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Chapter 1

Dielectric materials

A dielectric material is an electrical insulator that becomes polarised under an applied electric
field. Dielectric materials host many interesting physical properties and are key in understanding
phenomena in areas as diverse as electronics, optics, condensed matter physics, and cell biology.
They are also applied to a wide range of technologies, from robotics to digital memories. In this
Chapter, we introduce the basic properties of dielectric materials and investigate some of their
remarkable properties, including piezoelectricity and ferroelectricity.

1.1 Dielectric properties of materials

Atoms are made of positively charged nuclei and negatively charged electrons. As a result,
molecules and materials present a rich spectrum of responses to applied electric fields. In this
Section, we explore the basic interaction between electric fields and dielectric materials, a class
of materials in which microscopic charges are not allowed to travel freely through the material.

1.1.1 Electric polarisation

An electric dipole is defined as two opposite point charges, one of charge +q and the other of
charge −q, separated by a distance vector r. This system can be characterised by the electric
dipole moment µ defined as:

µ = qr. (1.1)

The electric dipole moment is a vector quantity of units [Cm]. Figure 1.1 provides a schematic
overview.

r

+q−q
μ = qr [C m]

Figure 1.1: Electric dipole moment.

We are often interested in a collection of N electric dipole moments µi, where i = 1, 2, . . . , N .
The total electric dipole moment µ is then given by the vector sum of the individual electric
dipole moments:

µ =

N∑
i=1

µi. (1.2)
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For example, if the individual electric dipole moments all point in random directions, then the
total electric dipole moment vanishes, µ ' 0. Instead, if the individual electric dipole moments
all point in the same direction, and their magnitude µi = |µi| is the same, then the total electric
dipole moment is µ = Nµi. Both examples are schematically shown in Fig. 1.2.

μ =
N

∑
i=1

μi ≃ 0

μ1 μ2

μi

μ =
N

∑
i=1

μi ≃ Nμi

μ1

μ2

μi

Figure 1.2: Total electric dipole moment for a collection of randomly oriented dipoles (left) and
of aligned dipoles (right).

In a material, we define the polarisation (also called polarisation density or electric polari-
sation) as the density of electric dipole moments. Mathematically, the polarisation P is given
by:

P = nµ, (1.3)

where n is the number of dipoles per unit volume (units [m−3]). The polarisation is a vector
quantity of units [Cm−2].

What is the origin of polarisation in materials? There are multiple microscopic mechanisms
that can be responsible for polarisation, for example:

• Electronic polarisation. Isolated atoms have a positively charged nucleus (which can be
treated as a point charge) and a negatively charged electron cloud around it. In the absence
of an electric field, the electron cloud is symmetrically distributed around the nucleus, and
there is no net dipole. When an external electric field E is applied, the electron cloud
distorts in the direction opposite to the field, creating an electric dipole moment. This
mechanism is depicted in Fig. 1.3. All atoms exhibit electronic polarisation, but electronic
polarisation is a small effect in most materials as other polarisation mechanisms dominate.
Electronic polarisation dominates in noble gases.

• Ionic polarisation. Ionic compounds are materials in which the constituent atoms appear
in the form of positive and negative ions. These materials are held together by electrostatic
forces between these charges, termed ionic bonding. An example is sodium chloride (NaCl)
comprised of sodium cations Na+ and chloride anions Cl−. If the ions are symmetrically
arranged, the net dipole moment vanishes. If there is a relative displacement of the ions
(e.g. driven by the application of an external electric field), an electric dipole moment can
develop. This mechanism is depicted in Fig. 1.4.

• Orientation polarisation. Molecules with asymmetric charge distributions carry mi-
croscopic electric dipole moments, and they are termed polar molecules. An example is
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Figure 1.3: Microscopic mechanism for electronic polarisation. There is no electronic dipole
moment for an isolated atom (left), but an electronic dipole moment µ develops in the presence
of an external electric field E (right).
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Figure 1.4: Microscopic mechanism for ionic polarisation. There is no electronic dipole moment
for symmetrically arranged ions (left), but an electric dipole moment µ develops if the ions
distort from their symmetrical positions (right).

water (H2O), in which electrons localise around the oxygen atom and away from the hydro-
gen atoms, resulting in the separation of negative and positive charges forming an electric
dipole moment (see Fig. 1.5). These microscopic dipoles may orient randomly (for example
due to thermal motion) resulting in zero net polarisation, or they may align (for example
by the application of an external electric field) resulting in an overall polarisation. This
orientational order mechanism is depicted in Fig. 1.2 with generic dipoles.

μ
H H

O
δ+ δ+

δ−

Figure 1.5: Water (H2O) as a dipolar molecule.

Electronic, ionic, and orientation polarisations are the main microscopic mechanisms responsible
for polarisation in materials. In most materials the overall polarisation is typically a combination
of these mechanisms.
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1.1.2 Dielectric materials

A dielectric material is an electrical insulator that can be polarised by an applied electric field
E. The induced polarisation P creates an internal electric field opposite to the externally
applied electric field, resulting in a reduced electric field inside the dielectric material. This
phenomenology can be characterised by the displacement field D, defined as:

D = ε0E + P, (1.4)

where ε0 = 8.85× 10−12 Fm−1 is the permittivity of free space. The displacement field has units
[Cm−2], the electric field has units [Vm−1], and the polarisation has units [Cm−2]. The farad F
is the unit of electrical capacitance and is equivalent to 1 coulomb per volt [C/V].

In a linear, homogeneous, and isotropic dielectric material with instantaneous response, the
displacement field D can be related to the applied electric field E by:

D = εE, (1.5)

where ε is the permittivity of the dielectric with units [Fm−1]. Qualitatively, the permittivity
of a dielectric material quantifies its electric polarisability: a dielectric with a large permittiv-
ity polarises more in response to an applied electric field compared to a material with a low
permittivity.

Equation (1.5) holds in a linear, homogeneous, and isotropic dielectric material with instan-
taneous response. A dielectric material is linear if the permittivity does not depend on the
magnitude of the electric field, so that ε is a constant independent of |E|. A dielectric material
is homogeneous if its dielectric response is the same at every position inside the material, other-
wise ε is a function of the position. A dielectric material is isotropic if its dielectric response is
the same in all directions, otherwise ε becomes a tensor. And in a material in which the internal
charges do not respond instantaneously to an applied field, then ε becomes frequency depen-
dent. Our focus is on linear, homogeneous, and isotropic dielectric materials with instantaneous
response.

There are multiple alternative but equivalent mathematical formulations of the relationship
between the displacement field D and the applied electric field E. A standard formulation uses
the permittivity of free space ε0 = 8.85× 10−12 Fm−1 to re-write Eq. (1.5) as:

D = εE = κε0E, (1.6)

where κ = ε
ε0

is the dielectric constant (also called the relative permittivity), a dimensionless
quantity.

Comparing Eq. (1.4) with Eq. (1.6), we can write the relationship:

P = ε0E(κ− 1). (1.7)

We define the electric susceptibility as χ = κ− 1, so that we also obtain:

P = ε0χE. (1.8)

Qualitatively, the electric susceptibility quantifies the polarisation of a dielectric material in
response to an external electric field: a dielectric with a large susceptibitily can be more readily
polarised by an external electric field compared to a material with a low susceptibility.

Overall, Eqs. (1.4)–(1.8) provide alternative but equivalent mathematical expressions to de-
scribe the response of a dielectric material to an externally applied electric field. Depending on
the information available, a given problem will often be more suitably tackled with a specific
formulation, so it is useful to become familiar with all.

Table 1.1 provides a few examples of dielectric materials and their dielectric constant. Entries
with a range of dielectric constants reflect different external conditions (e.g. temperature) or
different microstructure (e.g. defects).
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Table 1.1: Examples of dielectric materials and their dielectric constants.

Material Dielectric constant κ

Vaccum 1
Air 1.0006
Paper 1.4
Glass 3.7–10
Water 50–90
BaTiO3 1,200–10,000
CaCu3Ti4O12 10,000–300,000

1.1.3 An example: parallel plate capacitor

A capacitor is an electronic device that stores electrical energy. It is made of two conducting
plates separated by a dielectric material, and Fig. 1.6 shows a schematic example of a parallel
plate capacitor.

In a charged capacitor, charges of magnitude Q and opposite sign accumulate at each plate,
resulting in an electric field E and associated voltage difference V between the plates. A capacitor
is characterised by its capacitance C, defined as:

C =
Q

V
. (1.9)

The unit of capacitance is the farad [F], and is equivalent to [CV−1].

Figure 1.6: Schematic diagram of a parallel plate capacitor. Adapted from Wikipedia.

A parallel plate capacitor is made of two parallel metallic plates of area A and separated
by a distance L (Fig. 1.6). The charge Q on the plates can be characterised by the charge
density σ = Q

A . In this setup, the charge density on the plates is equal to the magnitude of the
displacement field of the dielectric material between the plates:

σ = |D|. (1.10)

The derivation of Eq. (1.10) is detailed in Appendix A. Using this result, we obtain:

C = ε
A

L
. (1.11)

The derivation of Eq. (1.11) is detailed in Problem 1.
Equation (1.11) implies that the capacitance of a parallel plate capacitor depends on two

quantities: (i) the geometry of the capacitor, and (ii) the dielectric material between the con-
ducting plates. The geometry of the capacitor is characterised by the area A of the plates and
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the distance L between the plates. The dielectric material between the conducting plates is
characterised by its permittivity ε. If the parallel plate capacitor is in vacuum or air, then
ε ' ε0. If a dielectric material is inserted between the parallel plates, then ε > ε0. As C ∝ ε, a
capacitor can store more electrical energy when its parallel plates are separated by a dielectric
material compared to air or vacuum.

1.2 Symmetry and polarisation

The macroscopic properties of materials depend on their microscopic structure. Indeed, un-
ravelling these structure-property relationships is a key endeavour in materials science, physics,
and chemistry. In this Section, we discuss how the precise arrangement of atoms in a material,
characterised by their symmetry, determines their dielectric response.

1.2.1 Inversion symmetry and polar materials

A polar material is a material with a net polarisation. Whether a material is polar or not is
closely linked to its structure, and in this section we explore the relationship between polar
materials and structural symmetry.

Consider a Cartesian coordinate system. An inversion about the origin of the coordinate
system corresponds to the transformation that reflects all points in space about the origin.
Mathematically, an inversion transforms a position vector r in the following manner:

r 7−→ −r. (1.12)

In terms of Cartesian coordinates, this becomes:

(x, y, z) 7−→ (−x,−y,−z). (1.13)

If an inversion operation about a point leaves a geometric structure invariant, then we call the
corresponding point an inversion centre and we say that the geometric structure has inversion
symmetry about that point. Figure 1.7 shows two examples of geometric structures that are
left invariant under an inversion operation, with the inversion centre located a the origin of
coordinates.

x

y

z

inversion centre

(x, y, z)

(−x, − y, − z) x

y

z

inversion centre

Figure 1.7: Schematic representation of two sets of points exhibiting inversion symmetry. The
left diagram shows a single point and its inversion partner and the right diagram shows four
points forming the vertices of a tetrahedron and its inversion partner.

If an inversion operation about a point leaves a material invariant, then that point is an
inversion centre for the material and we say that the material is centrosymmetric. Examples of
centrosymmetric materials include diamond and rock salt (NaCl). An electric dipole moment µ
reverses direction under inversion because it is a vector quantity (see example in Fig. 1.8). As a

9



result, any electric dipole moment in a centrosymmetric material will always have a partner in
the opposite direction, implying that centrosymmetric materials cannot be polar materials.

x

y

z

inversion centre

μ

μ

Figure 1.8: Schematic representation of an electric dipole moment µ associated with a tetrahe-
dral structure and its inversion partner with the electric dipole moment in the opposite direction.

A material without an inversion centre is called a non-centrosymmetric material. An example
of a non-centrosymmetric material is zinc sulfide (ZnS). It exists in two main crystalline forms
(called polymorphs) in the zincblende (Fig. 1.9) and wurtzite (Fig. 1.10) structures, and both
are non-centrosymmetric. The electronic configuration of sulfur S is [Ne]3s23p4 and that of zinc
Zn is [Ar]3d104s2, so that together they form an ionic compound with S2− and Zn2+ ions. Given
the ionic nature of the compound and the lack of an inversion centre, a natural question to ask
is whether these compounds are polar.

Zn2+

S2−

2.353 Å

2.353 Å 2.353 Å
2.353 Å

S2−
S2−

S2−

Figure 1.9: ZnS in the zincblende structure (left) and the corresponding perfect tetrahedral
building block (right).

Let us first consider ZnS in the zincblende structure as shown in Fig. 1.9. The zincblende
structure is a face centred cubic (fcc) structure with two atoms in the primitive cell. A convenient
way to analyse the structure is to consider the tetrahedron shown on the right hand side of Fig. 1.9
as its building block. In this tetrahedron, S atoms form the vertices and a Zn atom is at the
centre. In the zincblende structure, each S atom is shared between four equivalent tetrahedra,
and therefore each S atom only contributes 1/4 of its ionic charge to a given tetrahedron, and
as a result each tetrahedron is charge neutral. Additionally, the Zn atom sits at the centre of
the tetrahedron and all bond lengths are equal. This symmetric distribution of positive and
negative ions implies that there is no net dipole moment in the tetrahedron, and ZnS in the
zincblende structure is not a polar material.

Let us next consider ZnS in the wurtzite structure as shown in Fig. 1.10. The wurtzite
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μ Zn2+

S2−

2.346 Å
2.342 Å

S2−

S2−

S2−

2.342 Å
2.342 Å

Figure 1.10: ZnS in the wurtzite structure (left) and the corresponding distorted tetrahedral
building block (right).

structure is a hexagonal structure with four atoms in the primitive cell and whose building block
is the tetrahedron shown on the right hand side of Fig. 1.10. Differently from the zincblende
structure, in the wurtzite structure the central Zn atom is not located at the centre of the
tetrahedron, leading to the elongation of one bond length compared to the other three. This
leads to an asymmetric distribution of positive and negative ions such that an electric dipole
moment develops in the tetrahedron. Combining all tetrahedra, ZnS in the wurtzite structure
is a polar material.

Overall, a systematic study of the symmetries of crystal structures allows us to classify
materials according to their polarity. There are 32 crystal classes (also called point groups),
of which 11 are centrosymmetric and 21 are non-centrosymmetric. The 11 centrosymmetric
crystal classes lead to non-polar materials. Of the 21 non-centrosymmetric crystal classes, 11
are non-polar and 10 are polar.

In this section we have described the classification of crystal classes into centrosymmetric
and non-centrosymmetric, and the latter into polar and non-polar. This classification allows us
to characterise the polarity of crystalline materials at equilibrium. In the following sections, we
explore how we can modify the polarity of a material using external stimuli including stress,
temperature, and electric fields.

1.2.2 Piezoelectric materials

Piezoelectricity refers to the change in electric dipole moment driven by the application of
mechanical stress. Centrosymmetric materials are not piezoelectric as inversion symmetry coun-
teracts any local changes in dipoles driven by mechanical stress. Both polar and non-polar
non-centrosymmetric materials are piezoelectrics 1. In a polar non-centrosymmetric material,
piezoelectricity implies that the application of mechanical stress changes the magnitude or direc-
tion of the polarisation. In a non-polar non-centrosymmetric material, piezoelectricity implies
that the application of mechanical stress creates a polarisation in the material.

As an example, consider a piezoelectric material in the form of a rectangular prism. The
application of external forces as indicated in Fig. 1.11 leads to a mechanical stress T that drives
a piezoelectric response. We analyse this response in the direction parallel to the applied forces.
In this one-dimensional model, the piezoelectric effect is characterised through the displacement

1In fact there is an exception to this statement. Of the 21 non-centrosymmetric crystal classes, only 20 are
actually piezoelectric. One of the non-centrosymmetric cubic crystal classes, called gyroidal, is not piezoelectric.
In this crystal class, the existing symmetries are such that any local change in dipoles is counteracted, just like
in a centrosymmetric material, despite the lack of an inversion centre.
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Figure 1.11: Schematic diagram of stress applied to a rectangular prism.

field D by:
D = εE + dT, (1.14)

where, as usual, ε is the permittivity and E is the electric field, and d is called the piezoelectric
coefficient. Note that d has units [CN−1] and T has units [Nm−2]. The first term in Eq. (1.14) is
the usual relationship between the displacement field and the electric field, and the second term
characterises the further changes driven by the applied stress T , quantified by the piezoelectric
coefficient d. As there is no free charge in our setup, from Gauss’s law we conclude that D = 0.
From standard electrostatics, the relationship between electric field E and potential difference
∆V across the length L of the prism is given by E = −∆V

L . Combining these relationships with
Eq. (1.14), we obtain:

∆V =
dTL

ε
. (1.15)

This equation gives the change in voltage ∆V generated across the prism with the application
of a stress T . It is proportional to the piezoelectric coefficient d and to the length of the prism
L, and inversely proportional to the permittivity ε.

The piezoelectric effect as described so far, the change in polarity driven by an external me-
chanical stress, is the so-called “direct” or generator piezoelectric effect. Piezoelectric materials
also host the opposite effect, the mechanical deformation of the material under the application
of an electric field, called the “converse” or motor piezoelectric effect.

Piezoelectrics materials find multiple technological applications. The direct piezoelectric
effect is used in igniters, energy harvesting, flashlights on trainers, and many others. The
converse piezoelectric effect is used in watches, hexapods, and many others.

1.2.3 Pyroelectric materials

Pyroelectricity refers to the change in electric dipole moment driven by a temperature change.
Specifically, increasing temperature drives thermal expansion of materials, which in turn can
modify their electric dipole moments. Thermal expansion does not change the relative po-
sition of the positive and negative centres of charge in centrosymmetric and non-polar non-
centrosymmetric materials. Therefore, non-polar materials are not pyroelectric. Thermal ex-
pansion does change the relative position of the positive and negative centres of charge in
non-centrosymmetric polar materials. Therefore, polar materials are pyroelectric. Indeed, polar
materials and pyroelectric materials are often used as synonyms.

Pyroelectric materials find multiple technological applications, examples including infrared
detectors and thermal imaging cameras.
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1.2.4 Ferroelectric materials

Ferroelectric materials are polar materials whose polarisation direction can be changed by the
application of an external electric field. All ferroelectric materials are also polar (pyroelectric)
materials, but not all polar materials are ferroelectric.

Ferroelectric materials have historically played a key role in both fundamental science and
technological applications. For this reason, we explore their properties in detail in the next
section.

1.3 Ferroelectric materials

Ferroelectricity is a physical phenomenon that has played a prominent role in both the de-
velopment of fundamental science and in technological progress. In this Section, we discuss
some key ideas associated with ferroelectricity, ranging from fundamental science in the form of
second-order phase transitions, to applied science in the form of hysteresis loops.

1.3.1 Landau theory

Many materials undergo temperature-driven structural phase transitions. These structural tran-
sitions can drive the system from a centrosymmetric to a non-centrosymmetric structure, and
also between paraelectric and ferroelectric phases. Physicist Lev Landau introduced a general
phenomenological theory to describe phase transitions, and in this section we will illustrate the
basic principles of Landau theory with the discussion of a paraelectric-to-ferroelectric phase
transition.

From thermodynamics, the most stable structure at temperature T is the one that minimises
the Helmholtz free energy:

F = U − TS, (1.16)

where U is the internal energy and S is the entropy. In general, it is rather difficult to evaluate
the Helmholtz free energy for a given material. Instead, Landau theory uses basic principles
such as the symmetry of the material to build a phenomenological expression for the free energy.

+−

μ

+−
μ = 0

+ −

μ

A− B+

x
0

x
0

x
0

x = 0

x < 0

x > 0

Figure 1.12: Schematic diatomic one-dimensional chain made of two ions of opposite charge.
The top figure corresponds to a centrosymmetric non-polar phase, and the middle and bottom
figures correspond to polar phases with opposite polarisation.

To introduce Landau theory, we consider a simple model for a crystal, a diatomic one-
dimensional chain made of two ions A− and B+ of opposite charge, schematically depicted in

13



Fig. 1.12. We choose a coordinate system in which the origin (x = 0) is defined at the location
of a negative ion A− in the centrosymmetric phase (top diagram in Fig. 1.12). The top diagram
in Fig. 1.12 shows the centrosymmetric non-polar phase, in which the negative A− and positive
B+ ions are equally spaced, and the net dipole vanishes. The middle diagram in Fig. 1.12
shows a non-centrosymmetric polar phase, which can be characterised by the motion of the
negative ion A− in the negative x direction 2. An equivalent structure with a dipole pointing
in the opposite direction is obtained by the displacement of the negative ion A− in the positive
x direction (bottom diagram in Fig. 1.12). This means we could describe the Helmholtz free
energy as a function of x. However, the polarisation is proportional to the displacement, and
it is conventional to describe the Helmholtz free energy as a function of P instead 3. In this
context, P is called the order parameter characterising the phase transition.

Within Landau theory, we write the free energy as:

F(P, T ) = a(T − Tc)P
2 +

b

2
P 4. (1.17)

The scalars a and b are positive parameters whose values can be fitted to relevant data for the
material of interest. The critical temperature Tc marks the transition temperature between the
two phases. Equation (1.17) provides a general description of second order phase transitions.
Some paraelectric-to-ferroelectric phase transitions are second order, and we will investigate
their properties below. Other paraelectric-to-ferroelectric phase transitions are instead first-
order phase transition, which can also be described within Landau theory, but one must also
include an additional term proportional to P 6 in the free energy.

Problem 4 provides a detailed study of Landau theory for second order phase transitions,
and here we summarise the main results. The polarisation at temperature T is given by:{

P = 0 for T > Tc,

P = ±
√

a
b (Tc − T ) for T < Tc.

(1.18)

For T > Tc, the free energy F(P, T ) has a single minimum at P = 0, which corresponds to the
non-polar phase. For T < Tc, the free energy F(P, T ) has two minima at two non-zero values
P = ±

√
a
b (Tc − T ), corresponding to the two possible and opposite polarisation directions in

the polar phase. Equation (1.18) is depicted in Fig. 1.13, showing that the polarisation decreases
with increasing temperature until it vanishes at T = Tc. In a first order phase transition, the
polarisation also decreases with increasing temperature, but it does not continuously go to zero,
instead it discontinuously jumps from a finite value below Tc to zero above Tc.

Figure 1.13: Schematic of the polarisation as a function of temperature.

2Polarisation in periodic systems is in fact more subtle than the description here. A full characterisation
requires the introduction of Berry phases and related quantities in the so-called modern theory of polarisation.

3More generally, the polarisation P is a vector, but in our one-dimensional example we can treat it as a scalar.
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We can extend Landau theory to consider the effect of an external electric field E parallel to
the polarisation direction:

F(P, T ) = a(T − Tc)P
2 +

b

2
P 4 − EP. (1.19)

Problem 5 provides a detailed study of Eq. (1.19), and here we summarise the main results. The
electric susceptibility χ is given by:{

χ = 1
2aε0(T−Tc) for T > Tc,

χ = − 1
4aε0(T−Tc) for T < Tc.

(1.20)

Remember that the electric susceptibility quantifies the polarisation of a dielectric material in
response to an external electric field. We depict the temperature dependence of the susceptibility
in Fig. 1.14. We observe a divergence of the susceptibility at T = Tc, a hallmark of second order
phase transitions. This divergence indicates that near a phase transition the material can very
easily polarise even with a very small external field.

MY

t

I
T

Figure 1.14: Schematic of the electric susceptibility as a function of temperature.

Overall, Landau theory in Eq. (1.17) provides a simple framework based on a quartic ex-
pression for the free energy from which we can qualitatively describe most features observed
experimentally in second order phase transitions of many paraelectric-to-ferroelectric transi-
tions. Notably, these include the vanishing of the polarisation and the divergence of the electric
susceptibility at the transition temperature Tc. A simple extension of Eq. (1.17) to include a
sixth order term also provides a simple framework to describe first order phase transitions, such
as the paraelectric-to-ferroelectric phase transition in BaTiO3 discussed in the next Section.

1.3.2 The perovskite structure

The mineral calcium titanium oxide (CaTiO3) is called perovskite after mineralogist Lev Per-
ovski. Many other compounds with stoichiometry ABX3 adopt this same structure, which is
referred to as the perovskite structure. In the perovskite structure, atoms A and B are positive
ions (cations) while X is a negative ion (anion), typically oxygen. Many ferroelectrics adopt the
perovskite structure, with barium titanate (BaTiO3) being a prominent example.

The cubic perovskite structure of BaTiO3 is depicted in Fig. 1.15. The primitive cell is cubic,
with lattice parameters a = b = c and angles α = β = γ = 90◦, and a five atom basis with
one barium Ba atom, one titanium Ti atom, and three oxygen O atoms. In the primitive cell
depicted in Fig. 1.15, the Ba atoms sit at the corners of the cube and each is shared amongst
eight different cells, while the O atoms sit at the faces of the cube and each is shared amongst
two different cells. The central Ti is surrounded by six O atoms, which form the corners of a
regular octahedron. BaTiO3 is an ionic compound, with cations Ba2+ and Ti4+ and anions O2−,
but the cubic perovskite structure is centrosymmetric and therefore non-polar.
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Figure 1.15: The structure of cubic BaTiO3.

The perovskite structure often distorts from the ideal cubic form depicted in Fig. 1.15. These
distortions can be characterised by a simple indicator, called the Goldschmidt tolerance factor :

t =
rA + rX√
2(rB + rX)

, (1.21)

where rA, rB, and rX are the ionic radii of ions A, B, and X, respectively. The derivation of
Eq. (1.21) is detailed in Problem 3. Qualitatively, the Goldschmidt tolerance factor t quantifies
how well the ions can pack together in the perovskite structure, with t = 1 indicating that
the cubic structure is favoured, t > 1 indicating that the A cations are too large, and t < 1
indicating that the B cations are too large.

For BaTiO3, the ionic radii are rA = rBa2+ = 1.75 Å, rB = rTi4+ = 0.75 Å, and rX = rO2− =
1.21 Å. This gives a Goldschmidt tolerance factor of t ' 1.07, which indicates that the Ba2+

cations are too large for ideal packing. This implies that the BaTiO3 structure is larger than
ideal to accommodate the Ba2+ cations, leaving empty space around the comparatively smaller
Ti4+ cations. As a result, the Ti4+ cations are relatively free to move from their ideal position
at the centre of the octahedron, driving distortions from the ideal cubic phase in BaTiO3.

T [K]
0 183 278 393

cubictetragonalorthorhombicrhombohedral

α = β = γ = 90∘
a = b = c

α = β = γ = 90∘
a = b ≠ c

α = β = γ = 90∘
a ≠ b ≠ c

α = β = γ ≠ 90∘
a = b = c

 distortion⟨100⟩ distortion⟨110⟩ distortion⟨111⟩

T [∘C]
−273 −90 5 120

Figure 1.16: Structural phase diagram of BaTiO3 as a function of temperature.

As suggested by its Goldschmidt tolerance factor t > 1, BaTiO3 undergoes structural distor-
tions from the ideal cubic perovskite structure driven by the motion of the Ti4+ cations. BaTiO3
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exhibits a total of four distinct structural phases as a function of temperature, as schematically
depicted in Fig. 1.16. At high temperature T > 393 K, BaTiO3 adopts the ideal cubic per-
ovskite structure. For lower temperatures, the Ti4+ cations distort along the 〈100〉 direction
(there are 6 possible equivalent directions) with an associated elongation of the primitive cell,
resulting in a tetragonal structure. The tetragonal structure exists in the temperature range
278 K< T < 393 K. At even lower temperatures, the Ti4+ cations instead distort along the 〈110〉
direction (there are 12 possible equivalent directions) and the resulting structure is orthorhom-
bic, stable in the temperature range 183 K< T < 278 K. Finally, at temperatures T < 183 K,
the Ti4+ cations distort along the 〈111〉 direction (there are 8 equivalent directions) and the
resulting structure is rhombohedral.

+−
μ = 0

+

−
μ

+

−μ

Figure 1.17: The structure and centres of positive and negative charge of the cubic (left) and
tetragonal (centre and right) phases of BaTiO3.

The cubic BaTiO3 structure is centrosymmetric and non-polar. The centre of positive charge,
arising from the Ba2+ and Ti4+ cations, coincides with the centre of negative charge arising from
the O2− anions, and in the choice of primitive cell depicted in the left diagram of Fig. 1.17 it can
be assigned to the centre of the octahedron. The tetragonal, orthorhombic, and rhombohedral
BaTiO3 structures are non-centrosymmetric and polar. For example, in the tetragonal structure
the Ti4+ cation moves along the 〈100〉 direction (see examples in the central and right diagrams
of Fig. 1.17), displacing the centre of positive charge relative to the centre of negative charge. As
a result, an electric dipole moment appears in the tetragonal phase. As depicted in the central
and right diagrams of Fig. 1.17, the electric dipole moment can point in different directions
depending on the distortion direction of the Ti4+ cation. As there are 6 different but equivalent
〈100〉 directions, there are 6 different directions in which the electric dipole moment can point
in the tetragonal phase of BaTiO3.

BaTiO3 in the polar phases is a ferroelectric material. This means that the polarisation
direction can be changed by the application of an external electric field in the appropriate
direction. Furthermore, this means that the cubic-to-tetragonal structural phase transition is
also a paraelectric-to-ferroelectric phase transition. We investigate this phase transition in more
detail next.

1.3.3 Polarisation domains

In the previous sections we have discussed structural phase transitions that drive a material
from a non-polar to a polar phase. The discussion has focused on the unit cell, and the implicit
assumption is that all unit cells in the material behave in the same way due to translational
symmetry. However, in real polar materials the polarisation is not uniform across the material,
and in this section we discuss the concept of polarisation domains.

Consider two electric dipoles pointing in the same direction with interaction energy U↑↑,
and two electric dipoles pointing in opposite directions with interaction energy U↑↓. In polar
materials, U↑↑ < U↑↓ so that the system minimises its energy when dipoles point in the same
direction. This implies that in polar materials electric dipoles tend to align in the same direction,
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and we define a polarisation domain as a region in a material in which all dipoles point in the
same direction.

μ μ μμ

μ μ μμ

+

−

+ + +

− − −

E

stray field

uE = 1
2 ε |E |2

Figure 1.18: Schematic of stray field arising from monodomain material.

If the only relevant energy scale was that of dipole-dipole interactions, then all polar materials
would have a single domain as all dipoles would align across the entire material. However,
positive and negative charges would accumulate at opposite surfaces of such a monodomain
material, and these charges would generate an electric field outside the material whose field lines
would go from the positively charged surface to the negatively charged surface (see Fig. 1.18).
Such an electric field is called a stray field whose energy density is:

uE =
1

2
ε|E|2. (1.22)

This implies that there is an energy cost for a material to be in a monodomain configuration.
Overall, in polar materials there is a competition between the dipole-dipole interaction en-

ergy, which favours electric dipole alignment and large polarisation domains, against the stray
field energy, which favours smaller domains to minimise surface charges. In real polar ma-
terials, the balance between these two energies leads to the appearance of multiple domains,
separated by domain walls across which the polarisation changes direction. Figure 1.19 depicts
two common examples of domains and domain walls.

90  domain wall∘ 180  domain wall∘

Figure 1.19: Schematic of domains in real polar materials. The diagram on the left depicts
domains separated by 90◦ domain walls and the diagram on the right depicts domains separated
by 180◦ domain walls.

The formation of domains and domains walls is a complex phenomenon that goes beyond
the simple energy arguments discussed above. For example, their shape varies from material
to material depending on features such as the underlying crystal symmetry. One reason for
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this is the coupling of polarisation to strain (piezoelectricity) which forces the domains to be
compatible with the resulting strain fields in the material.

1.3.4 Hysteresis

If the polarisation direction in a polar material can be changed by the application of an external
electric field, then the material is ferroelectric. In this section, we discuss how this reversal of
polarisation occurs in real ferroelectric materials.

We can characterise the switch in polarisation direction in a ferroelectric by considering the
dependence of the polarisation P on the applied electric field E. The resulting curve is shown
schematically in Fig. 1.20, and we discuss it in some detail next.

We start with an unpolarised sample (P = 0) without an externally applied field (E = 0),
which is made of different domains pointing in different directions (Point 1 in Fig. 1.20). Upon
the application of a small electric field, the polarisation of the material increases linearly with
the applied field (standard dielectric response). This occurs through the growth of polarisation
domains aligned with the applied field at the expense of other domains, and is mediated by the
motion of domain walls. This process is fully reversible if the field is removed.

With increasing electric field strength, the aligned domains continue to grow at the expense
of other domains and the polarisation undergoes a rapid increase (Point 2 in Fig. 1.20). This
second regime is irreversible as the domain wall motion is pinned by defects in the material, a
process that cannot be undone by simply removing the applied field.

E[Vm−1]

P[C m−2]

1
2

3

1

E E

2 3

Figure 1.20: Hysteresis loop for the switching of a ferroelectric with the domain structure
highlighted at three points along the path.

Further increasing the electric field strength leads to a further increase in the polarisation,
driven by the sweeping of the aligned domains through the material. The polarisation increase
eventually saturates when the entire material is in a monodomain configuration (Point 3 in
Fig. 1.20), and the resulting polarisation is called the saturation polarisation Psaturation.

Once the system is fully polarised, the polarisation remains even with the removal of the
external electric field. However, at zero external field the polarisation decresases slightly from
the saturation value because when an electric field is present the system experiences a stronger
polarisation, for example due to a larger distortion of electron clouds. The resulting polarisation
at zero field is called the remanent polarisation Premanent.

At this point, it is possible to decrease and eventually reverse the polarisation direction by
applying a reverse external electric field in the opposite direction. Upon the application of such
a field, small domains along the applied field (and opposite to the polarisation of the sample)
start appearing. Increasing the reverse field eventually drives the sample into a depolarised
state, in which domains of both orientations coexist. The field required to depolarise an initially
polarised sample is called the coercive field Ecoercive.

Further increasing the reverse electric field drives the growth of domains aligned with it,
such that the systems eventually becomes fully polarised again, but in the opposite direction.
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A saturation polarisation of the same magnitude but opposite direction to the original one
is reached. At this point, the field can be again removed and reversed, and the system first
depolarises and then polarises again in the original direction.

Overall, the cycle described above leads to the characteristic E–P hysteresis loop for the
polarisation reversal of a ferroelectric material shown in Fig. 1.20. Microstructure engineering
provides some control over the shape of a hysteresis loop. For example, increasing grain boundary
concentration causes stronger domain wall pinning which leads to larger remanent polarisation
and coercive field values.

1.3.5 Applications of ferroelectric materials

Ferroelectric materials find multiple technological applications. Many of these applications are
based on the fact that ferroelectrics are dielectric materials with very high dielectric constants,
for example the dielectric constant of BaTiO3 is in the range κ ∼ 1,200–10,000. High dielectric
constants mean that ferroelectrics can, for example, be used to build capacitors that can store
a lot of energy, and these are used in devices such as camera flashes.

Another prominent application of ferroelectric materials is in memory devices, which make
direct use of their switchable polarisation. The basic principle is that opposite polarisation states
of a ferroelectric material can be used to encode the values “0” and “1”. In this context, writing
to memory requires the switching of polarisation by the application of an external electric field.
This process occurs through domain nucleation and growth and has a timescale of about 50 ns.
Reading from memory can be accomplished by applying a field along the 0 direction, and if
nothing happens then the reading is “0” while if a small current is detected (driven by the
switch in polarisation) then the reading is “1”. In the latter instance the polarisation needs to
be reversed back to 1 after reading. Different materials can be used for memory applications
of ferroelectrics, highlighting thin films of LiNbO3, PbTiO3, Pb(ZrxTi1−x)O3, and SrBi2Ta2O9.
Most modern memories are flash memories, which is an alternative technology that does not use
ferroelectrics. However, ferroelectric memories do find niche applications such as in satellites
due to their radiation resistance.
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Figure 1.21: Schematic phase diagram of Pb(ZrxTi1−x)O3.

The use of ferroelectric materials in technological devices often requires the optimisation
of their properties. For example, memory devices require ferroelectrics with high remanent
polarisation (so that it is easy to measure) and small coercive fields (to minimise energy required
for switching). In this context, a commonly used material in many applications of ferroelectrics
is Pb(ZrxTi1−x)O3, also known as PZT, whose schematic phase diagram is shown in Fig. 1.21.
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At a concentration of about x = 0.5, PZT exhibits a phase transition between rhombohedral and
tetragonal ferroelectric phases. The rhombohedral phase has 8 possible polarisation directions,
while the tetragonal phase has 6 possible polarisation directions. Combined, PZT near the phase
boundary is an extremely versatile material that can be polarised in many directions, making it
extremely useful in technological applications.
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Chapter 2

Magnetic materials

Maxwell’s theory of electromagnetism provides a unifying framework for the phenomena of
electricity and magnetism. In materials, it is often the case that one or the other dominates,
and we have discussed the important role of electric fields in dielectric materials in the previous
Chapter. In this Chapter, we focus on the interplay between magnetism and materials by
exploring the basic classes of magnetic materials and their properties.

2.1 Microscopic origin of magnetism

Humans have known about magnetism for thousands of years. It was initially discovered in
lodestones, naturally magnetised pieces of the mineral magnetite, and early applications included
the navigational compass. Despite this long history, a fundamental understanding of magnetic
materials only became possible over the past century with the parallel developments of Maxwell’s
theory of electromagnetism and quantum mechanics. In this Section, we introduce some key
aspects of the microscopic origin of magnetism.

2.1.1 Magnetic moment

From electromagnetism theory, the relationship between electric currents I and magnetic fields
H is described by Ampère’s law: ∮

P
H · dl = I. (2.1)

This equation states that the circulation of a magnetic field H around a closed path P (left hand
side) is equal to the total current I enclosed by the path (right hand side). The vector element
dl is parallel to the path at every point along P . Qualitatively, Ampère’s law states that electric
currents generate magnetic fields, and an example is illustrated in Fig. 2.1 for a straight line
current.

H

I

∮P
H ⋅ dl = I

Figure 2.1: Illustrations of Ampère’s law for a straight line current.
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The magnetic field generated by a current depends on the magnitude and shape of the
current. A straight line current generates a magnetic field consisting of concentric magnetic
field circles (Fig. 2.1). Instead, a loop current generates the magnetic field depicted in the left
diagram of Fig. 2.2.

I

N

S

H H

Figure 2.2: Magnetic field generated by a current loop (left) and by a bar magnet (right).

The magnetic field generated by a small current loop is identical to that generated by a
magnet, as depicted in Fig. 2.2. In this context, small means that the loop is small compared
to the distance at which the magnetic field is observed. Based on this observation, Ampère
hypothesised that magnetic effects in materials such as iron were due to “molecular currents”,
a remarkable statement given that it was made 100 years before the discovery of the electron.
Indeed, we now know that magnetic effects in materials are caused by the orbital and spin
angular momenta associated with electrons (see further details in Appendix B).

m

I
a m = Ia [A m2]

Figure 2.3: Magnetic moment characterising a current loop.

Irrespective of its microscopic origin, we define a magnetic moment m as a vector quantity
that characterises the strength and direction of something (e.g. a loop current or a bar magnet)
that generates a magnetic field. For example, for a current I around a loop enclosing a circular
area a, the magnetic moment has magnitude:

m = Ia, (2.2)

and direction as depicted in Fig. 2.3. The magnetic moment has units of [Am2]. Specifically,
the magnetic moment is defined in the limit of the loop of current becoming very small while
keeping m fixed, so that as a decreases I must increase. Analogously, the magnetic moment for
a bar magnet is defined in the limit of the magnet becoming very small.

2.1.2 Magnetisation and susceptibility

In a material, we define the magnetisation as the density of magnetic moments. Mathematically,
the magnetisation M is given by:

M = nm, (2.3)

where n is the number of magnetic moments per unit volume with units [m−3]. The magnetisa-
tion is a vector quantity of units [Am−1]. The magnetisation in magnetic materials is analogous
to the polarisation in dielectric materials.
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We characterise the magnetisation M induced by an external magnetic field H in a material
through the magnetic susceptibility χ, which is defined through the equation:

M = χH. (2.4)

Qualitatively, a material with a large susceptibitily can be more readily magnetised by an ex-
ternal magnetic field compared to a material with a low susceptibility. Additionally, a positive
susceptibility χ > 0 indicates that the magnetic moments in a material align with the applied
field and a negative susceptibility χ < 0 indicates that the magnetic moments in a material align
against the applied field.

2.2 Classification of magnetic materials

Magnetic materials can be classified into different classes depending on their magnetisation and
susceptibility, with a schematic summary of the classification shown in Fig. 2.4.

diamagnetic paramagnetic ferromagnetic antiferromagnetic ferrimagnetic

χ ∼ 10−5
H

M

χ ∼ − 10−5
H

M

χ ∼ 103
H

M

χ ∼ 10−5
H

M

M = 0

copper, water aluminium,  
magnesium

iron, cobalt,  
nickel

χ ∼ 103
H

M

FeMn, NiO Fe3O4, NiFe2O4,  
Y3Fe5O12

Figure 2.4: Classification of magnetic materials according to their magnetisation and suscepti-
bility.

2.2.1 Diamagnetic materials

From electromagnetism theory, the currents induced by a magnetic field can be characterised
with Lenz’s law:

E = −dΦB

dt
. (2.5)

Qualitatively, this equation states that an electromotive force E is generated in a loop of wire
by the rate of change of magnetic flux ΦB through that loop. Crucially, the negative sign means
that the currents induced by a magnetic field act to oppose the applied magnetic field.

In this context, diamagnetism refers to the change in orbital motion of electrons in opposition
to an applied magnetic field. All atoms are diamagnetic, but diamagnetism is a relatively weak
phenomenon so in most materials it is masked by other magnetic interactions which are stronger.
Diamagnetic materials are materials in which diamagnetism is the only magnetic phenomenon.

Diamagnetic materials are characterised by a vanishing magnetisation M = 0 and a small
negative susceptibility χ ∼ −10−5. The negative susceptibility is a reflection of Lenz’s law
whereby the orbital motion of electrons is such as to oppose the applied magnetic field. This
implies that diamagnetic materials are repulsed by magnetic fields, which leads to striking
phenomena such as magnetic levitation.

Examples of diamagnetic materials include copper and water.
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2.2.2 Paramagnetic materials

We can associate magnetic moments with atoms having partially filled atomic shells. When the
interactions between these magnetic moments are weak compared to other energy scales (e.g.
thermal energy), the magnetic moments orient in random directions and the overall magneti-
sation of the material vanishes, M = 0. Upon the application of an external magnetic field,
magnetic moments weakly align with it (see Fig. 2.5). This leads to a small magnetisation that
can be characterised by a small positive susceptibility χ ∼ 10−5. Materials that behave in
this manner are called paramagnetic materials. Examples of paramagnetic materials include
aluminium and magnesium.

M = 0

m1 m2

mi

M > 0

m1 m2

mi

H

Figure 2.5: Magnetic moments in a paramagnetic material without an external field (left) and
in the presence of an external field (right).

2.2.3 Ferromagnetic materials

A ferromagnetic material is a material in which the magnetic moments associated with atoms
interact strongly and this interaction favours aligned moments. This leads to a large and positive
magnetisation M > 0 and to a positive and large magnetic susceptibility χ ∼ 103. Examples of
ferromagnetic materials include iron, cobalt, and nickel.

We discuss ferromagnetic materials in detail in Sec. 2.3 below.

2.2.4 Antiferromagnetic materials

An antiferromagnetic material is a material in which the magnetic moments associated with
atoms interact strongly and this interaction favours antialigned moments. This leads to a van-
ishing magnetisation M = 0 and to a positive and small magnetic susceptibility χ ∼ 10−5.
Note that a key difference between paramagnetic and antiferromagnetic materials is that the
magnetic moments are randomly oriented in the former but ordered in an antialigned fashion in
the latter (see Fig. 2.4).

Figure 2.6: Examples of magnetic moment ordering in antiferromagnetic materials.

Antiferromagnetic materials can exhibit complex ordering of magnetic moments. In some
systems, the interaction between magnetic moments can favour alignment between some mo-
ments and antialignment between others, but as long as the net magnetisation vanishes, we still
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have an antiferromagnetic material. Two different examples of antiferromagnetic alignment are
shown in Fig. 2.6. In the left diagram, every single moment is antialigned with all its neighbours;
in the right diagram, magnetic moments are ferromagnetically aligned within horizontal planes,
but antiferromagnetically aligned between planes, leading to an overall zero magnetisation.

Examples of antiferromagnetic materials include ferro manganese (FeMn) and nickel oxide
(NiO).

2.2.5 Ferrimagnetic materials

A ferrimagnetic material is a material in which atoms with opposing magnetic moments exist,
as in antiferromagnetic materials, but the magnitudes of the moments are different resulting
in a non-vanishing magnetization M 6= 0. As a result of the non-zero magnetisation, even
in the absence of an applied field, their susceptibility behaves in a similar manner to that of
ferromagnetic materials. Examples of ferrimagnetic materials include magnetite (Fe3O4), nickel
ferrite (NiFe2O4), and yttrium iron garnet (Y3Fe5O12).
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Figure 2.7: Crystal structure of magnetite (left), highlighting the octahedral sites (centre) and
the tetrahedral sites (right).

To illustrate magnetic ordering in a ferrimagnetic material, we consider the structure of
magnetite, which adopts an inverse spinel structure as shown in Fig. 2.7. In this structure, the
oxygen atoms are arranged in a face-centred cubic (fcc) sublattice, and the primitive cell of
magnetite is composed of a supercell of size 2× 2× 2 of the conventional fcc cubic cell. We can
identify two types of interstices in a fcc lattice, octahedral interstices and tetrahedral interstices,
as depicted in Fig. 2.8 for a conventional fcc unit cell. In such a conventional fcc unit cell,
there are four octahedral sites and eight tetrahedral sites, which become 32 octahedral sites and
64 tetrahedral sites for the 2 × 2 × 2 oxygen sublattice supercell that makes up the magnetite
primitive cell.

The iron atoms in magnetite occupy both octahedral and tetrahedral sites: they occupy 16
of the 32 octahedral sites and 8 of the 64 tetrahedral sites. Additionally, iron atoms in magnetite
occur in two different oxidation states, Fe2+ and Fe3+. All Fe2+ ions occupy octahedral sites
(8 out of 16 occupied sites), while Fe3+ ions occupy the remaining 8 octahedral sites and all 8
tetrahedral sites. Overall, there are 8 Fe2+ ions and 16 Fe3+ ions in a primitive cell of magnetite.
The iron sites and oxidation states are schematically shown in Fig. 2.7.

In magnetite, the magnetic moments of Fe3+ ions in octahedral and tetrahedral sites point in
opposite directions, and their overall contribution to the magnetisation vanishes. The magnetic
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octahedral site tetrahedral site

Figure 2.8: Conventional fcc unit cell of red oxygen atoms with blue octahedral interstice sites
(left) and orange tetrahedral interstice sites (right).

moments associated with Fe2+ ions in the octahedral sites all align with each other, and have
no counter-balancing moments. As a result, magnetite has a non-zero magnetisation and is a
ferrimagnetic material.

2.3 Ferromagnetism

Like ferroelectrics, ferromagnets play a key role in both fundamental and applied science. In
this Section, we discuss some key ideas associated with ferromagnetism, drawing some parallels
with ferroelectricity while also highlighting key differences.

2.3.1 Exchange interaction

Ferromagnetic materials have atomic magnetic moments that interact strongly and this interac-
tion favours aligned moments. The microscopic origin of this interaction is quantum mechanical
in nature, and is a consequence of the exchange interaction between electrons.

The Pauli exclusion principle states that no two electrons can occupy the same quantum
state, and is a manifestation of a fundamental property of identical quantum particles that is
called the exchange interaction 1. Electron states in quantum mechanics are described by a
mathematical object called the wave function. This wave function has two parts: a spatial part
and a spin part. The spatial part is associated with the distribution of electrons in space and
the spin part is associated with the spin angular momentum of electrons and can take one of
two possible values. In this context, the Pauli exclusion principle implies that no two electrons
can simultaneously have the same spatial and spin parts of their wave functions.

If we consider two electrons, they can have the same spatial part of the wave function as
long as their spins are opposite. When two electrons have the same spatial part of the wave
function, they experience a strong Coulomb repulsion because they are negatively charged. By
contrast, if two electrons have the same spin, they must have different spatial wave functions to
obey the Pauli exclusion principle. In this case, their spatial overlap is small leading to a weak
Coulomb repulsion. The latter case leads to a lower energy configuration, which implies that
the exchange interaction favours parallel spins. It is this alignment of spins that manifests itself
as the alignment of magnetic moments in ferromagnetic materials.

In ferromagnetic materials there is a competition between the exchange interaction, which
favours magnetic moment alignment, and thermal energy, which randomises the order of mag-

1The Pauli exclusion principle has profound implications, including the shell structure of atoms and the stability
of white dwarf stars and neutron stars.
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Figure 2.9: Schematic phase diagram of the magnetisation as a function of temperature for a
ferromagnetic material.

netic moments. As a result of this competition, ferromagnetic materials exhibit a larger mag-
netisation at low temperatures, which decreases with increasing temperature. Beyond some crit-
ical temperature, called the Curie temperature Tc, magnetic moments become fully random, so
that the magnetisation disappears and the material undergoes a ferromagnetic-to-paramagnetic
phase transition. The magnetisation-temperature phase diagram of a ferromagnetic system is
schematically depicted in Fig. 2.9.

The ferromagnetic-paramagnetic phase transition is similar to the ferroelectric-paraelectric
phase transition discussed in Sec. 1.3. A key difference is that the ferroelectric-to-paraelectric
transition is driven by structural changes associated with inversion symmetry. In ferromagnets,
there is no need for a structural phase transitions as spins are mostly free to align in any direction
irrespective of the underlying crystal structure (although see discussion on magnetocrystalline
anisotropy in Sec. 2.3.2 below).

2.3.2 Anisotropy

Anisotropy refers to the dependence of the properties of a material on direction. Anisotropy
plays an important role in ferromagnetic materials, and in this section we describe some of its
manifestations.

Ferromagnetic materials exhibit magnetocrystalline anisotropy. This anisotropy is caused by
the interaction of magnetic moments with the underlying crystal lattice, and has its origins in a
quantum mechanical and relativistic phenomenon called the spin-orbit interaction. As a result
of magnetocrystalline anisotropy, ferromagnetic materials have an easy axis along which the
application of a magnetic field leads to a rapid increase of the magnetisation, which saturates
at relatively low fields. By contrast, applying the same magnetic field along a hard axis leads to
a more gradualy increase of the magnetisation, which only saturates at relatively higher fields.
The response of a ferromagnetic material along easy and hard axes is schematically shown in
Fig. 2.10.

Different materials have different easy axes. For example, α-iron, a ferromagnetic form of
iron (Tc = 771 ◦C) which adopts the body-centred cubic (bcc) structure, has easy axes along the
〈100〉 cubic side directions and hard axes along the 〈111〉 body diagonal directions. By contrast,
face-centred cubic (fcc) nickel has the easy axes along the 〈111〉 directions and the hard axes
along the 〈100〉 directions.

Ferromagnetic materials also exhibit shape anisotropy. Consider a ferromagnetic bar with
the traditionally called “north” and “south” poles. Field lines outside the bar magnet go from
north to south (orange field lines in Fig. 2.11). There is also a demagnetising field inside the
bar magnet that acts against the magnetisation that creates the north and south poles in the
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Figure 2.10: Schematic of the magnetisation as a function of applied magnetic field along the
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Figure 2.11: Generated field (orange) and demagnetising field (purple) for two bar magnets.

first place (purple field lines in Fig. 2.11). This demagnetising field depends on the shape of
the sample, but if we focus on elongated samples such as those depicted in Fig. 2.11, then the
demagnetising field is largest along the short axis and smallest along the long axis. This implies
that it is easier to build a bar magnet with the north and south poles at the thin ends of the
sample (right hand side of Fig. 2.11) compared to the thick ends (left hand side of Fig. 2.11).

Ferromagnetic materials also exhibit a related phenomenon, called magnetostriction, which is
a change in shape when the material is magnetised. The precise form that magnetostriction takes
is material dependent; for example, bcc iron elongates along the easy direction of magnetisation,
while fcc nickel contracts along its easy direction of magnetisation.

2.3.3 Domains and domain walls

Similar to ferroelectric materials, ferromagnetic materials are subject to an energy competition
between the magnetic moment interaction that favours alignment between moments and the
stray fields that favour small regions of aligned moments. As a result, ferromagnetic materials
form magnetisation domains separated by domain walls.

The size of domain walls in ferromagnetic materials depends on the relative energies aris-
ing from the exchange interaction and magnetocrystalline anisotropy. The exchange interaction
favours aligned magnetic moments (see Sec. 2.3.1), which leads to wide domain walls in which the
moments change direction gradually in such a way as to maintain high alignment with all neigh-
bours (see top diagram in Fig. 2.12). Magnetocrystalline anisotropy favours the alignment of
magnetic moments along specific crystallographic directions, which leads to narrow domain walls
in which moments change direction abruptly to maintain alignment along preferred crystallo-
graphic directions (see bottom diagram in Fig. 2.12). The overall nature of domain walls depends
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on the relative importance of the exchange interaction and magnetocrystalline anisotropy in any
given material.

Figure 2.12: Schematic diagrams depicting wide (top) and narrow (bottom) magnetic domain
walls.

Ferroelectric materials also host domains separated by domain walls (see Sec. 1.3.3). By
comparison, domain walls in ferroelectrics are significantly narrower compared to those of fer-
romagnets because polarisation is strongly constrained to point along the crystallographic polar
axes.

2.3.4 Hysteresis

In this section, we discuss how the reversal of magnetisation direction occurs in real ferromagnetic
materials. In analogy to the change in polarisation direction in ferroelectrics, a hysteresis loop
appears, whose broad features resemble those of ferroelectrics, but there are some differences.

We can characterise the switch in magnetisation direction in a ferromagnet by considering
the dependence of the magnetisation M on the applied magnetic field H. The resulting curve
is shown schematically in Fig. 2.13, and we discuss it in some detail next.

We start with an demagnetised sample (M = 0) without an externally applied field (H = 0),
which is made of different domains pointing in different directions (Point 1 in Fig. 2.13). The
magnetisation directions in the domains are initially aligned along easy axes of the material.

Upon the application of a small magnetic field, the magnetisation increases linearly with
the applied field. This occurs through the growth of magnetisation domains aligned with the
applied field at the expense of other domains, and is mediated by the motion of domain walls.
This process is fully reversible if the field is removed.

With increasing magnetic field strength, the aligned domains continue to grow at the expense
of other domains and the magnetisation undergoes a rapid increase (Point 2 in Fig. 2.13). This
second regime is irreversible as the domain wall motion is pinned by defects in the material, a
process that cannot be undone by simply removing the applied field. Note that the magnetisation
largely points along easy axes, even if the applied field is not exactly parallel to an easy axis.
The domains that grow are those that are most aligned (but perhaps not perfectly aligned) with
the applied field.

Further increasing the magnetic field strength leads to a further increase in the magneti-
sation, driven by the sweeping of the aligned domains through the material and resulting in a
monodomain. Note that at this stage the magnetisation still points along the easy axis that is
most aligned (but not necessarily perfectly aligned) with the applied field (Point 3 in Fig. 2.13).
Increasing the magnetic field strength further eventually leads to a rotation of the magnetisa-
tion direction away from an easy axis to point exactly parallel with the applied field (Point 4 in
Fig. 2.13). The resulting magnetisation is called the saturation magnetisation Msaturation. Note
that this last step in the magnetisation of a ferromagnet differs from the analogous process in
the polarisation of a ferroelectric, because in a ferroelectric the polarisation is constrained along
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Figure 2.13: Generated field (orange) and demagnetising field (purple) for two bar magnets.

polar crystallographic directions and if these do not perfectly align with the applied electric field,
then the polarisation in the fully polarised material never fully aligns with the applied field.

Once the system is fully magnetised, the magnetisation remains even with the removal of
the external magnetic field. However, at zero external field the magnetisation decresases slightly
from the saturation value because some small domains in the opposite direction start nucleating
due to the demagnetisation field in the sample. Additionally, the magnetisation direction rotates
back to point along an easy axis when the external field is removed.

At this point, it is possible to decrease and eventually reverse the magnetisation direction by
applying a reverse external magnetic field in the opposite direction. Upon the application of such
a field, small domains along the applied field (and opposite to the magnetisation of the sample)
start growing. Increasing the reverse field eventually drives the sample into a demagnetised
state, in which domains of both orientations coexist. The field required to demagnetise an
initially magnetised sample is called the coercive field Hcoercive.

Further increasing the reverse magnetic field drives the growth of domains aligned with it,
such that the systems eventually becomes fully magnetised again, but in the opposite direction.
A saturation magnetisation of the same magnitude but opposite direction to the original one
is reached. At this point, the field can be again removed and reversed, and the system first
demagnetises and then magnetises again in the original direction.

Overall, the cycle described above leads to the characteristic M–H hysteresis loop for the
magnetisation reversal of a ferromagnetic material shown in Fig. 2.13.

2.3.5 Applications of ferromagnetic materials

Ferromagnetic materials find multiple technological applications. One prominent example is
the use of soft ferromagnets in transformers. A transformer is a device that transfers energy
between electrical circuits by exploiting a varying current in one circuit that produces a varying
magnetic flux that in turn drives a varying electromotive force that can drive a current in a
separate circuit. For transformer applications we need magnets whose magnetisation direction
can be easily switched, and this requires high purity samples in which domain walls can easily
travel through the sample to drive magnetisation and demagnetisation.

Another application is that of permanent magnets, which use hard ferromagnetic materials.
In these, the requirements are large coercive fields and high zero-field magnetisation, which
require microstructure with defects that can pin the motion of domain walls.
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Chapter 3

Ionic conductors

The ability of a material to conduct electricity is characterised by its conductivity σ, with units
of siemens per metre [Sm−1]. Alternatively, one can use the reciprocal quantity, called the
resistivity ρ, with units of ohm-metre [Ωm].

Metals are materials with high conductivities mediated by the motion of negatively charged
electrons. For example, the conductivity of gold is 4.1× 107 Sm−1, the conductivity of silver is
6.3× 107 Sm−1, and the conductivity of copper is 6.0× 107 Sm−1. By contrast, electronic insu-
lators are materials in which electrons are not free to move, and they have conductivities orders
of magnitude smaller. For example, the conductivity of air is 5× 10−15 Sm−1, the conductivity
of glass is 10−13 Sm−1, and the conductivity of aluminium oxide is 10−10 Sm−1.

In this Chapter we study materials whose conductivities are intermediate to those of metals
and insulators. In these materials, electrons are not free to move so cannot contribute to the
conductivity, but ions can move and are the main contributors to the conductivity. For this
reason, these materials are called ionic conductors. An example of an ionic conductor is yttria-
stabilised zirconia, whose conductivity is about 0.1 Sm−1.

3.1 Ionic conductivity

The motion of microscopic charges plays a key role in many areas of science and technology. In
this Section, we first describe the general phenomenology of charge transport, and then focus
on its illustration in the case of ionic conduction.

3.1.1 Diffusion

From the theory of statistical mechanics, concentration gradients in microscopic particles lead to
diffusion of particles to homogenise the concentration. The resulting diffusion flux J is defined
as the number of particles crossing unit area in unit time:

J =
I

A
, (3.1)

where I is the current of particles and A the area they cross. The units of diffusion flux J
are [m−2s−1], the units of current I are [s−1], and the units of area are [m2]. In the most
general situation, the diffusion flux is a vector quantity, but the key ideas we will discuss can be
illustrated by only considering the scalar definition in Eq. (3.1), which implicity assumes that
the current of particles is perpendicular to the area.

Mathematically, we quantify the relationship between concentration n and diffusion flux J
through Fick’s first law of diffusion, which in one dimension reads:

Jx = −D∂n
∂x
. (3.2)
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In this equation, D is the diffusion coefficient (also called diffusivity) and has units of [m2s−1].
Note that we have a partial derivative with respect to position x because the concentration is
in general a function of both space and time, n(x, t). Qualitatively, Eq. (3.2) states that the
diffusion flux is proportional to the concentration gradient, and the proportionality constant is
the diffusivity. The minus sign in Eq. (3.2) indicates that the flux flows from higher to lower
concentration regions.

Fick’s first law involves the diffusion flux J for arbitrary particles. For charged particles, we
can define the analogous current density j, which obeys the related equation:

jx = −qD∂n
∂x
, (3.3)

where q is the charge of the particle. The units of j are [Am−2].
For completeness, Fick’s second law of diffusion relates the temporal and spatial variations

in the concentration through:
∂n

∂t
= D

∂2n

∂x2
. (3.4)

This equation is discussed in detail in Course D.

3.1.2 Drift

From electromagnetism theory, remember Ohm’s law I = V
R , which relates the current I through

a circuit element to the voltage drop V across that element, quantified by the resistance R. The
microscopic version of Ohm’s law reads:

j = σE, (3.5)

where j is the current density, σ is the conductivity, and E is the applied electric field. Further
relating the electric field with the potential, E = −∇V , we can re-write the microscopic version
of Ohm’s law as:

jx = σEx = −σ∂V
∂x

, (3.6)

where we again limit our discussion to one dimension. Qualitatively, Eq. (3.6) describes the drift
current that is driven by a potential difference (or equivalently by an applied electric field). An
important subtlety is that the current density is defined as the motion of positive charges. If
the moving particles are positively charged, then they flow from areas of high voltage to areas
of low voltage and the current density points in the same direction. If the moving particles are
negatively charged, then they flow from areas of low voltage to areas of high voltage, but the
current density is still in the same direction as above as the motion of negative charges in one
direction is equivalent to the motion of positive charges in the opposite direction.

3.1.3 Nernst-Einstein equation

In the presence of an applied electric field, we can generalise Eq. (3.3) to:

jx = −qD∂n
∂x
− σ∂V

∂x
. (3.7)

This equation states that the net current density is the combination of the diffusion current
arising from concentration gradients and the drift current arising from an applied electric field.

A system with an initially arbitrary concentration profile and an applied field will experience
a combination of diffusion and drift currents driving it towards a steady state in which the
concentration profile does not change ∂n

∂x = 0. In this steady state, there is no net current
density jx = 0, and Eq. (3.7) becomes:

− qD∂n
∂x
− σ∂V

∂x
= 0. (3.8)
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Assuming a Boltzmann distribution for the concentration of diffusing particles n in the presence
of a potential V , namely n = n0e

−qV/kBT , we arrive at the Nernst-Einstein equation:

σ

D
=

nq2

kBT
, (3.9)

where kB = 1.380649×10−23 JK−1 is Boltzmann’s constant and T is temperature. The derivation
of Eq. (3.9) is detailed in Problem 9. Qualitatively, Eq. (3.9) relates the diffusion coefficient D
and the conductivity σ of charged particles at the steady state to the concentration n, the charge
q, and the temperature T .

3.1.4 Defects in materials

The discussion in the preceding sections concerns the general properties of the diffusion and
drift of arbitrary charged particles subject to concentration gradients and applied electric fields.
In this section, we make this discussion concrete by considering the example of ionic conductors,
in which the microcopic particles are the ions in a material. Ionic conduction in materials is
mediated by defects, so we next turn our attention to defects in materials.

All materials have defects, which can be zero-dimensional (point defects), one-dimensional
(line defects), or two-dimensional (plane defects). Our focus is on point defects, which in turn
come in many forms, for example:

• Vacancy defects: missing atoms.

• Interstitial defects: extra atoms in the crystal.

• Substitutional defect: replacing one atom by another atom.

• Antisite defect: exchanging the positions of two atoms.

• Topological defects: local changes in bonding.

+

−

A−

B+

−

A−

B+

Schottky defect Frenkel defect

Figure 3.1: Schematic diagrams of stoichiometric Schottky (left) and Frenkel (right) defects in
a simple A−B+ ionic compound.

Of particular interest to ionic diffusion are so-called stoichiometric defects that do not change
the stoichiometry of the material. Of these, we have Schottky defects, in which two ions of
opposite charge are missing simultaneously (left diagram in Fig. 3.1); and Frenkel defects, in
which one vacancy forms at a lattice site with an interstitial of the same atom forming elsewhere
(right diagram in Fig. 3.1). Note that we can assign a charge with a vacancy, which is the
opposite to the charge of the ion that was occupying that site, and is represented by an open
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circle in Fig. 3.1. Schottky defects occur in many ionic compounds, such as sodium chloride
(NaCl) or cubic zirconia (ZrO2). Frenkel defects also occur in many ionic compounds, such as
zinc sulfide (ZnS) and silver chloride (AgCl), and these usually happen in compounds with small
ions that can fit in interstitial sites.

3.1.5 Ionic motion in materials

Ionic motion in materials is mediated by defects such as Schottky defects. The key step is the
motion of an ion from its original crystallographic site into a nearby vacant site, as schematically
illustrated in Fig. 3.2. The original and final ionic positions correspond to low energy configura-
tions, and they are separated by an energy barrier EB. The magnitude of the energy barrier is
material specific, and even within a single material also depends on the precise initial and final
configurations.

E

Q

EB

Figure 3.2: Schematic diagrams of an ionic jump from an initial site (left) through a saddle
point (middle) into a vacant site (right). The energy profile of such a process is depicted in the
bottom diagram, where Q refers to a generalised coordinate describing the atomic configurations
along the transition.

How does an ion move from one site to another through the energy barrier EB? This is an
example of a thermally activated process, in which thermal energy drives the transition through
the energy barrier. Similar physics occurs in a wide variety of contexts, for example in chemical
reactions. Mathematically, this process is described by the Arrhenius equation, which gives the
diffusivity D as a function of the energy barrier and temperature according to:

D = D0e
− EB

kBT . (3.10)

The pre-exponential factor D0, which has units of diffusivity [m2s−1], depends on the jump
distance (e.g. the lattice constant in a simple cubic structure) and the jump attempt rate,
which is related to the oscillation frequency of the atoms.

In the limit of a small applied electric field, such that qV � kBT , the following Arrhenius
relation holds:

lnσ = ln
(σ0

T

)
−
(
EB

kB

)
1

T
, (3.11)

where σ0 = D0n0q2

kB
, and n0 is the zero-temperature concentration of ions. The derivation of

Eq. (3.11) is detailed in Problem 12.

As shown in Problem 12, ln
(
σ0
T

)
varies much more slowly than

(
EB
kB

)
1
T for temperatures

characteristic of ionic conductors. Therefore, we can take ln
(
σ0
T

)
to be approximately constant.
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In this approximation, the Arrhenius relation in Eq. (3.11) implies that a plot of the logarithm
of the conductivity lnσ against 1

T will be an approximate straight line with slope −EB
kB

and

intercept ln
(
σ0
T

)
. In practice, such Arrhenius plots are used to characterise the microscopic

properties of different ionic conductors, as exemplified in Fig. 3.3.
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Figure 3.3: Arrhenius plot for representative ionic conductors.

Another important consequence of Eq. (3.11) is that conductivity σ increases with increasing
temperature. This is a hallmark of ionic conductors, and its origin is the thermally-activated
diffusivity that arises from the energy profile of the transition of ions between sites depicted
in Fig.3.2. As a result, ionic conductors are typically used at relatively high temperatures to
promote conductivity.

3.2 Ionic conducting materials

In this Section, we describe the structure of two ionic conductors: yttria-stabilised zirconia and
bismuth oxide.

3.2.1 Yttria-stabilised zirconia

A prominent ionic conducting material is yttria-stabilised zirconia, in which the ionic conduction
is mediated by O2− ions. In this section, we introduce the structure of yttria-stabilised zirconia.

The starting point is zirconium dioxide (ZrO2), also called zirconia. Zirconia exhibits three
distinct structural phases as a function of temperature, as illustrated in Fig. 3.4. There is
a monoclinic phase in the temperature range 0 K< T < 1,443 K, a tetragonal phase in the
temperature range 1,443 K< T < 2,633 K, and a cubic phase at temperatures T > 2,633 K.
We focus on the high temperature cubic phase, which has the fluorite structure in which the
zirconium atoms form a face-centred cubic (fcc) sublattice and the oxygen atoms occupy all
eight tetrahedral interstices in the fcc lattice. As such, the conventional cubic unit cell shown
in Fig. 3.4 has eight O2− ions and four Zr4+ ions, resulting in a charged balanced configuration.

Doping zirconia with yttrium atoms leads to the stabilisation of the cubic phase of zirconia
at much lower temperatures compared to pure zirconia, and in particular the cubic phase can be
stabilised at room temperature. The substitution of Zr4+ ions with Y3+ ions would break charge
balance, which is compensated by the creation of O2− vacancies. Overall, for every two Zr4+
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Figure 3.4: Structural phase diagram of zirconia as a function of temperature.
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Figure 3.5: Structure of yttria-stabilised zirconia.

ions replaced by two Y3+ ions, and oxygen O2− vacancy is created. The resulting structure is
depicted in Fig. 3.5, in which the partially green-grey balls represent the zirconium (green) and
yttrium (grey) sites and the partially red-white balls represent the oxygen (red) and vacancy
(white) sites. The volume of a ball occupied by a given colour represents the relative abundance
of the corresponding species on that site.

The presence of oxygen vacancies in yttria-stabilised zirconia is key to the ionic conduction
present in this compound. The O2− ions move around the structure through the vacancy sites,
and as a result yttria-stabilised zirconia is a prominent example of an ionic conductor.

3.2.2 Bismuth oxide

Another example of an ionic conducting material is bismuth oxide in its cubic δ-Bi2O3 phase.
In this section, we introduce the structure of δ-Bi2O3.

Bismuth oxide exhibits a complex phase diagram as a function of temperature. The cubic
δ-Bi2O3 phase occurs at temperatures above 1,002 K upon heating, but then survives to temper-
atures of 923 K or 912 K upon cooling, with the precise temperature depending on the cooling
rate. In cubic δ-Bi2O3, the bismuth atoms form a fcc sublattice. Of the eight tetrahedral inter-
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Figure 3.6: Structure of δ-Bi2O3.

stices in the conventional fcc unit cell, only six are occupied by oxygen, as required by charge
balance between the Bi3+ and O2− ions. As a result, δ-Bi2O3 natively has two oxygen vacancy
sites in every conventional fcc unit cell. There is some dispute in the scientific literature about
the precise structure of δ-Bi2O3, with one model suggesting that oxygens occupy ideal tetra-
hedral interstice sites of the fcc structure, while a competing model suggests that the oxygen
sites are displaced from the ideal tetrahedral interstice sites of the fcc structure. Either way,
the charge balance is the same and there are an average of six oxygens and two vacancies per
conventional unit cell.

As in the case of yttria-stabilised zirconia, the presence of oxygen vacancies in δ-Bi2O3 is
key to the ionic conduction present in this compound. Again, the O2− ions move around the
structure through the vacancy sites, and δ-Bi2O3 is another prominent example of an ionic
conductor.

3.3 Applications of ionic conductors

Ionic conductors find applications in many different technologies. In this section, we will discuss
two such applications: oxygen concentration cells and fuel cells.

3.3.1 Oxygen concentration cells

An oxygen concentration cell is a device used to measure the concentration of oxygen on an
unknown sample. Its basic architecture is presented in Fig. 3.7, and we discuss it in some detail
next.

anode cathodesolid electrolyte reference test

O (g) (I)2 O (g) (II)22O2−

− 4e−

Figure 3.7: Schematic diagram of an oxygen concentration cell.

38



The core of an oxygen concentration cell is made of a solid electrolyte sandwiched between an
anode and a cathode. The solid electrolyte is an ionic conductor such as yttria-stabilised zirconia
(YSZ), that allows the motion of ions but not the motion of electrons. The anode and cathode
are metals that conduct electricity through the motion of electrons, with current entering the
device through the anode and exiting through the cathode. A typically used metal is platinum
Pt. The anode and cathode are connected to an external circuit through which electrons can
flow (remember that electrons are negatively charged and flow in the opposite direction to the
current).

The oxygen cell operates by interacting with a reference sample in contact with the anode and
a test sample in contact with the cathode. The reference sample is a sample with a known oxygen
partial pressure O2(g)(I), whereas the test sample has an unknown oxygen partial pressure
O2(g)(II). The anode and cathode need to be porous to allow oxygen gas to flow through them
and reach the solid electrolyte, which then leads to the schematic representation of an oxygen
concentration cell as:

Pt(s)|O2(g)(I)|YSZ|O2(g)(II)|Pt(s).

Consider a case in which the oxygen partial pressure of the reference sample is smaller than
the oxygen partial pressure of the test sample, pO2(g)(I)<pO2(g)(II). In this case, O2− ions flow
from the cathode to the anode through the electrolyte, with the following half-cell reactions:

cathode (reduction): O2(g)(II) + 4 e− −−→ 2 O2− (3.12)

anode (oxidation): 2 O2− −−→ O2(g)(I) + 4 e− (3.13)

Under these conditions, a potential difference develops across the cell, and measuring it pro-
vides a quantification of the relative oxygen partial pressures of the reference and test samples.
Specifically, from electrochemistry we have that the electrochemical cell potential E is given by:

E = −RT
4F

ln

(
pO2(I)

pO2(II)

)
, (3.14)

where R = 8.314 JK−1mol−1 is the gas constant, T is temperature, and F = 9.649×104 C mol−1

is the Faraday constant.
If the opposite case in which the oxygen partial pressures are pO2(g)(I)>pO2(g)(II), then

charge flows in the opposite direction and the anode and cathode labels switch.
Oxygen concentration cells are used as sensors in a variety of applications. An every-day

example is in lambda sensors used in vehicle exhaust systems. Lambda sensors measure the
difference between the exhaust and atmosphere oxygen partial pressures with the aim of ensuring
complete stoichiometric conversion of fuel to minimise emissions. The relevant chemical reaction
is:

C8H18 +
25

2
O2 −−→ 8 CO2 + 9 H2O,

and non-stoichiometric conversion (e.g. low oxygen concentration) leads to more severe emissions
in the form of compounds like CO and NOx. Using the stoichiometric reaction and using
the relative molecular masses (remember air is about 4N2 : O2), stoichiometric combustion is
obtained when the air-to-fuel ration is 14.6. In this context, we define the lambda ratio as:

λ =
measured ratio

14.6
, (3.15)

and the aim is to have λ = 1. The measured λ is then used to decide whether the reaction
is stoichiometric, and if not, then the fuel flow is adjusted accordingly to either add oxygen
when fuel-rich or add fuel-burn. A schematic diagram relating the cell potential and the oxygen
partial pressure is shown in Fig. 3.8.

In an oxygen concentration cell, partial pressure differences drive a potential difference which
in turn drives ionic motion. The basic principle is the equilibration of oxygen concentration. It
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Figure 3.8: Schematic diagram of the cell potential and oxygen partial pressure and their relation
to the λ parameter.

is also possible to apply an external potential to directly drive ionic motion, which enables ions
to move from regions of low concentration to regions of high concentration. This can be used,
for example, to purify molten metals by removing oxygen impurities from them.

3.3.2 Fuel cells

In a typical gas-fired power station, the chemical energy of the fuel (typically CH4) is converted
into useful electrical energy through a series of steps that involve burning the fuel (chemical to
thermal energy) whose steam then spins a turbine (thermal to mechanical energy) which then
drives an electrical generator (mechanical to electrical energy). Energy is dissipated at every step
of the process, making the overall operation of a gas-fired power station energy inefficient. A fuel
cell, whose operation is based on the properties of ionic conductors, directly converts chemical
energy into electrical energy, providing significant energy efficiency gains. Additionally, the use
of hydrogen fuel eliminates nocive emissions. Put together, fuel cells are a promising technology
for sustainable energy generation.

anode cathodesolid electrolyte fuel air

O22O2−

− 4e−

H2

Figure 3.9: Schematic diagram of a hydrogen fuel cell.

The basic architecture of a fuel cell is depicted in Fig. 3.9. It is made of a solid electrolyte
sandwiched between an anode and a cathode. The solid electrolyte is an ionic conductor such as
yttria-stabilised zirconia (YSZ), that allows the motion of ions but not the motion of electrons.
The anode and cathode are metals that conduct electricity through the motion of electrons,
and must be porous to allow gas flow. Additionally, the cathode must be made of a material
resistant to oxidation.

A hydrogen fuel cell uses hydrogen H2 as the fuel, which reacts with oxygen from the at-
mosphere, and generates electrical energy from the electrons travelling through the external
circuit. The solid electrolyte mediates the motion of oxygen from air to the anode. The half cell
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reactions are:

cathode (reduction): O2 + 4 e− −−→ 2 O2− (3.16)

anode (oxidation): 2 H2 + 2 O2− −−→ 2 H2O + 4 e− (3.17)

The overall cell reaction is:
2 H2 + O2 −−→ 2 H2O. (3.18)

Overall, a hydrogen fuel cell uses hydrogen and oxygen as inputs, and the only end product is
water, generating no polluting emissions.

It also possible to use natural gas (methane) as the fuel, in which case the overall cell reaction
is CH4 +2 O2 −−→ CO2 +2 H2O. And it is also possible to use polymer-based electrolytes, whose
ionic conduction is mediated by H+ rather than O2– .

Fuel cells have a number of advantages compared to competing technologies. Irrespective of
the fuel used, the direct conversion of chemical to electrical energy makes a fuel cell about twice as
efficient as an internal combustion engine. Additionally, if hydrogen is used as fuel, no polluting
emissions are generated. Finally, the lack of mechanical parts reduces noise pollution. However,
hydrogen fuel cells also present some challenges, highlighting the difficulty in generating and
storing hydrogen, and the fact that hydrogen is highly flammable.

H2

H2O

energy  
generation

O2
hydrogen 
generation

2H2  O2  2H2O+ ⟶

2H2O  2H2  O2⟶ +

Figure 3.10: Schematic diagram of the hydrogen economy.

Hydrogen fuel cells could become part of what is called the hydrogen economy, schematically
shown in Fig. 3.10. The vision is that solar energy can be used to split water and generate
hydrogen. This hydrogen is then transported to the energy generation site, where it is used
in a fuel cell, for example in a car or a factory. The operation of the fuel cell only generates
water, that is released into the atmosphere and the cycle can start again. While this vision
is appealing, there are many challenges to make it a reality. These include the fact that the
generation of hydrogen from water (electrolysis) is an energy-intensive process and for it to be
sustainable the energy source should itself be sustainable. Solar energy is a clear option, but the
splitting of water using solar energy is an open scientific question. The other main challenge is
the storage and transport of hydrogen, which requires compressed or liquified gas, again a very
energy intensive process. Porous materials such as metal-organic frameworks are being actively
investigated for hydrogen storage, but this is also an open scientific question.
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Chapter 4

Liquid crystals

A crystalline solid is a material in which atoms are ordered in a regular pattern. This results in a
periodic lattice with long-range order and properties that are anisotropic as they depend on the
direction within the material. By contrast, a liquid is a system in which atoms are disordered,
and as a result its properties are isotropic. Solids and liquids have very different properties, for
example a liquid flows easily whereas a solid does not.

In this Chapter we introduce liquid crystals, materials whose properties are intermediate
between those of crystalline solids and liquids. Liquid crystals are often made of elongated rod-
like molecules such as polymers, and find applications in many areas including in light-based
technologies such as liquid crystal displays.

4.1 Polymers

A polymer is a material made of large molecules composed of many repeating units, called
monomers. Polymers are a vast class of compounds whose structural and chemical diversity
endows them with a wide range of properties. Consequently, they find application from every-
day life (clothing, packaging, construction, etc.) to advanced technologies (transistors, diodes,
holography, etc.). Some polymers exhibit liquid crystal phases, and for this reason we introduce
polymers in this Section.

4.1.1 Overview of polymers

A prominent example of a polymer is polyethylene, whose monomer is ethylene (ethene). Ethy-
lene is the simplest alkene and it adopts a planar configuration. The structure of ethylene
is shown in Fig. 4.1 using two alternative representations: a three-dimensional ball-and-stick
representation (left) and a planar representation (right).

C C
H

H

H

H

Figure 4.1: Structure of the ethylene molecule.

The polymerisation of ethylene leads to polyethylene, shown in Fig. 4.2. The structure is
shown using three alternative representations: a planar representation (top), a compact planar
representation (middle), and a three-dimensional ball-and-stick representation (bottom). The
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subindex n in the compact planar representation indicates the number of times the monomer
is repeated, and it is understood that the planar representation may extend at both ends to
complete the full chain length if it does not fit within the page. The three-dimensional ball-and-
stick representation clearly illustrates that polyethylene is not a planar polymer.

C

H

H

C

H

H
n

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

Figure 4.2: Structure of the polymer polyethylene.

Many different forms of polyethylene can be synthesised by controlling polymerisation con-
ditions such as pressure and temperature. Several important forms are depicted in Fig. 4.3.
The low density form of polyethylene (left diagram in Fig. 4.3) was the first one to be made
historically, and can be made using high pressure synthesis techniques. It exhibits a significant
amount of branching, which reduces intermolecular interactions and suppresses close-packing.
The high density form of polyethylene (centre diagram in Fig. 4.3) can be made using transition
metal catalysts that reduce side reactions. It has a single-chain configuration that enables close-
packing, which leads to a high strength-to-density ratio. The cross linked form of polyethylene
(right diagram in Fig. 4.3) can be made by high energy radiation or peroxide-mediated radical
coupling. Its structure gives it reduced hardness and rigidity, and it exhibits high temperature
stability and wear resistance.

These forms and additional forms find many applications, and indeed polyethylene is the
most commonly produced plastic. Its low density form is used in trays, plastic bags, car parts,
etc. Its medium density form is used in water plumbing. Its high density form is used in plastic
bottles, corrosion resistant piping, etc. Its ultra-high molecular weight form is used in fibres and
medical implants. Its cross-linked form is used in domestic water plumbing, insulation for high
voltage electrical cables, etc. Its linear low-density form is used in plastic bags, toys, lids, etc.

Beyond the structural variations described above, polymers such as polyethylene also support
chemical variations. For example, polypropylene is another polymer whose monomer is similar
to that of polyethylene but one H side group is replaced by a CH3 side group. The properties
of polypropylene are similar to those of polyethylene, but it is slightly harder and more heat
resistant. Polypropylene is the second most widely produced polymer plastic, and finds applica-
tions in furniture, lab equipment, clothing, etc. Another example is polyvinyl chloride (PVC),
in which one H side group in polyethylene is replaced by a Cl side group. PVC is the third most
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low density high density cross linked

Figure 4.3: Alternative structural forms of polyethylene.

polypropylene PVC polystyrene

Figure 4.4: Structures of polypropylene (left), polyvinyl chloride (centre), and polystyrene
(right).

widely produced polymer plastic, whose rigid form is used in pipes, door and window frames,
etc, and its flexible form is used in electrical cable insulation, flooring, etc. As a final example,
polystyrene is obtained by replacing one H side group in polyethylene by a C6H5 side group,
giving another widely used polymers with applications in packaging, bottles, trays, disposable
cutlery, etc. The structures of these three polymers are shown in Fig. 4.4.

4.1.2 Polymer structure

A simple model of the structure of polymers can be built by studying the mathematical con-
struction known as a random walk. Consider a chain made of n segments each of length l, as
shown in Fig. 4.5. Such a chain can be generated with a random walk, where each segment ri
has fixed length |ri| = l, but can point in any direction with equal probability. Indeed, a key
property of this construction is that the direction of each segment of the chain is uncorrelated
from the direction of other segments.

We define the countour length L as the total length of the chain:

L = nl. (4.1)

We also define the vector Ri as the vector between the start of the chain and the end of segment
ri, so that:

Ri =

i∑
j=1

rj . (4.2)

As examples, the vectors Rn and Rn−1 are shown in Fig. 4.5. The vector Rn is called the
end-to-end vector of the chain.
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Figure 4.5: Example of a random walk.

To characterise the size of a chain like that in Fig. 4.5, we consider an ensemble of random
walks of contour length L. The average 〈Rn〉 = 0 does not provide a good measure for the chain
size, as any vector Rn in the ensemble is as likely as the opposite vector −Rn, leading to the
vanishing average. Instead, we consider the mean square end-to-end distance, which can be
shown to be:

〈R2
n〉 = nl2. (4.3)

From this, we define the end-to-end distance as:√
〈R2

n〉 = l
√
n. (4.4)

The end-to-end distance provides a simple quantification of the typical size of a chain generated
using a random walk.

How can we use these ideas to understand the structure of polymers? Comparing the random
walk in Fig. 4.5 with the polymer structures in Sec. 4.1.1, we see that they have similar shapes.
This suggests that we can build a simple model for a polymer as a random walk. A key question
is what polymer length should be associated with the length l of the steps in the random walk.
Remember that the segments l in a random walk are uncorrelated, which implies that l cannot
represent the carbon-carbon bond length, as the assumption of uncorrelated segments does not
apply for carbon-carbon bonds. It turns out that there is no universal unit in polymers that
we can assign to the random walk segment length l. Instead, each polymer will have different
features, and we define a new quantity, the Kuhn length, as the length of a segment of polymer
that is uncorrelated to other segments. As such, the Kuhn length of a polymer can be taken to
be the segment length l in the random walk model. Table 4.1 shows the Kuhn lengths of some
typical polymers.

Table 4.1: Examples of Kuhn lengths for selected polymers.

Polymer Number of monomers per Kuhn segment

Polyethylene 5.7
Polypropylene 5.9
Polyvinyl chloride (PVC) 7.6
Polystyrene 10.8
DNA 600
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4.2 Birefringence

The interaction of light with matter is a broad and diverse topic that encompasses areas as diverse
as spectroscopy, lasers, and quantum information processing. In this Section, we introduce the
concept of birefringence, which refers to a property of some materials, including liquid crystals,
in which light propagation is direction-dependent.

3Blue1Brown has a series of three videos covering some of the discussion in this Section, which
are a nice visual approach to the topic. The first video covers the experimental observations of
light travelling between crossed polarisers, and subsequent videos go into the basics of polarised
light and of the index of refraction.

4.2.1 Light-matter interactions

An electromagnetic wave is a wave that consists of oscillating electric and magnetic fields that
propagate through space, as schematically shown in Fig. 4.6. Depending on their frequency, elec-
tromagnetic waves are classified as radio waves, microwaves, infrared, visible light, ultraviolet,
X-rays, and gamma rays, and together form the electromagnetic spectrum. In this Section, we
will often refer to electromagnetic waves as “light” because we are often interested in electro-
magnetic waves of frequencies corresponding to visible light.

propagation  
direction

electric field

magnetic field

wavelength λ

x

y

z

Figure 4.6: Schematic diagram of a monochromatic electromagnetic wave.

Monochromatic electromagnetic waves are electromagnetic waves of a single frequency. They
can be characterised by their wavelength λ, which gives the length between successive maxima
(or minima or any other pair of equivalent points) along the wave (see Fig. 4.6). The wavelength
λ is related to the frequency f through the velocity v according to:

v = fλ. (4.5)

The speed of light in vacuum is a constant c = 299,792,458 ms−1 and represents a universal upper
speed limit. When light travels through matter, its speed is smaller than the speed of light in
vaccum v < c. Another important quantity for an electromagnetic wave is the propagation
direction, which is perpendicular to the oscilation directions of both the electric and magnetic
fields. In turn, the electric and magnetic fields are also perpendicular to each other (see Fig. 4.6).

The strongest interaction of light with matter is due to the electric field component, and
we will neglect the magnetic field component of electromagnetic waves moving forward. We
therefore consider the situation depicted in Fig. 4.7, in which we only have the electric field
component of the electromagnetic wave. Figure 4.7 shows the same electric field component of
an electromagnetic wave from two different directions. We define the wave polarisation direction
as the direction of the oscillating electric field, such that in the diagrams in Fig. 4.7 it is along
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the z axis. Do not confuse the polarisation of a wave with the electric polarisation discussed in
Chapter 1.

electric field

x

y

z

polarisation  
direction

z

x

Figure 4.7: Schematic diagram of a monochromatic electromagnetic wave highlighting the elec-
tric field component.

Light associated with an electromagnetic wave with a single wave polarisation direction is
called polarised light, and a schematic example is depicted in the left diagram of Fig. 4.8. Instead,
if an electromagnetic wave has electric field oscillations in many different directions, then we refer
to it as unpolarised light. A schematic example of unpolarised light is shown in the right diagram
of Fig. 4.8. Most light sources, such as the Sun, flames, or lamps, generate unpolarised light.
To illustrate this concept, we consider sunlight as an example. In the Sun, nuclear reactions
heat up the atomic nuclei and electrons making up the solar plasma. From electromagnetism,
accelerating charged particles emit electromagnetic waves, and in the sun each emission occurs
in a random direction, resulting in unpolarised light.

x

z

polarised light unpolarised light

x

z

Figure 4.8: Schematic diagram comparing the polarisation direction of polarised light (left) and
unpolarised light (right).

As briefly introduced earlier, the speed of light in vacuum c is a universal upper speed limit,
and has a value of 299,792,458 ms−1. When light travels through matter, its speed v is smaller
than the speed of light in vacuum. We introduce the dimensionless refractive index n as the
ratio of the two:

n =
c

v
. (4.6)

As the speed of light in vacuum is an upper limit, we have that n ≥ 1, and the larger the
refractive index the slower the speed of light in the material. Microscopically, when light travels
through matter its oscillating electric field drives the oscillation of the electrons in the material.
Oscillating charges emit their own electromagnetic waves, and light in the material becomes
the superposition of the original wave and the waves emitted by the oscillating electrons. The
electromagnetic waves emitted by the electrons are typically of the same frequency as the driving
wave, but with a shorter wavelength, leading to an overall reduction of the phase velocity of the
wave such that v < c. As an additional feature, the response of the electrons in a material to
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an oscillating electric field is frequency dependent, so the the speed of light in a material is also
frequency dependent.

4.2.2 Light-polymer interactions

The elongated quasi-one-dimensional nature of polymers leads to different light-matter interac-
tions along the different polymer axes. We define:

• Slow axis: light couples strongly in this direction so light is significantly slowed.

• Fast axis: light couples weakly in this direction, so light does not slow much.

Slow and fast axes are perpendicular to each other, and are collectively referred to as the
permitted vibration directions.

light propagating 
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Figure 4.9: Schematic diagram comparing the slow and fast axes of polyethylene and polystyrene.

The nature of the slow and fast axes is material-dependent. For example, Fig. 4.9 schemati-
cally shows the slow and fast axes of two different polymers, polyethylene and polystyrene. We
consider light with a propagation direction pointing out the page, and define the refractive index
along the horizontal axis as n1 and the refractive index along the vertical axis as n2. We orient
both polymers such that the long side of the chain is horizontal, and the short side is vertical.
For polyethylene, the refractive index is larger along the chain n1 > n2, which means that light
moves slower along the chain than perpendicular to it. For polystyrene we have the opposite
situation: the refractive index is smaller along to the chain n1 < n2, which means that light
moves faster along the chain than perpendicular to it.

4.2.3 Birefringence

Birefringence is the property of a material with a refractive index that depends on the polar-
isation and propagation directions of light. From our discussion in Sec. 4.2.2 about the slow
and fast axes of polymers, we conclude that polymers exhibit birefringence. Quantitatively, the
birefringence ∆n is defined as:

∆n = n1 − n2, (4.7)

where n1 and n2 are refractive indices along different directions in the material.
We have introduced the interaction of light with polymers in Sec. 4.2.2 by considering a single

polymer chain. Polymer materials have many different polymer chains, and the birefringence of
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the material depends on the ordering of these chains. For example, a sample in which the different
polymer chains are randomly oriented will exhibit no birefringence because the relative fast and
slow axes of each individual chain will be randomly oriented with respect to the corresponding
axes of the other chains. Conversely, a material with polymer chains all oriented in the same
direction will in general exhibit birefringence.

We have discussed in Sec. 4.2.1 how light from most common sources is unpolarised. We can
transform unpolarised light into polarised light by using materials called polarisers. A polariser is
a material that only allows light of a specific polarisation to pass through. As such, polarisers are
an extreme example of birefringent materials. Figure 4.10 schematically shows the polarisation
of light with a polariser. We conventionally represent a polariser (in blue in Fig. 4.10 with lines
indicating thee direction of along which light is allowed to pass through, such that the resulting
light polarisation is parallel to these lines.

propagation  
direction

polariser

polarisation  
direction

Figure 4.10: Schematic diagram of a polariser acting on initially unpolarised light.

We next investigate the interaction of polarised light with a birefringent material. Consider
the setup illustrated in Fig. 4.11. The birefringent material (in green) has a rectangular prismatic
shape, and the propagation direction of light is parallel to one of the prism sides of thickness l. We
also include the polarisation direction of the incident light and the permitted vibration directions
of the birefringent material, which in general are not aligned with the light polarisation.

propagation  
direction

polarised  
light

permitted 
vibration 
directions

thickness l

Figure 4.11: Schematic diagram of a polariser acting on initially unpolarised light.

In a general situation, light travelling at speed v will traverse a material of thickness l in
a time T = l

v . Using the refractive index n = c
v , we can re-write the time as T = ln

c . For a
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birefringent material, the two orthogonal permitted vibration directions have different refractive
indices n1 and n2, and this leads to two different times for light travelling across the material,
T1 = ln1

c associated with n1 and T2 = ln2
c associated with n2. The time difference is then:

∆T = T1 − T2 =
l

c
(n1 − n2) =

l∆n

c
. (4.8)

The component of light travelling along the fast axis will exit the material a time ∆T earlier.
During this time, it travels at speed c outside the material over a distance:

c∆T = c

(
l∆n

c

)
= l∆n. (4.9)

We call this distance the optical path difference OPD:

OPD = l∆n. (4.10)

It is often convenient to re-write the optical path difference in terms of a phase difference.
Remember that the phase φ of a wave at position x with respect to position x0 is given by
φ = 2π

(
x−x0
λ

)
, where λ is the wavelength of light. This implies that the optical path difference

between light along the slow and fast axes leads to a phase difference δ given by:

δ = 2π

(
OPD

λ

)
= 2π

l∆n

λ
. (4.11)

4.2.4 An example: birefringent sample between crossed polarisers

We can use Eqs. (4.10) and (4.11) to investigate the behaviour of birefringent materials placed
between crossed polarisers. We consider the general situation depicted in Fig. 4.12 in which we
have a birefringent material (green) placed between two crossed polarisers (blue) such that the
polarisation of light allowed through the first polarisers is perpendicular to that allowed through
the second polariser.

fast axis

slow axis

birefringent material

polariser polariser

3λ

4λ

Figure 4.12: Schematic diagram of a cross polariser configuration with an optical path difference
that is a multiple of the wavelength of light.

As a first example, consider a situation in which the optical path difference is a multiple of
the wavelength OPD = kλ for positive integer k, or equivalently a phase difference δ = 2πk.
This situation is depicted in Fig. 4.12. First note that, inside the birefringent material, the
wavelength of light along the fast axis is larger than the wavelength of light along the slow axis.
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To understand this, remember that the speed of light v is related to the light frequency f and
wavelength λ by v = λf . The frequency of light does not change in the material, so that:

n =
c

v
=
λ0f

λf
=
λ0

λ
, (4.12)

where λ0 is the vacuum wavelength. From this derivation, we obtain the following relationship:

nslow > nfast =⇒ λslow < λfast. (4.13)

This implies that the wavelength of light is shorter along the slow axis compared to the fast
axis, as schematically depicted in Fig. 4.12.

polariser

polarisation  
direction

fast axis

slow axis

fast axis

slow axis

polariser

δ = 2πk

Figure 4.13: Schematic diagram of the polarisation direction of light as it transists through the
cross polariser setup in Fig. 4.12.

The transit of light through this setup is depicted in Fig. 4.13. Light enters the material
through the first polariser, so its polarisation direction is initially vertical (first diagram in
Fig. 4.13). Inside the birefringent material, the light polarisation will in general not be aligned
with the permitted vibration directions, so we can separate the oscillating electric field into
its components along the fast and slow axes (second diagram in Fig. 4.13). At the end of the
birefringent material, the two light components are again in phase with each other, as δ = 2πk
(third diagram in Fig. 4.13). This means that the light polarisation is now perpendicular to the
seconod polariser, so that overall no light will be allowed through the second polariser (fourth
diagram in Fig. 4.13).

In Problem 15 we consider a second example in which the optical path difference is OPD =
kλ + λ

2 for positive integer k, or equivalently a phase difference of δ = 2πk + π. In this sit-
uation, light enters the birefringent material with polarisation aligned with the first polariser,
but the phase difference that develops across the birefringent material leads to light exiting the
birefringent material with a polarisation perpendicular to that of the original polariser. This
new light polarisation is aligned with the second polariser, so light is allowed through. Overall,
this second setup leads to light allowed through the cross-polarisers and the outgoing light has
a polarisation perpendicular to the polarisation of the incoming light.

To generalise the two examples discussed above, we consider initially unpolarised white light.
White light is light made of all possible wavelengths in the visible part of the electromagnetic
spectrum. First note that the phase difference arising from the optical path difference across
a birefringent material depends on the light wavelength according to δ = 2π l∆nλ . When a
birefringent material is placed between cross polarisers, most wavelengths of white light will
pass through as the phase difference δ will introduce a component of the initially polarised light
in a perpendicular direction, which will be allowed through the second polariser. However, there
will be one wavelength of light, corresponding to δ = 2π, that will not pass through the second
polariser. As a result, the observed spectrum will be equal to the original spectrum missing that
one wavelength.
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Figure 4.14: Michel-Levy chart. Source unknown.

The colour that is left when a frequency of light is removed is called the complementary
colour. For example, the complementary colour of blue is yellow, that of green is magenta, and
that of red is cyan. This leads to the construction known as the Michel-Levy chart, shown in
Fig. 4.14. The horizontal axis of the Michel-Levy chart depicts the “retardation” (in nanome-
tres), which is a synonym for the optical path difference OPD. The vertical axis depicts the
thickness l of the sample (in milimetres). The sloped straight lines spreading from the origin
depict the birefringence ∆n, and its values are shown along the top and right axes of the dia-
gram. The Michel-Levy diagram is used to extract the colour of initially white light that will be
allowed through a sample of birefringence ∆n, thickness l, and associated optical path difference
(retardation), placed between crossed polarisers. For example, a material of thickness 0.03 mm
and birefringence 0.05 will give a yellow-pink colour.

To understand the overall colour sequence of the Michel-Levy chart, we can use the insights
above about white light travelling through a birefringent material placed between crossed po-
larisers. Starting with small optical path differences (left part of the Michel-Levy chart), there is
very little rotation of the light and very little light is transmitted through the second polariser,
resulting in a black-grey colour. Increasing the optical path difference, the first colour is yellow.
Remember that yellow is the complementary colour of blue, so this implies that the wavelength
of light that has been removed is that corresponding to blue. This is to be expected as blue
has the shortest wavelength in the visible spectrum, and therefore the phase difference, which
remember is δ = 2π l∆nλ is largest for a given thickness and birefringence. Further increasing
the optical path difference leads to a sequence of colours that correspond to the complementary
colours of the visible part of the spectrum as the wavelength of the removed colour increases.
Eventually we encounter yellow again, which corresponds to an optical path difference that is
twice the wavelength of blue light, and the pattern repeats. The colours become less well-defined
at every sequence of the chart because for longer optical path differences it becomes increasingly
likely that several distinct wavelengths in the visible part of the spectrum will have a multiple
that coincides with the path difference, so multiple wavelengths are removed at the same time.
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Placing a birefringent sample between crossed polarisers and using the Michel-Levy chart
can also be used to characterise the properties of an unknown birefringent material. If the initial
polariser is aligned with the fast or slow axes, then no path difference will develop, and no light
will be transmitted after the second crossed polariser. Such a position is called an extinction
position and the sample appears black. Rotating a birefringent sample over a half-revolution
will reveal two orientations along which it will appear black, and these correspond to the two
extinction positions. Performing this experiment allows us to determine the two permitted
vibration directions of the sample.

To determine which direction corresponds to the fast and slow axes, we use a second refer-
ence material of known birefringence, often called a compensator. We align the the permitted
vibration directions of the unknown birefringent material with the compensator, and compare
an the initial alignment with a second alignment which corresponds to a rotation by 90◦. In
one setup the two fast axes and the two slow axes will be fully aligned, and in the other setup
the fast axes of each sample will be aligned with the slow axes of the other. The resulting op-
tical path difference will be larger in the first case compared to the second, so the fast-fast and
slow-slow alignment will give a higher colour in the Michel-Levy chart compared to the fast-slow
and slow-fast alignment. This procedure therefore reveals the fast and slow axes of the initially
unknown birefringent sample.

4.3 Liquid crystals

In this Section we introduce liquid crystals and look at some of their applications. From a
structural point of view, liquid crystals are made of rod-like molecules of which polymers are
a prominent example. From an application point of view, liquid crystals exhibit birefringence,
and as a result they find application in light-based technologies such as liquid crystal displays.

4.3.1 Nematic liquid crystals

A liquid crystal is a state of matter with properties intermediate between those of a crystalline
solid and a conventional liquid. Specifically, liquid crystals are anisotropic liquids. Depending on
their structure, liquid crystals can be classified into several different classes, including nematic,
smectic, and chiral nematic. In this Section, we investigate the properties of nematic liquid
crystals.

D

Figure 4.15: Schematic structure of a nematic liquid crystal.

A nematic liquid crystal is typically made of organic rod-like molecules. In this phase, the
centres of mass of the molecules have no long range order and flow like a liquid. However,
the molecules tend to align along some common axis, which can be described by a vector
called the director D (see Fig. 4.15). The alignment along the director leads to anisotropic
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properties analogous to those of a crystal. Do not confuse the symbol D for the director with
the displacement field discussed in Chapter 1.

D

T
Tc1 Tc2

liquidliquid crystalcrystal

Figure 4.16: Phase diagram of a nematic liquid crystal.

Liquid crystals were first discovered as materials exhibiting two melting temperatures. Below
a first critical temperature Tc1 , the material is ordered as a crystalline solid. Above a second
critical temperature Tc2 , the material is disordered as a liquid. But at intermediate temperatures
the material forms a liquid crystal characterised by a director D as described above. This phase
diagram is depicted in Fig. 4.16, and is driven by a competition between rod-rod interactions
that favour ordering and thermal energy that favours disordering.

D

θ

Figure 4.17: Definition of angle θ between a molecule and the director D.

To understand the properties of nematic liquid crystals we need to characterise their order.
To simplify the problem, we are going to consider that the rod-like molecules making up the
liquid crystal are cylindrical and have no internal structure, so that there is no “up” or “down”
orientation. In principle, we could describe the order associated with a collection of molecules
using a distribution function f(θ, φ) giving the fraction of molecules pointing in any given direc-
tion (θ, φ), where these coordinates correspond to the standard angular spherical coordinates.
However, it is more convenient to describe the order of the system with a single numerical
parameter, and we introduce the order parameter Q, defined as:

Q =
1

2
〈3 cos2 θ − 1〉, (4.14)

where θ is the angle between a molecule and the director D as shown in Fig. 4.17, and the angle
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brackets indicate an average over all molecules in the system. One can show that when all the
molecules of the system are fully aligned, then Q = 1, and when they are randomly aligned
Q = 0. Intermediate values of Q allow us to quantify the degree of disorder in the system. A
more detailed discussion of these ideas is presented in Appendix C.

4.3.2 Classification of liquid crystals

Nematic liquid crystals discussed in Sec. 4.3.1 are only one possible class of liquid crystal. In
this Section we briefly introduce two other classes of liquid crystal, smectic liquid crystals and
chiral nematic liquid crystals.

D

Smectic A

D

Smectic C

Figure 4.18: Schematic structure of smectic A (left) and smectic C (right) liquid crystals.

Smectic liquid crystals are liquid crystals in which the rod-like molecules organise in layers, as
schematically depicted in Fig. 4.18. We can identify two types of smectic liquid crystal: smectic
A liquid crystals have the director D parallel to the layer normal, and smetic C liquid crystals
have the director D not parallel to the layer normal.

pitch

Figure 4.19: Schematic structure of a chiral nematic liquid crystal. Source unknown.

Chiral nematic liquid crystals, also referred to as cholesteric liquid crystals, are schematically
depicted in Fig. 4.19. They have the director D parallel to a plane (a horizontal plane in
Fig. 4.19), and the director rotates along this plane tracing out a helix. In this context, we define
the pitch as the distance required for the director to perform a full 360◦ degree rotation. The
pitch of a chiral nematic liquid crystal can vary anywhere between 100 nm to 100µm depending
on the molecules making up the liquid crystal, the degree of polymerisation, or the concentration
in solution.
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4.3.3 Birefringence in liquid crystals

The rod-like nature of the constituent molecules of liquid crystals naturally leads to birefringence.
Taking a nematic liquid crystal as an example (refer back to Fig. 4.15), the permitted vibration
directions are parallel and perpendicular to the director D. For example, the component of
light travelling along the molecules (parallel to D) has a larger refractive index compared to a
perpendicular direction.

It is important to note that the relative orientations of the light propagation direction and
the nematic liquid crystal director D determine how birefringence manifests in a given sample.
For example, for light with propagation direction along D, there is no birefringence as the cross-
section of the liquid crystal molecules appears isotropic in that direction (remember that the
polarisation of light is always perpendicular to the propagation direction, so in this example it
is also perpendicular to the nematic liquid crystal director).

Figure 4.20: Schlieren texture characteristic of a nematic liquid crystal between crossed polaris-
ers. Reproduced from Minutemen [CC BY-SA 3.0] via Wikimedia Commons.

We next consider the setup discussed in Sec. 4.2.4 with a birefringent material placed be-
tween crossed polarisers, with the special case of the birefringent material being a liquid crystal.
Starting with a nematic liquid crystal, we note that real samples exhibit domains in which the
director D points in different directions. The the resulting domain boundaries are called discli-
nations. A nematic liquid crystal placed between crossed polarisers shows the texture depicted
in Fig. 4.20, and called Schlieren texture. Each bright region corresponds to a different domain,
and the dark boundaries between them correspond to the special case in which the director is
aligned with one of the cross polarisers or parallel to light propagation, as in both instances
there is no light propagation through the setup.

We next consider a chiral nematic liquid crystal between crossed polarisers, and focus on the
direction of propagation of light perpendicular to the helical axis, corresponding to going into
or out of the page in the left diagram of Fig. 4.21. In this scenario, when D is parallel to the
propagation direction of light there is no transmission, resulting in the dark fringes obesrved
in Fig. 4.21. When D is not parallel to the propagation direction of light, then we observe
birefringence leading to bright regions. Figure 4.21 shows a schematic diagram of the structure
of a chiral nematic liquid crystal and the resulting bright and dark fringes, and also two realistic
examples of birefringence from such samples (centre and right). The resulting textures resemble
fingerprints.

4.3.4 Liquid crystal displays

One of the most prominent uses of liquid crystals is in liquid crystal displays (LCDs), used in
wide range of applications including phones, televisions, computer monitors, calculators, and
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dark

bright

dark

bright

dark

Figure 4.21: Fingerprint texture characteristic of a chiral nematic liquid crystal between crossed
polarisers. Adapted from source unknown.

watches. In this Section we describe the basic principles behind the operation of liquid crystal
displays.

The director D of a nematic liquid crystal can be forced to lie along a particular direction by
placing it in contact with a surface that has grooves in that particular direction. If the nematic
liquid crystal is sandwiched between two plates with their respective grooves aligned perpen-
dicularly, then the director twists across the sandwich and we end up with a twisted nematic
structure. We consider such a twisted nematic structure placed between crossed polarisers, such
that each polariser is aligned with the director at its end, as schematically shown in Fig. 4.22.

polariser

polariser

light

ON state

polariser

polariser

light

electric 
field

OFF state

Figure 4.22: Schematic of the ON and OFF states of a liquid crystal display. Adapted from
source unknown.

The left diagram in Fig. 4.22 represents the ON state of an LCD. Light comes from the
bottom, and after crossing the first polariser it is fully polarised in the same direction as the
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director of the liquid crystal. As light travels through the twisted nematic, it is rotated by 90◦,
and when it reaches the second polariser it is aligned with it, so it is fully transmitted.

The OFF state of an LCD is obtained by applying an electric field along the liquid crystal
as shown in the right diagram in Fig. 4.22. The applied electric field leads to an induced electric
dipole moment on the molecules due to charge separation, and the molecules distort to align
with the applied field. However, the molecules near the edges are forced to retain their original
configuration by the grooves on the contact surfaces. This structural transition driven by an
applied electric field is called a Fréedericksz transition. In this configuration, light still comes
from the bottom, and after crossing the first polariser it is fully polarised in the same direction
as the director of the liquid crystal. However, light is no longer rotated as it travels through the
liquid crystal as the sample exhibits no birefringence because the propagation direction of light
is parallel to the director across most of the sample. As a result, no light is transmitted when
it reaches the second polariser.

Overall, an electric field is used to switch the state of a pixel between ON and OFF as
described above. Note that an LCD does not generate light, it either uses ambient light, in
which case there is a mirror at the back to reflect the light, or it has an independent light source
at its back. Colour LCDs use the same strategy described above, but also include colour filters
to generate red, green, and blue pixels.
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Appendix A

Gauss’s law and parallel plate
capacitors

This Appendix is non-examinable.
In electromagnetism, Gauss’s law relates the distribution of electric charges Q to the resulting

electric field E: ∮
S
E · dA =

Q

ε0
. (A.1)

This equation states that the electric flux through a closed surface S (left hand side) is propor-
tional to the total charge Q enclosed by the surface (right hand side). The vector A is locally
normal to the surface S. In the presence of a dielectric, Gauss’s law can be equivalently written
in terms of free charges Qfree and the displacement field D:∮

S
D · dA = Qfree. (A.2)

In a parallel plate capacitor context, the free charges are those on the conducting plates. By
comparison, bound charges are those associated with the polarisation of the dielectric, which
are “bound” to their local environment.

Consider a single infinite plane of charge density σ. Also consider a Gaussian surface S given
by a cylinder symmetrically arranged about the infinite plane of charge:

 

d

tomanana
I 1 Gaussian surface 5

I da
i

da
By symmetry, the displacement field D arising from the charge distribution is perpendicular

to the plane, so for the vertical sides of the cylinder we have D · dA = 0. Again by symmetry,
the displacement field D has the same magnitude but opposite direction at the top and bottom
circular surfaces of the cylinder, so that in both cases D·dA = |D|dA, where dA is the magnitude
of the vector dA. Applying Gauss’s law as written in Eq. (A.2), the left hand side gives:∮

S
D · dA =

∫
top surface

|D|dA+

∫
bottom surface

|D|dA = 2|D|A, (A.3)
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where in the last equality we have used the fact that |D| is constant across the surface. Finally,
equating this expression to the right hand side of Eq. (A.2), we obtain:

|D| = 1

2
σ (A.4)

for an infinite plane of charge. This result implies that the displacement field arising from an
infinite sheet of charge is constant and independent of the distance from the sheet.

We can model a parallel plate capacitor as two parallel sheets of charge, with equal magnitude
charge densities σ but opposite sign charges:
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The blue arrows refer to the constant magnitude displacement field arising from the top

infinite plane of positive charge, for which the displacement field direction points away from the
plane. The orange arrows refer to the corresponding displacement field arising from the bottom
infinite plane of negative charge, for which the field direction points towards the plane. In-
between the two planes of charge the two displacement fields add up together, yielding |D| = σ.
Outside the two planes of charge the two displacement fields are in opposite directions and
cancel, yielding |D| = 0.

Overall, for a parallel plate capacitor the charge density on the plates is equal to the mag-
nitude of the displacement field of the dielectric material between the plates, thus proving
Eq. (1.10) in the main text, σ = |D|.
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Appendix B

Atomic origin of magnetism

This Appendix is non-examinable.
In quantum mechanics, electrons carry two types of angular momentum:

• Orbital angular momentum. This angular momentum is associated with the orbital motion
of electrons and is the quantum mechanical version of the classical angular momentum.

• Spin angular momentum. This is an angular momentum of quantum mechanical origin
that has not classical analogue and is associated with an intrinsic property of electrons
(and other microscopic particles) called spin.

Angular momentum in quantum mechanics is quantised. This implies that its magnitude can
only take a discrete set of values (rather than a continuum). For example, the magntidue
of the spin angular momentum of electrons can only take the two values ±1

2~, where ~ =
1.054571817× 10−34 Js is called the reduced Planck constant.

Atoms are made of interacting electrons arranged in atomic shells and subshells as determined
by the Pauli exclusion principle. For example, the hydrogen atom has an electron configuration
1s, which means it has a single electron in shell 1 and subshell s. As another example, the carbon
atom has an electron configuration 1s22s22p2, which means it has two electrons in each of the
shell 1 subshell s, shell 2 subshell s, and shell 2 subshell p. In this context, filled electron shells
have no net angular momentum, which implies that there is no magnetic moment associated
with them. Partially filled shells do have a net angular momentum, which implies that they
have an associated magnetic moment.

The magnetic moment of an atom arises from the combination of all angular momentum
contributions, including the orbital and spin contributions from each electron. In this course, it
can be useful to think about a magnetic material as made of individual magnetic moments, which
can be roughly thought of in terms of individual atoms carrying magnetic moments. Reality
is more complicated, for example there can be “itinerant” electrons that are not bound to any
specific atom, which can lead to so-called “itinerant magnetism”.

The quantum mechanics behind angular momentum and atomic structure are covered start-
ing from Part IB, but if you are interested you can find the relevant content in our series of
videos on angular momentum in quantum mechanics and on the hydrogen atom.
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Appendix C

Order in nematic liquid crystals

This Appendix is non-examinable.
Consider a collection of rod-like molecules described as cylindrical and without internal

structure. The probability of finding a molecule pointing in a an infinitesimal solid angle dΩ
centred around (θ, φ) is:

f(θ, φ)dΩ = f(θ, φ) sin θdθdφ, (C.1)

where we are using the standard infinitesimals in spherical coordinates. For example, if all
molecules are perfectly aligned along D (taken to be along the z axis without loss of generality),
we get:

f(θ, φ)dΩ =


1
2 for θ = 0,
1
2 for θ = π,

0 otherwise.

(C.2)

This expression can also be written more compactly as:

f(θ, φ) =
1

2 sin θ
[δ(θ) + δ(θ − π)] δ(φ), (C.3)

where δ(x) is the Dirac delta function. As a reminder, the Dirac delta function in one dimension
is defined through this integral: ∫ ∞

−∞
dxf(x)δ(x− x0) = f(x0), (C.4)

and in three dimensions we can generalise this definition to:∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dzf(x, y, z)δ(x− x0)δ(y − y0)δ(z − z0) = f(x0, y0, z0). (C.5)

Using the standard rules of changes of variable, we can re-write the delta functions in spherical
coordinates as:

δ(x− x0)δ(y − y0)δ(z − z0) =
1

r2 sin θ
δ(r − r0)δ(θ − θ0)δ(φ− φ0), (C.6)

and this is the form used in Eq. (C.3).
As another example, if the molecules are randomly oriented, then the distribution function

is constant because every direction is equally likely, and normalisation dictates that it takes the
value:

f(θ, φ) =
1

4π
. (C.7)

The order parameter Q from Eq. (4.14) can be written as:

Q =
1

2
〈3 cos2 θ − 1〉 =

1

2

∫
dΩf(θ, φ)

(
3 cos2 θ − 1

)
. (C.8)
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If we start with fully aligned molecules, whose distribution is given by Eq. (C.3), we find:

Q =
1

2

∫
dΩ

[
1

2 sin θ
[δ(θ) + δ(θ − π)] δ(φ)

] (
3 cos2 θ − 1

)
=

1

4

∫ π

0
dθ sin θ

∫ 2π

0
dφδ(φ)

1

sin θ
[δ(θ) + δ(θ − π)]

(
3 cos2 θ − 1

)
. (C.9)

The φ-integral gives 1, and we obtain:

Q =
1

4

[∫ π

0
dθ
(
3 cos2 θ − 1

)
δ(θ) +

∫ π

0
dθ
(
3 cos2 θ − 1

)
δ(θ − π)

]
. (C.10)

Each of the two θ-integrals inside the square brackets evaluates to 2, so we finally obtain:

Q =
1

4
(2 + 2) = 1. (C.11)

Therefore, for fully aligned molecules the order parameter is Q = 1.
If we next consider randomly oriented molecules, whose distribution is given by Eq. (C.7),

we find:

Q =
1

2

∫
dΩ

[
1

4π

] (
3 cos2 θ − 1

)
=

1

8π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

(
3 cos2 θ − 1

)
. (C.12)

The φ-integral gives 2π, and we can separate the bracket into two terms to obtain:

Q =
1

4

[
3

∫ π

0
dθ sin θ cos2 θ −

∫ π

0
dθ sin θ

]
. (C.13)

Both integrals inside the square brackets are standard integrals, giving 2
3 and 2 respectively, so

we finally obtain:

Q =
1

4

(
3× 2

3
− 2

)
= 0. (C.14)

Therefore, for randomly oriented molecules the order parameter is Q = 0.
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