr radius. This yields a normalization constant

A(c, ae) =
2
√
a0

(
9aeζ(3)− cπ2

)
9a3

e

√
3πζ(3)

3/2
+O

[(
c

ae

)2
]
,

where ζ(3) is Apéry’s constant.
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θi ri

RI-R

(a)

θe re

RI-R

θi ri

RI-R--

(b)

θe re

RI-R

rθ

ϕe

ϕ

(c)

FIG. S7. Diagrams corresponding to the (a) ion-ion, (b) electron-ion, and (c) electron-electron contribution calculations. The
displacement vector between ions, R−RI , is oriented along the north pole, and the polar and azimuthal angles are defined in
the range 0 ≤ θ < π and 0 ≤ φ < 2π, respectively.

2. Electron cloud potential and density

The valence electron cloud (which we denote using a capital ‘E’) has a potential given by the Coulomb potential of
the single electron, Ve(R) = |R|−1, integrated over the density distribution of the electron cloud:

VE(R; c, ae) =

∫
Ve(R + re)ρE(re; c, ae) dre,

where we calculate the density of the electron cloud using the normalized wavefunction defined in Sec. SVI A 1:

ρE(re; c, ae) = |Ψ(re; c, ae)|2.

3. Ion potential and density

The ion potential is obtained by solving the time-independent Schrödinger equation and subtracting the energy
constant, such that

Vi(R; c, ae) = −a0

(
1

Ψ

∇2

2
Ψ− lim

|R|→∞

(
1

Ψ

∇2

2
Ψ

))
.

The ion density is then subsequently obtained from Poisson’s equation:

ρi(ri; c, ae) = −∇
2Vi(ri; c, ae)

4π
.

Note that due to the norm conserving property of our wavefunction ansatz, the ion density satisfies the normalization
condition

∫∞
0
ρi(ri, c, ae)4πr2

i dri = a0/ae up to first order in (c/ae).

B. Ion-ion contribution

First, we calculate the repulsive potential felt by an ion at position RI due to an ion being displaced from the
origin to a position R. An illustration of the set-up is shown in Fig. S7a. Note that we orient the displacement vector
between the two ions along the north pole to simplify the calculations. In order to calculate the ion-ion potential for
the whole system we then sum over all distinct atoms, such that

EBO
i-i (R; c, ae) =

∑
I

∫
Vi(RI −R + ri; c, ae)ρi(ri; c, ae) dri.
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Rewriting the ion potential in terms of the scalar variables defined in Fig. S7a, such that Vi(|RI −R|, {ri, θi}; c, ae),
we may Taylor expand the ion potential up to leading order in (ri/|RI −R|):

EBO
i-i (R; c, ae) =

∑
I

Vi(|RI −R|; c, ae)

∫
ρi(ri; c, ae) dri︸ ︷︷ ︸

a0/a

+ 2π
∑
I

∫ ∞
ri=0

∫ π

θi=0

(
∂2Vi

∂r2
i

)
r4
i ρi(ri; c, ae) sin(θi) dθidri +O

[(
ri

|RI −R|

)3
]
.

Note that the first-order term in the expansion vanishes by symmetry. Hence the final expression for the ion-ion
contribution is derived accurate to first order in (c/ae) and second order in (ri/|RI −R|). Taken together, this forms
the leading-order analytical expansion about the density tight-binding limit introduced in Sec. SVI A 1.

C. Electron-ion contribution

The next contribution is that due to the electron-ion interaction. There are attractive potentials felt by the electron
cloud due to the ions, as well as those felt by the ion due to the electron clouds. A sketch of this scenario is shown in
Fig. S7b, where the minus signs indicate that this is an attractive interaction. As in the previous section, we set up
the general form of the electron-ion contribution as

EBO
e-i (R; c, ae) = −

∑
I

∫
Vi(RI −R + re; c, ae)ρE(re; c, ae) dre −

∑
I

∫
VE(RI −R + ri; c, ae)ρi(ri; c, ae) dri.

It can be shown, either by symmetry or integration by parts, that this expression reduces to

EBO
e-i (R; c, ae) = −2

∑
I

∫
Vi(RI −R + re; c, ae)ρE(re; c, ae) dre.

Rewriting the ion potential in terms of scalar variables, as before, we may Taylor expand up to leading order in
(re/|RI −R|):

EBO
e-i (R; c, ae) =− 2

∑
I

Vi(|RI −R|; c, ae)

∫
ρE(re; c, ae) dre︸ ︷︷ ︸

a0/a

− 4π
∑
I

∫ ∞
re=0

∫ π

θe=0

(
∂2Vi

∂r2
e

)
r4
eρE(re; c, ae) sin(θe) dθedre +O

[(
re

|RI −R|

)3
]
.

Analogously to before, the electron-ion contribution is derived to first order in (c/ae) and second order in (re/|RI−R|),
which is the leading-order analytical expansion about the density tight-binding limit in this model.

D. Electron-electron contribution

Finally, we compute the repulsive electron-electron contribution to the potential. Again the displacement vector
between the ions is aligned along the north pole. The valence electrons are parameterized in spherical polar coordinates
around each atom, as depicted in Fig. S7c. The electron-electron contribution in this case may be written as

EBO
e-e (R; c, ae) =

∑
I

∫∫
Ve(RI −R + re − r)ρE(re; c, ae)ρE(r; c, ae) dredr.

Due to the spherical symmetry of each electron cloud, this contribution reduces exactly to Coulomb repulsion, such
that

EBO
e-e (R; ae) =

a2
0

a2
e

∑
I

1

|RI −R|
.

Note the total potential energy of the system at this stage, EBO
i-i + EBO

e-i + EBO
e-e , tends to zero as (c/ae) → 0 and

|R| � ae. In this limit, the electrons are effectively on top of the ions and the whole system is neutral due to Gauss’
theorem.
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E. Pauli repulsion

To complement our result for the energy, we estimate the Pauli repulsion felt by the overlapping electron clouds.
Since we only consider spherically symmetric (i.e. s-type) orbitals in the toy model, this reduces to a one-dimensional
problem. We consider a Dirac delta potential well, of depth g, inside an infinite square well, such that:

Vwell(x) =


−gδ(x), |x| = 0,

0, 0 < |x| < L,

∞, |x| ≥ L.

In this scenario, g determines how tightly bound the electrons are to their respective atoms, and L represents the
effective radius for the electron clouds. As L is reduced, the bound state energy is increased – this represents the
energy increase due to the Pauli repulsion of overlapping orbitals.

The wavefunction takes the form Ψ ∝ sinh(k(L − |x|)) inside the infinite well, where k is the wave number.
Considering the derivative continuity of the wavefunction at the origin, we derive the transcendental equation tanh y =
χy, where we have defined y ≡ kL and χ ≡ ~2/mgL. We can derive an analytical form for the solution, and hence
the scaling behavior of the energy with L, by finding the lowest root with a Newton-Raphson scheme. The iterative
equation for the root is then

yn+1 = yn −
tanh yn − ynχ
sech2yn − χ

,

where n ∈ Z+. Since we are interested in the regime where the wavefunction is significantly influenced by the boundary
wall, we take yn to be small. Additionally, we are interested in the limit when Pauli repulsion is dominant i.e. when
L is small. Taking these limits together, we find that y∞ =

√
3χ/2. Hence the energy of the bound state is

EBO
Pauli =

~2

2mL2
y2
∞ =

3~2

4m3/2
√

2EbL3
,

where we define the binding energy of an isolated Dirac delta potential well as Eb ≡ mg2/2~2. In the density tight-
binding approximation, the wavefunction takes the form Ψ ∝ exp(−m1/2

√
2EbL/~). Comparing this to the form of

the wavefunction in Eq. S2 allows us to make the identification Eb ∼ a−2
e up to physical constants. Hence, in atomic

units, the energy gain due to Pauli repulsion becomes

EBO
Pauli =

3ae

4L3
.

Note that due to the differences in unit cell geometry, the lattice constant cannot be directly compared between the
various crystal structures. For this, we may examine the optimal effective radius of each atom in a spherical packing,
defined as

reff =

(
3

4π

Vu

Nu

)1/3

,

where Vu is the optimal volume of the unit cell, and Nu is the number of atoms enclosed. In place of L, we
evaluate EBO

Pauli at the effective optimum radius. This rudimentary approximation for the Pauli repulsion allows
us to analytically capture the scaling behavior as the lattice constant is reduced.

F. Crystal relaxation

Let us define the BO energy of the system as

EBO(R; c, ae) = EBO
i-i (R; c, ae) + EBO

e-i (R; c, ae) + EBO
e-e (R; ae) + EBO

Pauli(a, ae).

Note that there is an implicit lattice constant dependence in the first three terms in the form of the potentials, as
well as in the lattice summations. Once we have calculated an analytical form for the BO energy of the system as
a function of the displacement of the central atom, R, and implicitly the lattice constant, a, we then compute the
optimal lattice constant such that:

amin = argmin
a∈(ae,∞)

(
EBO

)
.

We subsequently relax the system to this lattice constant, compute the nuclear kinetic energy, and evaluate the total
energy at a given R. This renders the total energy, E, as a function of c and ae only.
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Crystal ρoscE (r)/u

cub/bcc/fcc
1

Ñc.s.

Ñc.s.∑
i=1

cos(r · r̃c.s.i )

dia
1

8

[
8∑
i=1

cos(r · r̃diai ) +

8∑
i=1

cos
((

r− rdia13

)
· r̃diai

)]

hcp
Ahcp

6

[
6∑
i=1

cos(r · r̃hcpi ) cos

(
3π√
6a
z

)
+

6∑
i=1

cos
((

r− rhcp7

)
· r̃hcpi

)
cos

(
3π√
6a

(
z −
√

6a

3

))]

dhcp

1

6

[
1

3

6∑
i=1

cos(r · r̃dhcpi ) cos

(
3π√
6a
z

)
+

6∑
i=1

cos
((

r− rdhcp7

)
· r̃dhcpi

)
cos

(√
6π

a

(
z − a√

6

))

+
1

3

6∑
i=1

cos
((

r− rdhcp14

)
· r̃dhcpi

)
cos

(
3π√
6a

(
z −
√

6a

3

))]

TABLE S3. Oscillatory part of the electron cloud density in the density nearly-free electron model, ρoscE , in units of the
oscillation strength, u. Ñc.s. is the number of displacement vectors, and {r̃c.s.i } the set of displacements, in a unit cell of the
reciprocal lattice. The vectors rc.s.i are defined in Tables S1 and S2. The normalization constant, Ahcp = 2/3, is chosen such
that max(ρoscE ) = u for all crystal structures.

SVII. OSCILLATORY ELECTRON DENSITY IN THE DENSITY NEARLY-FREE ELECTRON MODEL

In order to approximate the oscillatory part of the electron cloud density in the density nearly-free electron model,
we consider Fourier transforms of the reciprocal lattices, as shown in Table S3. For crystals with a single-ion basis,
the resulting function has a simple form. However, for crystals with more than one ion in the basis, we consider a
superposition of multiple offset latticesS7; with modulation along the z-axis, where appropriate. The functions, ρosc

E ,
are scaled such that max(ρosc

E ) = u for all crystal structures. Over a unit cell, all of the functions integrate to zero.
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