An Introduction to UNIX

Michael Rutter
mjrl9@cam

Michaelmas 2006
(Minor updates 2009 — 2021)

Basic UNIX

One cannot teach in a few dozen pages all the UNIX you need in order to
operate effectively in a UNIX-based environment. Time spent discovering
more about UNIX, by:

e attending free courses (e.g. those provided by the University Information
Services: http://www.training.cam.ac.uk/ucs/)

e recading on-line resources (including the computing section of TCM’s
intranet site!)

e recading books

e asking those who know more

is time well spent.

Time spent learning from those who know little is less well spent. The blind leading the blind rarely has an
auspicious outcome.

The first part of this booklet, in large type, is pretty basic. The second half
exists to convince you that there are (many) more useful tricks which are
worth finding: it is not exhaustive!

CLI or GUI?

The terminal is a most useful and necessary application. It provides a
command-line interface to the operating system. A command line interface
(CLI) is generally more powerful and flexible than a graphical interface. And
commands typed in a terminal can trivially be turned into a script which can
then be run multiple times, or on a remote supercomputer via a queueing
system, or set to run in the background whilst one logs out.

The terminal itself 1s a resize-able window, with a vertical scroll-bar, in
which a shell or command interpreter runs. The latter obeys our commands
and produces a prompt consisting of the machine name followed by the name
of the current directory. (A directory is what the real world calls that which
Windows and MacOS call a ‘folder’.)

Many alternatives to the default terminal exist, all with slightly different
features. All take much more memory and start-up time than the simple
xterm, which dates from the 1980s. More modern alternatives include
gnome—terminal, xfced-terminal and konsole.

On many systems (including TCM!), not all installed programs have entries
in the menu system, and the command line is the most obvious way to find
them. The amount of typing required in a terminal is not that great once one
understands the virtues of laziness (see page 5).

Simple File Operations

Files can be copied, moved (renamed) and removed (deleted) using the
commands cp, mv and rm. Their names are listed by 1s.
Be Careful!: deletion is irreversible!

pc30:7$ cp thesis.tex new_book.tex

pc30:7$ 1s
mail results.dat
new_book.tex thesis.tex

It may be possible to recover files deleted from one’s home directory from the backup. Please ask a CO.
Tidiness

It is best to place files in tidy groups in subdirectories, rather than having
everything in one directory. The command mkdir creates a directory, and
rmdir will remove one provided it is empty. The cd command changes the
current directory.

pc30:7$ mkdir test

pc30:7$ 1s
mail results.dat thesis.tex
new_book.tex test

pc30:7$ cd test
pc30:7 /test$S 1s
pc30: " /test$

Trees

Directories form a tree: each directory has one parent directory, and may
have multiple subdirectories. A filename is assumed to refer to the current
directory. Other locations can be specified by forming a path using ‘/° to
separate the components of the path, and “. .’ to refer to a directory’s parent.

pc30:7$ 1s -F

a/ results.dat

pc30:7S cp results.dat a/results.dat
pc30:7$ 1s -RF

a/ results.dat

./a:

results.dat

pc30:7$ mkdir b

pc30:7$ cd b

pc30:7/bS$ cp ../a/results.dat
pc30:7/bS cd

pc30:7$

1s -F distinguishes directories by placing a /> after their names.
1s -R lists all subdirectories in a recursive fashion.
cd typed on its own returns one to one’s home directory.

Laziness

You have probably discovered that the cursor keys allow you to edit the
current command and recall previous commands in an intuitive manner.

Note also that pressing { TAB} when part-way through typing a filename will
cause the rest of the filename to be filled in automatically if it is unique. This
trick also works for command completion (type his then press { TAB}).

The wild-cards ‘?° and ‘*’ can be used to stand for any one character, and
any string of characters respectively:

pc30:7$ 1s

a.dat b.dat results.dat write-up.txt
pc30:7$ 1s ?.dat

a.dat b.dat

pc30:7$ 1s x.dat

a.dat b.dat results.dat

pc30:78 1s x

a.dat Db.dat results.dat write-up.txt
pc30:7$ rm *

pc30:7$ 1s

pc30:7$

rm = should be used with considerable caution. rm —r =« should be use with EVEN more caution as the -r
means a recursive removal of files and directories.

More 1s

pc30:7$ 1s -1 thesis.tex
—-rw-r——r—— 1 mjrl9 tcm 3410 Oct 2 15:13 thesis.tex

—rw—r——r—— 1 mjrl9 tcm 3410 Oct 2 15:13 thesis.tex

Access permissions File owner Length (bytes) File name
) File’s group Time last modified
File type
— normal file ~ Link count
d directory (1 for files, 2 or more for directories)
1 link

Access permissions:

File Directory
r Readable 1s works
w Writable File deletion and creation permitted

X eXecutable Can access files and dirs within dir.

The first three characters refer to the file’s owner.
The next three to people in the file’s group.

The final three to everyone else.

By default, all files are readable by everyone. Other options make collaboration harder.
To prevent other people from reading a file, type:

pc30:7$ chmod go= new_book.dat

Note the space after the ‘=", and note the change this produces in the output of 1s —1.

1s —1d » will list actual directories in long format, whereas 1s -1 =« will list the contents of each
directory in long format.

One Thing at a Time

The traditional UNIX philosophy is that a program should do one thing, and
do it well (the Windoze philosophy often appears to be the opposite). This
does often mean that one needs to invoke several commands to perform even
a relatively simple thing. However, UNIX provides pipes, which enable one
to feed the output of one command into the input of another simply.

There is a command, 1ess, for displaying text files one screenful at a time.
Hence almost no program offers this functionality: if you want it, use the
program in combination with less!

pc30:7$ 1s -1 | less
here the output of 1s -1 is fed into the input of less.

The command also works to display text files:

pc30:7$ less thesis.tex

The | symbol is not the vertical line at the top left of the keyboard, but rather the (sometimes broken) vertical
line to the left of ‘z’ on a UK keyboard. On a US keyboard it is found above the enter key.

The 1ess Command

You may wish to be familiar with the following keypresses:
{space} next page
{enter} next line

d scroll about half a page
/text search for next occurrence of text
Mext search for previous occurrence of text
n repeat previous search
1 toggle case sensitivity of searches
\% start vi
q quit
{ctrl}L redraw screen
b previous page
] previous line
u reverse scroll c. half a page

G goto end of file
numG goto line number num (1G for beginning)
{ctrl}G display current position in file

The name ‘less’ is a pun on the older and simpler UNIX command ‘more’: less is more than more! If faced
with having to use more, be aware than reverse scrolling with pipes may not be possible, and commands such
as ‘G’ might not exist.

Searches actually use regular expressions (see later). You may need to place a \ before some characters,
[E*’ 3

especially *,**’ ‘[* and ‘]’. If really stuck, replace an awkward character with a °.’, for a full-stop will match
any character.

To exit vi, after accidentally starting it, type ‘: ! {enter} .

Links

One useful feature of the UNIX filesystem is its support for symbolic links.
These are similar to Windows shortcuts, and MacOS’s aliases. Unlike
Wilndows shortcuts, they are interpreted by the kernel, so behave consistently
with all applications.

A soft link (also called symbolic link) is simply a file which names another
file (or directory) to use whenever it is referenced. It is created with the
1n -s command, which takes two arguments, source and target.

If in TCM one wishes to be able to move to one’s rscratch directory as
though it were within one’s home directory, then
pcl:"$ 1n —-s /rscratch/spgqr rscratch

pcl:"$ 1s -1 rscratch
lrwxrwxrwx 1 spgr tcm 14 Sep 21 18:03 rscratch -> /rscratch/spqr

is the answer. Similarly, if one wishes a 90MB+ Castep executable to appear
in one’s home directory in ~/bin so that one can simply type castep to

run it, then

pcl:"$ 1In —-s /rscratch/CASTEP/bin/8.0/castep—-8.0_ifortld _mklfft \
“/bin/castep

pcl:"$ 1s -1 bin/castep

lrwxrwxrwx 1 spgqr tcm 50 Sep 21 18:13 bin/castep —>
/rscratch/CASTEP/bin/8.0/castep—-8.0_ifortld _mklfft

But beware of surprises should the target be modified or removed.

Using 1n without the —s will produce a ‘hard’ link. These are generally less useful and more confusing.
Using rm on a link deletes the link, not the target; cp copies the target, not the link.

The target does not have to be an absolute path. It can be relative, and it can contain °..".

Note that the size reported for the link by 1s is simply the number of characters in the target’s name, which
accurately suggests how a link is stored.

Text Editors

A text editor is not a word processor, and vice versa. Word processors
break up lines spontaneously and concern themselves with the minutie of
typography. This is not what a programmer wants.

The ubiquitous UNIX text editor is vi. It is based on a line-mode editor,
and has an interesting user interface as a result. The most important thing
to know about it is how to get out of it, and the answer is to press escape,
followed by ‘:q!” and enter.

Although vi is fast, powerful, and possibly worth learning, most people
prefer to start with emacs. Emacs is much, much more complicated (and
slower) than vi, but is friendlier in letting one type and use the cursor keys
in a natural fashion.

As for quitting emacs, {ctrl} X{ctrl}C is the answer.

Many alternatives to emacs exist: gedit and kate being two alternatives.
They are less powerful than emacs, but look more like editors on
MacOS/Windows.

For working with IX[EX documents, a dedicated IX[[EXenvironment, such as
texstudio, may be preferred.

10

Emacs

Emacs brings up its own windows if it can, and is best started with a filename
specified on the command line.

pc30:7$ emacs my_prog.f90 &
pc30:7$

The final & ensures that one immediately gets a prompt back in the xterm.
Otherwise, the prompt will not reappear until one exits the editor.

Emacs has a nasty habit of changing it behaviour subtly based on the sort of
file it thinks you are editting, with different ‘modes’ for text, C, IX[EX, etc.
These are meant to be helpful changes.

A process started with & is often referred to as a background process, as distinct from a foreground process
which keeps full control of the terminal until it exits.

Emacs will use a text mode interface if it cannot produce its own window. If you get the errors such as
‘Suspended (tty output) emacs’ or ‘Stopped emacs’ type ‘fg’ to make emacs a foreground
process again, then use {ctrl}X, {ctrl}C to exit.

All sensible text editors can search (forwards and backwards), search-and-replace, goto specified line number,
say which line you are on, discard changes made since last save, save file under new name, cut and paste
sections, and much else besides. It is worth becoming familiar with your favourite editor. Poor choices of
editor include xedit and pico.

11

Some Emacs Commands

(Many of these commands are also available from the menus.)

{ctrl}G Cancel current operation
{ctrl}{Home} Move to beginning of file
{ctrl}{End} Move to end of file
{ctrl} A Move to beginning of line
{ctrl }E Move to end of line
{ctrl}K Delete to end of line (Kut)
{ctrl}{space} Set mark
{ctrl}W Delete to mark (Wipe)
{alt}W Copy to mark
{ctrl}Y Paste last thing copied/deleted (Yank)
{ctrl}_ Undo (recursive) (underscore, not hyphen)
{ctrl}S Search (exit with {ctrl}G)
{alt} % Search and replace
{ctrl} X 52 Open second window
{ctrl} X {ctrl} S Save current file
{ctr]} X {ctrl} F Open new file
{ctrl} X {ctrl} C Exit

alty X goto-lineqenter; n oto line n
1t} X li Goto Ii
{alt} X auto-fill-mode Toggle automatic line wrapping

Using {TAB} will automatically complete the long {alt}X commands.
Emacs refers to {alt} as {meta}, and abbreviates it to ‘M’.

Having two windows displaying different, overlapping, or identical parts of the same file works perfectly,
changes in one are immediately reflected in the other.

12

Remote Display and X11

It is possible for a graphical application that is running on one computer to
display on another computer.

When you ssh from one computer to another various magic can happen that
allows X traffic to pass between computers so that:

pc25:7$ ssh pc2
pc2:7$ emacs &

will display emacs on the computer you are sitting at (pc25 in this example,
with emacs running on pc2).

Remote Display outside TCM
ssh 1s the answer, whether from inside to out or outside to 1in.

However some graphical applications produce a lot of traffic so things might
slow down due to the encryption overheads.

Over a slow link (e.g. mobile broadband), use ssh -C, which first
compresses the data before encrypting it.

Some ssh clients don’t forward X connections by default. They need the
options —X or —Y.

(If you are addicted to VNC, this needs to be tunnelled over ssh and to have the server started as
vncserver —localhost. If you don’t know VNC, I tend to regard it is being too complicated to be
worth investigating.

pc0:7$ vncserver —-localhost —-encodings "copyrect hextile"

laptop:™$ ssh —-fNL 5901:1localhost:5901 spgrl@pcO.tcm.phy.cam.ac.uk
laptop:~$ vncviewer ::5901

And even then it stores its password unencrypted in your home directory, which is far from ideal.)

13

A Process

A process is a single copy of a program which is running or, in some sense,
active. The shell is a process, as is the xterm, the window manger, emacs,
and even ls.

A process has resources, such as memory and open files, it is given time,
scheduling slots, executing on a CPU with a certain priority, it has resource
limits (maximum amounts of memory, CPU time, etc. it can claim). Lastly,
it has a parent. Each process is associated with a single user.

These resources are exclusive to each process, and no process can change
another’s resources. Processes are mostly independent.

Each process has a unique PID, its Process ID.

A UNIX process has a current working directory, and a place for
the three streams defined in C: stdin, stdout and stderr. To
Fortran programmers, these are respectively the things which respond
to read (%, *), write (*,+) and the place that the ‘floating point
exception’ error messages get written.

It also has a collection of environment variables. These are simply character
variables of the form

USER=spqgrl

(see also later)

14

Processes

It is usual to run several processes simultaneously: an xterm, a command
shell, an editor, a compiler, a program you have written, the window
manager, etc.

Occasionally it is necessary to exercise some direct influence on an
individual process.

The command ‘ps aux’ will show all the processes running on a machine.
This may be overwhelming, so
ps aux | less or
ps aux | grep uid may be more helpful. To request that a process
with a PID of 1234 exits, type
$ kill 1234
If that fails, try
$ kill -KILL 1234
though this gives the application no opportunity to shut itself down neatly.

If that fails, see your system administrator.

The command ‘top’ produces a continuously-updated display of active
processes. It is not a substitute for ps which can list all processes. Use
‘Q’ to exit from top.

ps aux | less causes the two processes ps and less to be launched ‘simultaneously’, and output to be
transferred from one to the other, possibly (probably) after some buffering.

Note that you cannot stop processes you do not own!
uid is short for UserID/UserIDentifier.

The grep command extracts those lines containing the given text: see also later.

15

Redirection

Most Unix commands can have their output redirected to files.

pc30:7$ 1s

results.dat rubbish.dat

pc30:7$ 1s > ls.out

pc30:7$ 1s

ls.out results.dat rubbish.dat
pc30:7$ less ls.out

ls.out results.dat rubbish.dat

Use > to send output to a file, and >> to append output to a file. To redirect
error messages as well, use >&. Unfortunately >>& does not exist.

$ 1s —-1d womble > output

ls: womble: No such file or directory
$ cat output

$ 1ls —-1d womble >& output

S cat output

ls: womble: No such file or directory

Used in combination with &, it 1s possible to start a process, log out and go
home, leaving the process running.

pc30:/scratch/spgrl$./cgion.x >& SiC.out &

Note that 1 s is unusual in that it changes its behaviour when used with > and switches to single column output.
You will not be able to reproduce the above exactly!

The cat command display the contents of a file by copying the named file to stdout. For this functionality it
1s much safer to use less, which copes correctly with binary files.

The non-obvious solution for >>¢& is ‘>>output 2>&1’.

16

File Transfer

The command scp provides basic file copying functionality.

pc3:/scratch/spgrl$ scp input.dat pc9:/scratch/spqgrl/

The syntax of scp is is almost identical to cp, except for the addition of
a machine name in either the source, or the destination. Like cp, one can
specify multiple source files if the destination is a directory:

pc3:/scratch/spgrl$ scp *.dat pc9:/scratch/spqgqrl/

scp will prompt for a password if needed.

For anonymous file downloads from remote sites, http is probably the
best answer: everyone has a WWW page. Use wget for command-
line downloads. The older answer was ftp, which should never be used
with passwords as it offers neither encryption nor challenges. The secure
replacement for ftp is sftp.

See also the section on t ar for more ideas.

17

Variables

All shells support two classes of variables. The most important, environment
variables are passed on to programs launched from the shell, and the other
class, shell variables are not.

Shell variables are used for defining your prompt, setting (or unsetting) automatic logout or mailcheck features,
and other aspects of the shell’s behaviour. They can also be used as a programming convenience.

To set a shell variable:
x=5

To set an environment variable:
x=5 export x

To see the result:
echo $x
(echo simply prints (echoes) its arguments).

One shell variable sets the default prompt string. Convention says that this string ends in ‘%’ for csh, ‘>’
for tcsh and ‘$’ for sh and bash, but ‘# for all shells if the user is root. However, modernists seem to be
breaking this convention.

Several characters are treated specially, hence the standard TCM prompt of

$ PS1="\h:\w\$ ’
> set prompt=’'%m:%"

o°

4
which gives prompts such as
pc30:7/talkss

For the full list of options, see the bash man page as appropriate.

18

Finding Programs

When a command is typed, it is first checked against the (short) list of shell
built-in commands. If not found, it is assumed to be an external command,
and is searched for by looking in the directories specified in the environment
variable called SPATH.

The path is an ordered colon separated list of directories to be searched:
$ echo S$SPATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin

For efficiency, Bourne-like shells remember where they last found a
command, and never look elsewhere for commands they have found once.

Tradition places the subdirectory bin of your home directory on the default
path, so that you can install and use programs merely by placing them in this
directory (which you may first have to create with mkdir).

Bourne shells can be confused by commands moving, and ‘hash -r’ is the solution.

19

.and /

The current directory, ‘., is a special case for the path. If present it will
always be searched without reference to hash tables. However, it shouldn’t
be present.

If the command name contains a ‘/’, the path is not used, and the precise
command specified is executed.

S cat test.f
write (%, =)’ Hello’

$ £f90 -o test test.f

S test

$./test

Hello

All UNIX systems have a command called test already as a shell built-
in function, so the first form will not execute the newly-compiled program
whether or not ‘. is on the path.

Should ‘.’ be on the $PATH, and, if so, where?

Some believe it should be first: if someone puts a program called ‘test’, or ‘wish’ in their current directory,
they clearly want that version executed, not the standard one. This is insane, as one then cannot do anything in
a directory to which others have write access, for others can booby-trap commands there, inluding 1s. If ‘. is
last on the $PATH then common command misspellings (e.g. ks’ and ‘mroe’) can still be used for this trick.

20

Command Arguments

In the wonderful world of DOS, the first 126 characters one types including
the command name are simply passed to that command, unchanged. The
command is responsible for all the parsing.

UNIX is very different. The command expects its arguments to be presented
as a list of words, and wild-card expansions, variable substitutions, division
into words, and similar processing, are done for it. This has one clear
advantage: whereas in DOS some commands understand how to process
wild-cards such as “*’ and ‘?’, and some do not, in UNIX all behave in the
same manner, because the processing is always done by the shell before the
command is even started.

This interfaces directly with C’s idea of argv.

$ cat > args

#!/bin/sh

echo "The first argument is: $1"
echo "The second argument is: S$2"
"D

$ chmod +x args

"D’ means type {ctrl}{D} — it indicates that no more data will be forthcoming. The cat command with no
arguments copies stdin to stdout. Here stdout is redirected to a file, and stdin is the terminal input, so it acts as
an extremely dumb ‘editor’.

Shell scripts refer to their arguments as $1, $2, etc.

Note the use of chmod to turn this text file into something that can be executed. In this case, a script, the first
line must start ‘# ! * and then specify the program which is to run the script, here, /bin/sh.

21

Hello world

$./args hello world

The first argument is:
The second argument is:

$./args "hello world"

The first argument is:
The second argument is:

$./args hello

The first argument is:
The second argument is:

$./args hello\ world

The first argument is:
The second argument is:

$ x=hello ; y=world
S ./args S$x Sy

The first argument is:
The second argument 1is:

$./args "$x Sy"

The first argument is:
The second argument 1is:

$./args ’'S$x Sy’

The first argument is:
The second argument 1is:

hello
world

hello world
world
hello

world

hello world

hello
world

hello world

$X Sy

Note the silent removal of excess spaces between words.

The double quote protects spaces from being treated as argument separators, whereas single quotes prevent

any expansions.

The semicolon separates UNIX commands placed on the same line, just as it would in C or perl.

22

$ mkdir test

$ cd test

S touch hello

$ touch world

$ 1s -1

total O

—-rw—r——r—— 1 spqgr tcm 0
—rw—-r——r—— 1 spgr tcm O

$../args =

The first argument
The second argument
$../args 7 "mir
The first argument
The second argument
S ../args '« 77
The first argument
The second argument

¢~

The character
directory.

Hello, again

is:
is:

is:
is:

is:
is:

Dec 20 9:37 hello
Dec 20 9:37 world

hello
world

/domus/spgqr
/home/mjr

*

is expanded to the home directory, and a tilde followed by a userid to that user’s home

Yet more examples can be found in the advanced section on page 39.

The t ouch command will create a file of zero length, or, if the file already exists, alter its last-modified time

to the current time.

23

Wild-cards

Most people are familiar with the wild-cards ‘*’ (any number of any
character) and ‘7’ (any single character), and the fact that neither will match

a leading ‘. These are expanded by the shell, and are not passed to the
program.

One can also specify a sequence of characters using square brackets.

S 1s

apple Bill ©pear
S 1s [a—-z]=*
apple pear

S 1s [A-Z]~*

Bill

S 1ls [a-mA-M] *
apple Bill

This assumes the sane collation ordering of A-Za-z. If one suffers a system which uses AaBb-Zz, then
[A-Z] » expands to all files starting with a letter other than ‘z’!

Those using bash can quickly see different collation orders by typing
$ LANG=en_US 1ls

and

$ LANG=C 1s

The ‘traditional’ order is that produced by LANG=C. Other settings ensure that things such as é, ¢, € and e are
all considered equivalent. Many programs assume a particular setting of the various LANG variables. Few are
tested with all possible settings.

(LANG variables include LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_NUMERIC.
(LC abbreviates locale.) Some programs will ignore all of them, some will respond to some of them...)

24

Scripts vs Typed Input

A shell script is run in a separate process from the invoking shell. Thus any
changes it makes to its environment are lost when the script exits.

To read commands from a file into the current shell, and interpret them as
though they had been typed in, bash users can type ‘source filename’
or use the older syntax ‘. filename’.

pcb52:7$ cat silly

#!/bin/sh

cd /

pcb52:7S ./silly
pcb2:7$. ./silly
pch52:/$

Note that the prompt shows when the current directory of the shell changes.

There is more about shell scripts in the ‘More Advanced UNIX’ section, later
in this booklet.

25

Printing

Three commands allow interaction with the print spooler:

l1pr sends a file to a printer.
1pq lists files queued for the printer.
1prm deletes a job from the queue.

All take an optional argument of *—P’ to specify the print queue:
$ lpr -Ppsc foo.ps

In general files sent to printers should be PostScript or plain text: printers
don’t understand pdf, gif, compressed PostScript et al.

Pipes can be used with 1pr:

$ psnup -2 foo.ps | lpr —-Pps
$ gunzip -c foo.ps.gz | lpr

Local commands may exist for turning on duplexing, printing to OHPs, and
other special requirements.

The psnup command rearranges a PostScript file to fit several pages onto a single page, thus saving trees.
This booklet was printed with

S psbook foo.ps | psnup -2 | duplex -land -Pps2

which does rather more processing. The duplex command is unlikely to be found outside of TCM, and
psbook reorders the pages suitably.

The lpr command rarely (never?) loses files, so careful use of 1pg and lprm is generally better than
approach of firing off multiple jobs until one is printed on a printer that you can find.

Sending EPS figures to a printer is often pointless: EPS is a fragment of PostScript (vaguely) akin to a
subroutine — it is intended to be included in other documents, after suitable scaling and translation, and does
does not in general print. Some applications produce EPS which is printable PostScript, and which is (almost)
conforming EPS, so does print. Some don’t. Commands such as eps2ps may exist.

26

Remote Commands

Using ssh you can trivially run commands on other UNIX computers to
which you have access. Both ssh and rsh copy their standard input to the
remote command, standard output of the remote command to their standard
output, and the standard error of the remote command to their standard error.

$ ssh pc2 1ls /
To print a document stored on your local computer on a remote computer:

$ cat foo.ps | ssh pcb2 lpr -Pps2
This also works the other way around:
S ssh pc52 cat bar.ps | lpr -Pps2

Remember about quotes and escaping characters? (: 0. 0 is the local DISPLAY value, 1localhost:12.0
the remote.)

S ssh pc52 echo $DISPLAY
:0.0

S ssh pc52 "echo SDISPLAY"
:0.0

S ssh pc52 "echo SDISPLAY’
localhost:12.0

$ ssh pc52 echo \$SDISPLAY
localhost:12.0

27

Configuration Files

Unix programs often store their configuration files in one’s home directory,
with names starting with °.”.

Often known as ‘dot files.’
Such files are not shown by 1 s by default, nor does ‘*’ match such files.

To find them, 1s —a will serve.

.bash_profile commands executed by bash login shells

.bash_login commands executed by bash login shells
(if no .bash_profile file is found)
.bashrc commands executed by bash interactive non-login shells
.config directory tree full of configuration for XDG-compliant
applications
.fvwm2rc fvwm2’s configuration
.mozilla directory tree full of Mozilla and Firefox configuration
.pinerc alpine’s configuration
.profile commands executed by [ba]sh login shells

(if neither .bash_profile nor .bash_login files are found)

Many are text files which you are free to change, and there are many not
listed above.

Rampant Customisation

People creating hundreds of personalised settings could be regarded as wasting their time. It is probably a bad
path to follow, and copying large numbers of settings from other people without checking them can lead to all
sorts of problems. You should not let people give you ‘dot files’ which you don’t understand.

28

Maths

bc -1 starts up a simple calculator (basic calculator) accepting things like:

pc30:7$ bc -1

(44+6) /5%2
4.00000000000000000000
quit

pc30:75S

Note the non-algebraic, but left-to-right, precidence.

Without ‘-1’ it acts as an integer calculator. The only function is sgrt.
With it, it acts as a fixed point (20 decimal places) calculator, and defines
the functions s (sine), c (cosine), a (arctangent), e (exponential), 1 (natural
logarithm) and j (n, x) (Bessel function).

pc30:7$ bc -1

dxa (1)
3.14159265358979323844
scale=40

dxa (1)
3.1415926535897932384626433832795028841968
scale=0

5/4

1

obase=16

255

F'F

It can be used with pipes too:

pc30:7$ echo 5«7’ | bc
35

There is also a GUI calculator, xcalc, but its lack of support for cut and paste is tedious. More modern
alternatives include kcalc and gnome—-calculator, but these are useless in scripts.

29

Manual Pages

The man command is probably the most important UNIX command: it
displays the on-line manual, which will explain all the others anyway.

An individual page covers a single command, routine, or file. Some are a
few lines long, and some (such as that for bash) many thousand of lines.

The pages are grouped into chapters, depending on the class of the item
described. Important chapters include:

1 user commands

Ix X-based user commands

2 system functions

3 C functions

3f Fortran functions (if present)
5 configuration file formats

8 administrative commands

The Synopsis section should give a brief summary of the syntax for the command and a summary of what it
does. Things inside [] are optional, and the syntax [a | b] shows that a and b are mutually exclusive options.
It is possible to nest the brackets and/or symbols.

Single-character options are often grouped, so that ‘[-alb]’ means any, all, or none of the options, i.e.,
nothing, ‘-a’, ‘-b’, or ‘-ab’.

Linux’s man pages tend to be somewhat patchy in quality — commercial UNIXes are often better.

Some man pages (such as exit, printf, mkdir, cvs, crypt) appear in multiple sections. The whatis
command will display all appropriate summaries, whereas the man command may display just one, using a
precedence order which is non-obvious.

To specify a precise page, one must specify the section too, as in
man 3 printf

30

Reading a man page

WC(1) FSF WC(1)

NAME
wc - print the number of bytes, words, and lines in files

SYNOPSIS
we [OPTION]. .. [FILE]. ..

DESCRIPTION
Print line, word, and byte counts for each FILE, and a
[etc.]

The header line repeats the name of the man page, ‘wc’, and gives the chapter
number in brackets. It may also give the author in the centre (Free Software
Foundation).

The next line is very important: it is a one-line summary of the page, and
this is the line which is used when searching for man pages, and which is
returned by the what i s command.

$ whatis wc

wc (1) - Counts the lines, words, characters, and bytes in a file
S man -k words | grep 1
wc (1) - Counts the lines, words, characters, and bytes in a file

The what is command prints the one-line summary of a manpage.

The man -k command (equivalent to the apropos command) searches the whatis database for the keyword
given. In the example above, the output is piped through grep to ensure that only answers containing ‘1’ (i.e.
from chapter one) are given.

31

More Advanced UNIX

A small, random selection of topics in greater detail follows.
Searching for Text - grep

The grep command is very useful for searching files. It will print every line which contains a given string:

$ grep ’'TOTAL ENERGY’ output.dat
TOTAL ENERGY IS -745.4575585
TOTAL ENERGY IS -783.9824520

with the ‘~v’ option it will print every line which does not contain a given string:
$ ps aux | grep -v root
The tail command can also display from a file as it grows:

S cgion.x >& output.dat &
S tail -f output.dat

One can even use
$ tail -f output.dat | grep ’'TOTAL ENERGY’
To stop tail -f£, press {ctrl}C.

Some characters need quoting from the shell, and it tends to be safest to enclose the search string with quotes.
For instance, if looking for running processes,

S ps aux | grep R

is mostly right, but

S ps aux | grep ' R '

will avoid any process with an ‘R’ in its name, and just match those with an isolated R (presumably the status
column).

If one merely wants to count the number of matches,

S ps aux | grep -v root | wc -1

certainly does the job. However, the ‘—c’ option to grep is somewhat quicker and simpler:
S ps aux | grep —-cv root

Regular Expressions
Most people are familiar with the shell wild-cards ‘*” and ‘?” used for filename ‘globbing’. However, the

general syntax for wild-cards for matching text, as used by grep, perl, vi, emacs and many others,
known as regular expressions, is rather different.

32

The character corresponding to ‘?°, which matches any single character, is *.’.

$ grep ’independ.nt’ /usr/share/dict/words
independent

The file /usr/dict /words traditionally exists on UNIX systems, and contains a list of English words, one
per line. More modern UNIXes prefer to call it /usr/share/dict/words.

S wc -1 /usr/share/dict/words
304495 /usr/dict/words

The characters ‘~” and ‘$’ match the beginning and end of lines respectively:

$ grep ’"pret$’ /usr/share/dict/words
interpret

$ grep ' “pret’ /usr/share/dict/words
pretend

pretense

etc.

If one needs to search for areal *.’, **’, or ‘$’, it must be preceeded by a \. (IATEX also uses this convention
to ‘escape’ most of its special characters, as does the shell.)

$ grep 1.2’ results.dat
1.234

152

31.27

311423

$ grep "1\.2’ results.dat
1.234

31.27

$ grep ’ 1\.2’ results.dat
1.234

Repeats and Ranges

The character ‘*’ means any number (including zero) of the preceding character.

$ grep "a.*xe.xi.xo0.*u’ /usr/dict/words
adventitious

facetious

sacrilegious

33

Thus “.*’ is the equivalent of ‘*’ as a shell wild-card.

Square brackets denote ranges, just as for shell wild-cards.

S grep —-c¢ ' [A-Z]’ /usr/dict/words
4974

$ grep ' [aeiou] [aeiou] [aeiou] [aeiou]’ /usr/dict/words
aqueous

Hawaiian

obsequious

onomatopoeia

pharmacopoeia

prosopopoeia

queue

Sequoia

(Words starting with a capital letter, and words containing at least four vowels in a row.)

grep and Regular Expressions

Most greps offer extended regular expressions, enabled by specifying ‘~E’. These enable one to specify
repeats more explicitly:

$ grep -E ' "o.*[aeiou] {4}’ /usr/dict/words
obsequious

onomatopoeia

S grep -E '""a.{9,}d$’ /usr/dict/words
aboveground

abovementioned

absentminded

aforementioned

One can also specify multiple expressions to match with extended regexps:

S ps aux | grep -Ev ' “root]| “rpc| lp| exim’

More ideas

A "~ as the first character of a range negates the range (even for non-extended regexps).

$ grep —-Ei " ["aeiou]{6,}$’ /usr/dict/words
rhythm

Syzygy

34

(The ‘-1’ makes the search case-insensitive, thus removing UNESCO from the answer.)
Find lines containing only numbers

$ grep ' " [0-9+.eE-]1*S’

(note ‘. stands for itself with a range, and ‘-’ for itself if it is the first or last character.)
Find lines containing more than 72 characters

S grep -E "7.{73,}$’

or simply

S grep -E " .{73}'

Find lines containing two or more adjacent capitals
$ grep -E ' [A-Z2]1{2,}’

And read the man page. ..
More regular expressions

The search facility of more and less (and hence of man), and also of vi, is based on regular expressions.
Hence one can get funny results if searching for a special character such as ‘., ‘[or **’.

This can be avoided by preceding such characters with a backslash.

$ grep "\.’ /usr/dict/words
e.g

i.e

Ph.D

U.S

U.S.A

Emacs offers both a fixed string and a regexp search.

It is worth learning a little about regular expressions: they can be very useful, and very many programs can
use them: awk, ed, emacs, expr, grep, less, more, perl, python, sed, vi to name a few.

To perform replacements more complicated than single character substitutions, one needs to use sed.
$ sed "s/colour/color/g’ <english.txt >foreign.txt

This finds all occurances of “colour” and replaces them with “color”. Note that “Colour” will not be replaced.
Without the g flag, only the first occurance on each line will be replaced.

Finding files: find

The find command finds files based on their metadata (not their contents). It can find by name, size,
modification date, type, etc., and it will descend a tree starting at a given directory. Hence

35

$ find © -type 1 -print

will list all symbolic links in your home directory, and
S find 7 -size +4m -1ls

all files larger than 4MB.

N.B. Some £ind commands need +4096k, not +4m.

The first argument to £ind is the directory to start searching from so, if you wish to start at the current
directory, a dot must be used.

find . —-size +4m -1s

And NEVER try something like

S find / -size +4+4m -1s

because this will search through all remotely-mounted disks too, which could be a significant fraction of a TB.

Instead use

$ find / -xdev -size +4m -1ls

if you really must search the root filesystem. The —xdev flag will prevent find from moving across mount-
points.

All finds have a flag with the functionality of —xdev. Unfortunately, some call it -mount, others —x, ...

The find command effectively evaluates a string of conditions, stopping when the first one evaluates to false.
So

$ find . -name ’*ps’ -size +1m -1s

will list all files whose names end in ‘ps’ and which are over 1MB in size. The operator ‘~print’ prints
the current filename, and returns true. The operator ‘~1s’ prints something like the output of 1s -1 for the
current filename, and returns true. Use neither, and nothing may result.

Replace ‘~size +1m’ by ‘-mtime -8’ for all ps files modified in the last week.

(If you suffer from a £ind which does not support —1s, then
find . —-name core —-exec ls -1 {}\;
is the answer.)

36

File Archives

UNIX’s standard archive program, tar, produces a single file containing an archive of all its input files.
pc30:7$ tar —-cf thesis.tar thesis

will produce an archive called thesis.tar contain the directory thesis (and its subdirectories). Add a
‘v’ to the options to see each filename as it is added to the archive.

To examine the contents of such an archive, use
pc3:7$ tar —-tvf thesis.tar

and to extract (which will over-write existing files)
pc3:7$ tar —-xvf thesis.tar

and to remember those odd arguments:

c — create
t — table (of contents)
X — Xtract

However, tar is rarely used on its own. It is often used for medium or long term storage, in which case it is
usually used in conjunction with one’s favourite compression program:

pc3:7$ tar —-cf - thesis | gzip > thesis.tar.gz

and to reverse

pc3:7$ gunzip -c thesis.tar.gz | tar —-tvf -

Here naming a file ‘~’ stands for stdin or stdout as appropriate. The default file which tar will write to in
the absence of any ‘f’ argument is the tape drive (which probably doesn’t exist). Yes, tar abbreviates Tape
ARchive.

Gnu’s version of tar accepts the option z to mean compress with gzip, so that one can use:

pc3:7$ tar -czf thesis.tar.gz thesis
pc3:7$ tar -tvzf thesis.tar.gz

but do not rely on all tars accepting this. (If z is not given, recent versions of Gnu’s t ar automatically detect
most forms of compressed archive, and decompress appropriately.)

Another use of tar is for copying whole directory trees. This is much easier with Gnu’s syntax:

37

pc30:/scratch/spgrl$ tar —-cf - runl | rsh pc20 \
tar -C /scratch/spgrl -xf -

to copy the contents of the directory tree /scratch/spgrl/runl on pc30 to the same place on pc20, or
even

pc30:/scratch/spqrl$ tar -cf - runl | tar -C /usb -xf -
which will copy the directory tree to /usb/runl on the same machine.

If suffering from a ‘traditional’ tar, these commands become

pc30:/scratch/spqrl$ tar —-cf - runl | rsh pc20 \
cd /scratch/spgrl \; tar -xf -

pc30:/scratch/spgrl$ tar -cf - runl | (c¢d /usb ; tar -xf -)

Shells
Shells and Redirection

The use of “|°, >°, *>>’, *>¢&’ and ‘>>&’ has already been covered. Assuming one is using a Bourne shell, it
is also possible to redirect stdout and stderr separately:

S 1s -1d

drwxrwxrwt 6 root root 4096 Dec 18 18:41
$ 1s —-1d . > output

S cat output

drwxrwxrwt 6 root root 4096 Dec 18 19:48
S 1s —-1d womble > output

ls: womble: No such file or directory

$ cat output

$ 1s —-1d womble > output 2>errors

$ cat output

S cat errors

ls: womble: No such file or directory

Indeed, in the Borne shell the > syntax is really short for unit no>, with a unit number of 1 (stdout) assumed
if none is given. The unit number of stderr is 2. (The C unit numbers are the ones which are relevant here, as
UNIX is written in C. That to Fortran stdout is usually 6 is irrelevant.)

Note too that if no output is produced, the file to which output is redirected with > will be truncated to zero
length, losing its previous contents.

One can redirect stdin too:

38

$ cat input.dat
7+5

S bc < input.dat
13

This is very useful for running commands non-interactively.

Finally, there is a special file called /dev/null which simply discards anything written to it. This can be
useful for throwing data away (though such tricks should be used with caution.. .):

pc30:7$ rm /womble

rm: /womble: No such file or directory
pc30:7$ rm /womble >& /dev/null
pc30:7$S

Shells and Command Arguments

It is the shell which is responsible for expanding command arguments and passing them to the command.
Hence here a few more examples.

$ x="hello world"

$./args $x

The first argument is: hello
The second argument is: world
S ./args "s$x"

The first argument is: hello world
The second argument is:

$./args ' S$x’

The first argument is: $x
The second argument is:

$./args \$x

The first argument is: $x
The second argument is:

Note:

variables expanded first, then result split into words.
variables in double quotes are expanded.

variables in single quotes are not expanded.

\ escapes the $ character.

Backquotes

There is one other sort of quote in 7 bit ASCII, the backquote or tic, usually found at the top left of the
keyboard. Anything between backquotes is executed in a sub-shell, and is substituted by anything sent to
stdout.

39

S 1s

hello world

$../args ‘ls®

The first argument is: hello
The second argument is: world

S echo "3+4" | bc
7
$../args ‘echo "3+4" | bc!

The first argument is: 7
The second argument is:

Note that stderr is not collected by the backquotes:

$./args ‘ls womble‘

ls: womble: No such file or directory
The first argument is:

The second argument is:

Shell Startup

Whenever a new shell is started, it sources certain files, depending on both the type of shell and whether or not
it is a login shell (not by default). For bash the sequence is:

/etc/profile (if alogin shell)
"/ .bash_profileor "/.bash_loginor “/.profile (if a login shell)
“/ .bashrc if not a login shell

(For sh, as bash but without files containing ‘bash’ in their name.)

Scripts read on login may produce output (‘Good morning, sir, you are 4KB below your disk quota again’).
Scripts read by non-login shells may not — if they do, all sorts of oddities occur, especially with rcp, rsh and
similar.

Bash’s startup sequence is also slightly odd. Some systems are configured so that .bashrc is read by login
shells too, and some so that a global /etc/bashrc exists.

Any shell is either a login shell, or the descendant of a login shell, so anything which will be inherited need
only be set once in the files read only by login shells. Unfortunately many installations of X get this wrong.

Shell startup is depressingly common: many programs do it to expand wild-cards, or because a C library
function called system () neatly does the fork (), exec ("/bin/sh", ...),wait () magic one needs
to launch another program and wait for it to finish. Thus simple shell startup needs to be fast. For /bin/sh
it is: no configuration files read unless it is a login shell.

Needless to say, a file whose contents are executed every time one logs in is really quite important. Mistakes
here can even prevent one logging in at all. (So, if you feel the urge to change one of these files, do test it by

40

logging in (ssh or rlogin to localhost) before logging out and then finding that you cannot get back
in.)

Do also make sure that you keep half an eye on the contents. In TCM one can delete these files and still
have a workable account. For systems where this is not true, tradition places minimal working examples in
/etc/skel, or otherwise as advertised (TCM currently uses ~/ . . /skel).

Scripts in which shell?

Writing scripts to do common tasks can save much time, and the shell provides a simple language well-suited
for manipulating files and jobs.

The first problem is to choose one’s shell. The Bourne shell is not invariably the correct answer. One should
not forget alternatives such as awk, perl, python and even sed.

There is also the matter of which of the various Bourne shell derivatives to use. Here we shall look at the lowest
common denominator, which is therefore likely to lead to best portability. There are some useful extensions
in other shells: bash supports basic arithmetic operations. However, one can live without.

The shell gets used for the very basic control structure, and almost everything else is done by external
programs. The result is often somewhat inefficient, so really serious scripts should be written in perl,
python or C.

Special variables

We have already seen that $1 to $9 contain the first nine parameters passed to the script. $0 actually contains
the script name itself, as typed, and $# the total number of arguments.

The command shift moves all arguments, except $0, up one, with $1 disappearing, and the tenth parameter
(if any) becoming $9, and $# decremented. It is an error to shift when $# is zero.

Other special variables include $? which returns the exit status of the last command, and $$ which returns the
script’s PID.

A variable name can be enclosed in {}, and must be if followed by an alphabetic character.

S x=foo
S echo $xbar

$ echo ${x}bar
foobar

Return Codes
Each process should exit with a code of zero if it has been successful, and non-zero if it has failed. As there

are more ways of failing than of succeeding, there are more ways of expressing failure than success. One can
usually find the return code of the last process by typing echo $72.

41

ls -d /
echo $7?
ls -d /womble

s: /womble: No such file or directory
echo $7

= v =y O 0 .

Here the 1s command, a separate process, has produced a return code of zero when it has been successful,
and an error message and a non-zero return code when it failed to do what was requested of it.

It is good practice to check return codes when writing shell scripts.

Simple if statements

#!/bin/sh
if cd S1
then
echo We can change directory to $1
if touch womble
then
echo And we can create files in it
rm womble
fi
else
echo We cannot cd to $1
fi

Note that the condition expression is simply a command. A command which executes successfully gives a
return code of zero, which is considered to be true. One which fails, non-zero, and false.

Yes, this 1s the opposite of most programming languages. Note too the use of £i for ‘endif’.
testing times

The command t e st allows one to test most aspects of file existence, and some string operations too. Common
uses are

test -d dir: true if dir exists

test —-f file: true if file exists

test strl = str2: true if strings are equal
test intl -eqg int2: true if integers are equal

The command [is a synonym for t est, and if invoked as [the expression must be terminated by a] preceded
by a space. So

42

if test -d /temp
can equally, and more usually, be written
if [-d /temp]

For integer comparisons, —1t, —gt and —ne exist, and all comparisons can be negated with a leading ‘!’, such
as [! -d /temp]

See ‘man test’ for more.
expressing Oneself

The expr command performs simple arithmetic and string matching functions. It is fussy about spaces, but
more universal than bc, and it can handle strings. See its man page for full details.

#!/bin/sh

x=1

while [$x —-le 12]
do

echo $x ‘expr $x '’ S$x°
x=‘expr S$x + 1°
done

It is tempting to use the bash arithmetic extensions, and to write the loop body as

echo $x $(($x * $x))
x=$(($x + 1))

If you are tempted, be sure to change the first line to read #! /bin/bash, rather than fall into the Linux
sh-is-always-bash trap.

For loops

#!/bin/sh
for £ in ‘seg 1 9°
do

rsh pc$f status
done

used to display the status of TCM'’s first nine PCs.
Processes: their Life and Death

Parents are important at two points in a process’s life. At birth, when it receives its inheritance, and at death,
when it needs to inform its parent of its demise. Orphans are not permitted: they are immediately adopted, or

43

re-parented by a special process called init, whose PID is one, and which is responsible for many house-
keeping tasks.

When a process dies, its resources are immediately freed. It will get no more scheduling slots on the CPU, its
memory will be reclaimed, its open files closed, etc. Its final act is to inform its parent of its death. The main

reason for having children is to get a specific job done. Thus a process needs to be informed when its children
die.

The parent will receive a signal when a child dies, and then it must collect the final message from the child,
which will be a return code indicating whether the death was voluntary or compulsory, and whether the process
had a successful life. Generally a record is also written to the process accounting file when a process exits.

A child which has died but which cannot successfully communicate this fact to its parent becomes a zombie.
Hence it is important for init to re-parent things.

Zombies are marked by a ‘Z’ in the output of ps. Killing zombies is not very important: they do little harm.
When their wayward parents die, init can re-parent and remove the zombies.

Note also the meanings of the memory fields in the output of ps:

“$ ps aux

USER PID %CPU S$SMEM VSZ RSS TTY STAT START TIME COMMAND
spqgrl 558 94.4 17.3 6206120 1060292 pts/0 S1+ 10:02 244:34 matlab

RSS: Resident Set Size, amount of physical memory being used
VSZ: Virtual SiZe, upper bound on amount of physical memory wanted
9% MEM: RSS as percentage of machine’s memory

44

X11 and GL

The standard way of displaying accelerated 3D graphics on UNIX is via a system called GL (similar to Direct X
on MS Windows systems). All our PCs support GL, with varying amounts being done in software or hardware.

For almost everything done in TCM, hardware acceleration is unnecessary. Relatively few applications use
it at all, and even those which do (VMD, pymol, gdis, xcrysden, Mathematica) do so much other processing
that even an infinitely fast graphics card would only increase the frame-rate by a factor of two to three in most
cases.

The point at which the distinction between proper hardware acceleration, and software emulation, becomes
important is when the hardware acceleration is buggy. At the moment, this is the case on rather a large number
of TCM’s computers. Fortunately most applications either do not trigger the bugs, or do so in a harmless way.

It seems to be harder to turn off hardware acceleration with recent X servers, and certainly the mechanism for
doing so keeps changing. Rather than putting instructions which are likely to date rapidly onto paper, at this
point it seems best to point to
http://www.tcm.phy.cam.ac.uk/internal/computers/GL.html

One unfortunate aspect of X11 is unchanging. If you exceed your disk quota, and then ssh between two TCM
machines, you will find yourself unable to open any more windows until you correct the quota problem and
log out. I assume this piece of poor design is left in the xauth program as an instructive lesson to others.

45

Compiling

Though the concepts are simple, it is amazing how many misconceptions survive.

Anyone sane writes code in a standardised language (C, C++, Fortran, etc), then relies on a compiler to
translate it into the language of a specific CPU. That language, machine code, is just a heap of unreadable
binary. Assembler is a human-readable language with a trivial translation to a specific machine-code, and
potentially containing friendly label names which can be removed by an assembler. Attempting to write
assembler is not bright unless one wishes to worry about the precise instruction set of today’s processors,
change it when tomorrow’s processors come out, and to worry about the precise function calling mechanisms
of your favourite operating system(s).

A compiler translates source code (C/C++/Fortran) to an object file which contains machine code for the
functions and subroutines in the source file, and also any data sections required for constants. It needs to
contain the names of the functions and global variables, but no information about the number of arguments
(which may be variable), the return value, or any names of local variables, line numbers in the original source,
etc. Debugging options may be available to include increasing amounts of information about local variable
names and original source line numbers.

A library is simply an archive file containing multiple object files in a single file.

In C/C++, a header file (or include file) contains function prototypes, information about the arguments and
return codes of functions. Without this the compiler cannot check whether calls to functions are correct, and
one is living very dangerously (not least because a return type of int for all functions will be assumed). In
Fortran such information ends up in module files, which not human readable, and are compiler-generated from
the corresponding source file.

The final stage of building an executable is linking. An object file contains no information about how to find
those functions which it itself does not define, and almost all programs have some, such as printf, read or
write. It also lacks the necessary startup code which the operating system requires when starting a program.
Compiling and linking often happen with a single command, such as

gfortran test.£f90

but that does not mean there are not two distinct phases, which are readily separated.

gfortran -c test.£f90
gfortran test.o

Two things to be aware of. Firstly, compilers tend to read from left to right, so commands such as
£90 test.f90 -03

are probably mistakes — compile test . £90, then turn on optimisation. What is wanted is

46

£f90 -03 test.f90
Also rubbish is
f90 -1lnag test.f90

which means use the nag library to resolve any unresolved symbols, then compile and link test . £90. Given
that the compiler has not been asked to do anything, there will not be any unresolved symbols when it meets
the library. What is wanted is

f90 test.f90 -1lnag

Secondly, the library option —1foo is merely a convenient shorthand for ‘search for 1ibfoo. so, then
libfoo.a, in a set of standard locations.” If you have installed a library somewhere non-standard, there is
nothing wrong with specifying its precise location explicitly

£f90 test.f90 /rscratch/spgrl/lib/libfoo.a

has always seemed to me simpler than the alternative of

f90 -L/rscratch/spgrl/lib test.f90 -1foo

not least because there can be no ambiguity about which 1ibfoo one gets in the first version.

Some modern compilers are less fussy about the order of their arguments. This can cause surprises, and, in
some cases, is caused by the front-end reordering the arguments then calling a fussy backend. This can go
very badly wrong if the re-ordering is not the one you wanted!

Old-fashioned people would expect commands such as
cc -03 test.c -02 test2.c

to build an executable from those two source files, compiling the first at optimisation level 3, the second at
optimisation level 2.

47

Installing Software

It is likely that at some point you will wish to use some software which is not installed in TCM, despite being
distributed at no cost. If several people wish to use it, then it may be best that it is installed centrally and
supported. If there is an official Ubuntu package, it may be simplest to hassle the IT support people to install
it anyway.

But, for a quick experiment at a weekend, why not install it yourself? Almost no Linux software requires root
privilege to install. Certainly Castep, Matlab, Mathematica, gnuplot, jmol, LibreOffice, Firefox, etc. do not.
Many are distributed as binaries, and simply need to be untarred. Even if compilation is necessary, the recipe
is generally simply

tar —-xf foo.tgz

cd foo

./configure —--prefix=/rscratch/spqgrl/opt
make

make install

or, for Python modules

tar —xf foo.tgz
cd foo
python ./setup.py install —--prefix=${HOME}/.local

or simply
pip install —--user foo

(One should read any files entitled ‘README’ or ‘INSTALL’ after the initial untarring.)

The UIS runs a good course entitled ‘Unix: Building, Installing and Running Software’ whose synopsis starts
‘It is common for a student or researcher to find a piece of software or to have one thrust upon them by a
supervisor which they must then build, install and use. It is a myth that any of this requires system privilege.’

Many rpms (the RedHat / SuSE package format) are fully relocateable, and contain no interesting installation
scripts. For these

rpmZ2cpio foo.rpm | cpio —-id

suffices to extract / install them. Similar tricks apply to . debs, the Debian/Ubuntu package format.

48

Index

*5,24, 28,33 compiling, 4647 1s,3-7,9,28
., 20, 25, 28, 33 configuration files, 28
A, 20 configure, 48 man, 31, 35
/.4 cp, 3,9, 17 manual pages, 30
/dev/null, 39 _ mkdir,3
.22 directory, 2—4 module, Fortran, 46
9.5.24.33 do, 43 more, 8, 35
[, 43 done, 43 mv, 3
#1.21.43 c(;ot files, 28, 40—41 object file, 46
$. 33, 39 uplex, 26
$0, 41 echo, 18 PATH, 19, 20
$1,21,41 emacs, 11 perl, 4l
$2, 41 EPS, 26 pfarmissions, 6
$LANG, 24 eps2ps, 26 pi, 29
$PATH, 19, 20 export, 18 pico, 11
$PS1, 18 expr, 43 PID, 14, 41
$#, 41 pipe, 7, 15
$$, 41 fqg, 11 PostScript, 26
,7,15 find, 35, 36 printing, 26
<, 38 folder, 2 process, 14, 15, 44
>&, 16 for, 43 prompt, 18
>, 16, 38, 39 foreground, 11 ps, 15,32,44
>> 16 ftp, 17 psbook, 26
,39 psnup, 26
} 33.34 GL, 45 python, 41, 48
L 23’ grep, 15, 32-35 o
. gzip, 37 redirection, 16
, 39 .
regular expressions, 32—35
awk, 41 hash, 19 return code, 41
if, 42 rm, 3,9
background, 11 installing software, 48 rmdir, 3
backquote, 39 RPMs, 48
bash, 40, 41, 43 kill, 15
be, 29 scp, 17
by, 11 less, 7,8,35 search, 35
library, 46 sed, 35, 41
calculator, 29 link, 9 setup.py, 48
cat, 16, 21 linking, 46 sftp, 17
cd, 3 1n,9 sh, 21, 38-40, 42, 43
chmod, 6, 21 locale, 24 shell, 25
collation order, 24 1lpg, 26 scripts, 25, 41
command arguments, 21-23, lpr, 26 variables, 18
39 lprm, 26 shift, 41

49

source, 25

ssh, 27

ssh, 27

standard error, 27
standard input, 27
standard output, 27
string search, 32
system (), 40

TAB key, 5, 12

tail, 32
tar, 37

test, 42,43
top, 15
touch, 23

uid, 15
UNIX commands, 51

variables, 18, 21
environment, 14, 18
shell, 18

vi, 10

wc, 31, 32

wget, 17
whatis, 31
while, 43
wild-cards, 5, 24
word list, 33

X11, 13,45
xcalc, 29
xedit, 11
xterm, 2

zombie, 44

50

a2ps file

bc

cal month year
cd

cd dir

chmod go= file
cp filel file2

cp files...dir
date

du -skdirs...
echo text

env

file file

kill pid

kill -KILL pid
less file

lpr file

lpr -Pprinter file
lpg

1s

1s —-1ltr

man command
man -k keyword
mkdir dir

mv filel file2

mv files. .. dir
nice -15 cmd args
passwd

ps / ps aux
quota

rm files. ..

rmdir dir
status

time command
top

wc file

xterm
Useful keypresses:

{ctrl} A — begining of line
{ctrl}D - terminate input

30 UNIX Commands

Print text file, two pages per sheet

Fixed point calculator. See page 29.

Show calendar (use four digit year!)

Change current directory to home directory
Change current directory to dir

Prevent others from reading file

Copy filel to file2, overwriting file2 if it exists
Copy multiple files to a directory

Show date and time

Show disk usage of dirs

Repeats its arguments

Display environment variable settings

Guess file type

Ask process to exit

Cause process to be killed

View a file, page at a time. See page 8.

Print file (text or Postscript) to default printer
Ditto, to named printer

List printer queue (can add —P)

List contents of directory

Ditto, with sizes etc., and sorted by modification time
On-line manual for command

Search on-line manual for keyword

Make directory

Move (rename) filel, deleting file2 if it exists
Move multiple files to a directory

Run cmd at reduced priority

Change password

List processes / list all processes

Show filespace quota

Delete files

Remove directory (if empty)

Show machine’s status (TCM only)

time a simple command

View process activity. Press q to quit

Count lines and words in text file

A command shell in a window

{ctrl}C — terminate command
{ctrl}E — end of line

{ctrl}H — delete (if all else fails) {ctrl}Q — resume after {ctrl}S

{ctrl}S — pause display

{ctrl}Z — suspend process

51

