Materials for Devices: Problem Set 3

9. From Fick's first law, we have that under an applied voltage V, the current density obeys:

$$j_x = -qD\frac{\partial n}{\partial x} - \sigma\frac{\partial V}{\partial x},$$

where n is the concentration of diffusing ions, q their charge, D is the diffusion coefficient, and σ is the conductivity.

- (i) Sketch a one-dimensional energy landscape for ionic diffusion, labelling the energy barrier $E_{\rm B}$.
- (ii) Sketch the same one-dimensional energy landscape, but now in the presence of an external constant electric field such that there is a voltage difference ΔV between ionic sites.
- (iii) Show that, in the presence of an external constant electric field, the net probability p of a jump from one site to the other is proportional to:

$$p \propto e^{-\frac{E_{\rm B}}{k_{\rm B}T}} \left(1 - e^{-\frac{q\Delta V}{k_{\rm B}T}}\right)$$

(iv) Consider the limit of a small applied electric field, such that $q\Delta V \ll k_{\rm B}T$. Show that, in this limit, the net probability p of a jump from one site to the other can be approximated as:

$$p \propto e^{-\frac{E_{\rm B}}{k_{\rm B}T}} \left(\frac{q\Delta V}{k_{\rm B}T}\right)$$

(v) Therefore, show that:

$$\frac{\partial n}{\partial x} = -\frac{nq}{k_{\rm B}T}\frac{\partial V}{\partial x}.$$

(vi) Hence, prove the validity of the Nernst-Einstein equation:

$$\frac{\sigma}{D} = \frac{nq^2}{k_{\rm B}T}.$$

- (i) Sketch a unit cell of CaF₂ and describe the coordination of calcium by fluorine and of fluorine by calcium.
 - (ii) In δ -Bi₂O₃, the bismuth sublattice is the same as that of calcium in CaF₂, but the stoichiometry means that there are vacant anion sites, randomly distributed. Sketch a possible unit cell of δ -Bi₂O₃.
 - (iii) Explain why δ -Bi₂O₃ is a fast ionic conductor whilst stoichiometric CaF₂ is not. How many oxygen vacancies are there, on average, per unit cell?
 - (iv) Consider yttria-stabilised zirconia, Y_2O_3 doped with ZrO_2 , $Zr_{1-x}Y_xO_{[2-(x/2)]}$. Calculate the composition of yttria-stabilised zirconia which would give one quarter of the average oxygen vacancy content of δ -Bi₂O₃.

- 11. Yttria stabilised zirconia with a cation ratio of 8:92 (Y:Zr) is produced by mixing appropriate quantities of yttria (Y₂O₃) with zirconia (ZrO₂). What is the molar oxygen composition, x, in the resulting material, Y_{0.08}Zr_{0.92}O_x?
- 12. The diffusivity of an ionic conductor is given by the Arrhenius equation $D = D_0 e^{-E_{\rm B}/k_{\rm B}T}$, where $E_{\rm B}$ is the energy barrier, D_0 is the pre-exponential factor, and T is the temperature.
 - (i) In the limit of a good ionic conductor, the concentration of diffusing ions n can be approximated as the total equilibrium concentration of ions $n \approx n_0$. Using this approximation in the Nernst-Einstein equation, show that:

$$\ln \sigma \simeq \ln \left(\frac{\sigma_0}{T}\right) - \frac{E_{\rm B}}{k_{\rm B}T},\tag{1}$$

where $\sigma_0 = \frac{D_0 n_0 q^2}{k_{\rm B}}$.

- (ii) Consider the two terms on the right hand side of Eq. (1). By comparing their change between two characteristic temperatures for ionic conductor operation, for example between 700 K and 1000 K, argue that $\ln\left(\frac{\sigma_0}{T}\right)$ varies more slowly than $-\frac{E_{\rm B}}{k_{\rm B}T}$. Therefore, explain how a plot of $\ln \sigma$ against $\frac{1}{T}$, called an Arrhenius plot, can be used to understand the behaviour of ionic conductors.
- (iii) Consider the Arrhenius plot shown in the Figure below. Estimate the activation energy for ion transport in yttria-stabilised zirconia.
- (iv) In $Zr_{0.8}Y_{0.2}O_{1.9}$, how many oxygen vacancies are there per unit cell? If the lattice parameter of cubic yttria-stabilised zirconia is 0.54 nm, calculate the number of vacancies per unit volume.
- (v) The Nernst-Einstein equation indicates that the ratio $\frac{\sigma}{D}$ for a given material varies only with temperature. Calculate $\frac{\sigma}{D}$ for $Zr_{0.8}Y_{0.2}O_{1.9}$ at 800 °C.

13. The α phase of silver iodide (AgI) has a iodine atoms arranged in a body centred cubic lattice with a = 5.0855 Å for the conventional cubic cell. It is an ionic conductor with Ag⁺ cations being the mobile species, and the diffusivity at 150 °C is 4.5×10^{-11} m²s⁻¹. A potential difference is applied across a sample of AgI, using Ag for both electrodes, and

current is allowed to flow. The half cell reactions are:

 $\begin{array}{lll} \mbox{cathode (reduction):} & \mbox{Ag}^+ + e^- \longrightarrow \mbox{Ag} \\ \mbox{anode (oxidation):} & \mbox{Ag} & \longrightarrow \mbox{Ag}^+ + e^- \end{array}$

Consider:

- (i) What is the number of charge carriers per unit volume in AgI?
- (ii) What is the conductivity of AgI at $150 \,^{\circ}\text{C}$?
- (iii) What is the mass of silver deposited at the cathode if a current of 5 mA flows through the circuit for 5 minutes?