
UNIX:
an Operating Environment

MJ Rutter
mjr19@cam.ac.uk

Lent 2004

Bibliography

Computer Architecture, A Qualitative Approach, 3rd Ed., Hennessy,
JL and Patterson, DA, pub. Morgan Kaufmann,£37.
Operating Systems, Internals & Design Principles, 3rd Ed.,
Stallings, W, pub. Prentice Hall,£30.

Both are thick (1000 pages and 800 pages respectively), detailed,
and quite technical. Both are pleasantly up-to-date.

Themancommand.

Typeset by FoilTEX c©2004 MJ Rutter

1

Introduction

This is not a book: it is a collection of overheads for a short lecture
course. That much should be clear. It is also not really intended to
teach, but rather to stimulate people into going off and learning on
their own, or reading other books, or attending other courses.

References to UNIX include all sane versions of UNIX unless
otherwise stated.

Most references to DOS include Windows 3.x and the Windows 95
series, those to WinNT include Win2000 and WinXP.

References to MacOS usually mean versions pre MacOS X.
MacOS X is a sort of UNIX.

Various things may be registered as trademarks: AIX, DOS, Irix,

MacOS, Motif, OS/2, Tru/64, UNIX, VMS, Windows and others.

2

Contents

History 4

Operating System Concepts 12

Shells 42

Miscellaneous Commands 78

Shell Scripts 116

Filesystems 129

The Internet 159

X11 189

A Process and its Memory 207

The Boot Sequence 224

Index 246

3

History

4

History: to 1979

1951 Ferranti Mk I: first commercial computer
1953 EDSAC I ‘heavily used’ for science (Cambridge)
1954 Fortran I (IBM)
1961 Fortran IV
1963 CTSS: Timesharing (multitasking) OS

Virtual memory & paging (Ferranti Atlas)
1964 First BASIC
1969 ARPAnet: wide area network
1971 UNIX appears within AT&T

Pascal
First email

1972 Fortran 66 standard published
1975 UNIX appears outside AT&T
1978 K&R C appears (AT&T)

5

History: the Thatcher years

1980 Fortran 77 standard published
1981 MS DOS version 1
1983 Internet defined to be TCP/IP only
1985 LATEX2.09

PostScript (Adobe)
Ethernet formally standardised
X10R1 (forerunner of X11) (MIT)
C++

1987 X11R1 (MIT)
1989 ANSI C
1990 PostScript Level 2
1991 World Wide Web / HTTP
1992 OpenGL
1993 Windows NT

6

UNIX History

1971 UNIX appears within AT&T
1975 UNIX appears outside AT&T
1978 Berkeley starts work on UNIX (BSD)

3BSD released, adding virtual memory
1983 System V released (AT&T)
1984 4.2BSD with csh and vi

SunOS
1993 4.4BSD. Berkeley ceases development
1994 Linux 1.0
1995 Linux 1.2 (first version in TCM!)
1996 Linux 2.0

The major current commercial UNIXes (AIX, OSF/1,
Irix) appeared around 1990.

7

UNIX today

Currently (2004) the following versions of UNIX are
being actively developed and are in widespread use:

• AIX 5L (IBM)
• Free and Net BSD (public domain)
• HP-UX (HP)
• Irix 6.5 (SGI)
• Linux 2.6 (public domain)
• MacOS X (Apple)
• Solaris 9 (formerly SunOS) (Sun)

Other, now mostly dead, varients include UNICOS (Cray), Ultrix (DEC), and the ill-fated OSF/1
/ Digital UNIX / Tru64 from DEC / Digital / Compaq / HP, killed by a surfeit of names and
takeovers.

8

Schisms

The BSD (Berkeley) and System V (AT&T) branches of
UNIX were developed in parallel for a long while, and
evolved slightly differently. Most modern UNIXes have
features of both, but are closer to one than the other.

BSD

Printing command islpr , options to ps have no
dash (e.g. ps aux), only root can usechown , id
lists supplimentary groups, init script are per run-level,
‘shutdown -h now ’ halts system.

System V (et al.)

Printing command islp , options tops have a dash (e.g.
ps -elf), users can ‘give away’ files,id lists just
primary group by default, init scripts are per ‘service’,
‘shutdown -y -g0 -i0 ’ halts system.

9

May the best man win

The sillier points above have mostly died. Thelp
printing system is mercifully rare, and the idea that users
can give other users ownership of their files, and thus
make a nonsense quota controls, is still rarer. Similarly
the BSD-style init scripts have mostly disappeared.

However, differing syntaxes forps , id andshutdown
still persist, leaving most UNIXes floating between the
extremes of BSD and System V.

Nowadays many different bodies have attempted to
standardise various aspects of UNIX (and OSes in
general). Hence one frequently sees references to
standards such as POSIX and X/OPEN, as well as BSD
and SVr4 (System V release 4).

Solaris and Irix are mostly System V, whereas SunOS and OSF/1 are mostly BSD. Linux is
confused, particularly as different distributions can do different things (Slackware used to have
BSD-style init scripts, but no other distribution did).

10

The genuine article

UNIX is a trademark of AT&T, and in order to use it one
must demonstrate that one’s OS passes a compatibility
test, and pay AT&T some money.

Many things which are commonly called UNIX are not
actual UNIX in this legalistic sense. However, the rest
of this work ignores such legalistic niceties: if it looks
mostly like UNIX, then it’s UNIX.

Linux is probably one of the most popular ‘UNIXes’,
but it is not actually UNIX in this sense, whereas SCO’s
UNIX is not very widespread, but is really UNIX.

11

Operating System Concepts

12

What isn’t an Operating System?

An operating system is not the thing which interacts with
humans. Rather it is a layer between programs and the
hardware of computer.

UNIX is UNIX whether it is hiding underneath a
graphical interface or a text interface, and whether that
graphical (or text) interface appears to have been written
in the 1980s, 1990s or the 21st century.

13

What is an Operating System?

Resource allocation (CPU time, memory)

Fair allocation between competing processes is good.

File system

Disks store raw data. File names and directories are an
invention of the OS.

Hardware abstraction

A program wants to see a generic graphics device or
keyboard, without needing to know the precise details of
the model attached.

Security

Program A should be kept from program B’s memory,
and user A from user B’s files.

14

A Process

A process is a single copy of a program which is running
or, in some sense, active.

A process has resources, such as memory and open files,
it is given time,scheduling slots, executing on a CPU
with a certain priority, it has resource limits (maximum
amounts of memory, CPU time, etc. it can claim), and it
has anenvironment. Lastly, it has a parent. Each process
is associated with a single user.

These resources are exclusive to each process, and no
process can change another’s resources. Processes are
mostly independent.

Each process has a uniquePID, its Process ID.

There are one or two simplifications above, some of which will be untangled later.

15

Environment

A UNIX process has a current working directory, and
a place for the three streams defined in C:stdin ,
stdout and stderr . To Fortran programmers,
these are respectively the things which respond to
read (*,*) , write (*,*) and the place that the
‘floating point exception’ error messages get written.

It also has a collection ofenvironment variables. These
are simply character variables of the form
USER=sprq1

All these things a process will inherit from its parent
at the instant of its birth. The inheritance is a copy of
the original: after that instance either theparentor child
process can change these attributes without affecting the
other.

MS DOS (and hence Windows) is not significantly
different. It, too, has an arbitrary set of inherited
environment variables, and the three streams above.

16

Parents

Parents are important at two points in a process’s life.
At birth, when it receives its inheritance, and at death,
when it needs to inform its parent of its demise. Orphans
are not permitted: they are immediately adopted, or
reparentedby a special process calledinit , whose PID
is one, and which is responsible for many house-keeping
tasks.

17

Death

When a process dies, its resources are immediately freed.
It will get no more scheduling slots on the CPU, its
memory will be reclaimed, its open files closed, etc. Its
final act is to inform its parent of its death. The main
reason for having children is to get a specific job done.
Thus a process needs to be informed when its children
die.

The parent will receive a signal when a child dies, and
then it must collect the final message from the child,
which will be areturn codeindicating whether the death
was voluntary or compulsory, and whether the process
had a successful life.

Children also cost money. The parent process is charged
for the CPU time used by the child.

A child which has died but which cannot successfully
communicate this fact to its parent becomes azombie.
Hence it is important forinit to reparent things.

Zombies are marked by a ‘Z’ in the output ofps . Killing zombies is not very important: they do
little harm. When their wayward parents die,init can reparent and remove the zombies.

18

Return codes

Each process should exit with a code of zero if it has
been successful, and non-zero if it has failed. As there
are more ways of failing than of succeeding, there are
more ways of expressing failure than sucsess. One can
usually find the return code of the last process by typing
echo $? .

> ls -d /
/
> echo $?
0
> ls -d /womble
ls: /womble: No such file or directory
> echo $?
1

Here thels command, a separate process, has produced a return code of zero when it has been
successful, and an error message and a non-zero return code when it failed to do what was requested
of it.

19

Process Trees

As each process has a sole parent, and may have no, one,
or multiple children, on can draw a ‘tree’ of processes
showing their relationships.

> ps -e --forest
PID TTY TIME CMD
725 ? 00:00:00 xdm
736 ? 00:00:02 _ X
737 ? 00:00:00 _ xdm
768 ? 00:00:00 _ fvwm2
819 ? 00:00:00 _ FvwmButtons
821 ? 00:00:00 _ FvwmIconMan
822 ? 00:00:00 _ FvwmPager
823 ? 00:00:00 _ xclock
824 ? 00:00:00 _ xload
825 ? 00:00:00 _ xterm
827 pts/0 00:00:00 _ bash
836 pts/0 00:00:01 _ emacs
854 pts/0 00:00:00 _ ps

Theforest option is found only on Gnups commands.

20

Address spaces

Each process has its own independent virtual address
space for accessing memory. The dynamic mechanism
for mapping this to real, physical memory is an exciting
lecture in itself.

The result is that one process has no mechanism for
accessing another process’s memory, for a unique virtual
address includes both the addressand the PID, and
identical virtual addresses with different PIDs will map
to completely different physical addresses.

Thus with 32 bit Linux, the standard memory map leaves
the code of a program starting at address0x08000000
and the stack at0xC000000 , and this is what each and
every program sees each and every time it is executed,
regardless of what else is going on in physical memory.

DOS uses only physical addressing. MacOS Classic and 16 bit versions of Windows use a single
virtual address space for all processes. UNIX and WindowsNT use a separate VAS for each process
as described here.

21

SIGSEGV

The mapping from virtual to physical addresses exists
only for pagesallocated by the OS. If a process tries
to access a random virtual address, the mapping to a
physical address will simply not exist, so the instruction
must fail.

This failure is called a ‘segmentation fault’ (or
‘violation’), and can also be caused by trying to write
to a read-only variable.

(The mapping from virtual to physical addresses is done
with a granularity of one page, typically 4K or 8K. The
amount of memory ‘owned’ by a process is thus always
a multiple of the page size.)

22

Signals

A simple way for processes to communicate is via
signals. A signal can be sent to any process running
with the same user id, or any process if sent by the
root user. The receiving process knows only that it
received a signal: it does not know who sent it. It may
choose to ignore certain signals. Thus this means of
communication is not very reliable. However, its use is
common.

Default actions for signals are ignore, terminate,
terminate and dump core. However, for most signals an
arbitrarysignal handlermay be supplied by the program.
Two signals may not becaughtby a signal handler, but
alway have their default action: KILL and STOP.

Signals may be sent manually using thekill command.

23

Signal Numbers

Name Number Circumstance
HUP 1 Terminal (stdin/out/err) has disappeared
INT 2 Control-C pressed
QUIT 3 Abort and dump core
ILL 4 Attempt to execute illegal/invalid instruction
FPE 8 1.0/0, sqrt(-1), etc.
KILL 9 You must abort
SEGV 11 Invalid memory access attempted
PIPE 13 The other end of a pipe has died
TERM 15 Default sent bykill command
CHLD 17 A child has exited
CONT 18 Continue after STP / TSTP
STOP 19 Suspend process
TSTP 20 Control-Z pressed
XCPU 24 CPU time limit exceeded

The numbers above refer to Linux. Utter nerds prefer the numbers to the mneumonics, and can
presuably cope with the different standards for the numbering. Solaris and Irix believe that CHLD
is 18, TSTP is 24, CONT 25 and XCPU is 30, and Tru/64 that CHLD is 20, TSTP 18 and CONT
19.

24

Common sense

If a program doesn’t care if it is forced to abort suddenly,
it will do nothing to change the default action of TERM,
and that will cause it to exit. If it does care, because it
wishes to delete some lock file before exiting (netscape),
or perform an emergency save of current work (many
editors), it will catch TERM, and do such tidying up
before exiting.

If one simply tries ‘kill -KILL ’ the process is unable
to do any last-minute cleaning up: it be dead before
it knows what has hit it. So in general one should
use ‘kill -KILL ’ as a last resort (and never so
frequently that it is worth remembering that on any
POSIX-conformant system one can save three keypresses
by typing ‘kill -9 ’).

When a system is shutdown, it will send all processes the
TERM signal, followed by KILL to remaining processes
5-10 seconds later. A queueing system may first send
XCPU, then several tens of seconds later TERM then
KILL.

25

Pardon?

Asking ‘root’ to kill your own processes for you is silly.
A process does not know from whom it received a signal,
and if you cannot attract its attention, root will fair no
better.

And processes can get stuck in states where they ignore
all signals. A common example is a process waiting
for certain forms of I/O (usually I/O involving a device
which has just suffered a hardware failure). A signal
sent to such a process will (usually) be queued until the
process can be interrupted.

A process which is suspended will ignore many signals
(though not CONT!).

A zombie is not really a process, and will not respond to
any signal.

Theps command shows the usual I/O wait state as a status of ‘D’.

26

Kernels

The OS kernel is very different from a process. There
can only be one of it, and it can address physical memory
directly, address any hardware directly, and do anything
to any process. Indeed, one part of the kernel, the
scheduler, is responsible for giving the processes any
CPU time at all.

A process wishing to access some hardware device must
do so via the kernel, and cannot do so directly. The kernel
is able to ensure that when the CPU is not executing
kernel code it is unable to execute certain privileged
instructions which might allow a process direct access
to the hardware.

This clearly requires some support from the CPU. CPUs of the early 1980s (8086 in the IBM
PC, Z80 in the Sinclair Spectrum, 6502 in the BBC B, and others) simply did not have sufficient
functionality. The i386 was the first PC processor really capable of running a modern OS.

27

Disk Access

A process will usually access a disk drive in terms of
files. The kernel will oblige, imposing any restrictions
indicated by the filesystem as it does so.

The kernel also presents disk drives asdevice files. These
can be used by a process to read and write raw data
blocks directly from and to the disk without going via the
filesystem. Any process which can do this can therefore
bypass any access restrictions imposed by the filesystem.

This is still not the real, physical hardware. The process
is still shielded from having to worry about whether it
should be sending IDE, SCSI or floppy commands to
the disk, about which PCI bus the controller is on, and
which ID it has on that bus, etc. It is also prevented from
sending commands other than reads and writes: not the
harmless ‘identify yourself’ command, nor the harmful
‘update your firmware from me’ command.

28

Root Processes

A process run by root is little different from any other
process. It still needs to call the kernel to access any
hardware, and the access will still be indirect. The
difference is that the kernel is more likely to say ‘yes.’
A root process can trivially read from, or write to, any
regular file or device file, send a signal to any process,
change any processes scheduling priority up or down,
etc.

However, it still operates in its own virtual address space,
and it will still die with a segmentation fault if it tries to
access memory not allocated to it. It will also die if it tries
to execute a CPU instruction reserved for kernel mode.

29

Accidents and Design

If a non-root process hits a bug and starts behaving
randomly, it is extremely unlikely to have any adverse
affect on anything, beyond perhaps wasting CPU time in
an infinite loop, or filling a disk with an infinite file.

A root process is much more likely to cause trouble if it
is buggy, but the expected outcome is still an uneventful
death.

Triggering a bug in the kernel is very much more likely
to cause trouble. A crash of the whole operating system
is the expected outcome, and data loss is not unlikely.

Keeping the kernel small is therefore a good idea.

30

Malign Design

If a user process has malign intent and intelligence, it can
probably crash the system, or at least make it unusable.
Merely creating several dozen copies of itself, and then
having each add zeros until they reach infinity should do
the trick.

A malign root process can trivially do enormous damage:
read and modify any files, intercept any data passing
through the machine, install a new or modified OS,
reboot the machine, etc.

31

Other Privilege Models

The UNIX privilege model is somewhere between
simple and simplistic. There are pretty much three
levels: unprivileged user, root, kernel, and the last two
effectively have full control.

The world of VMS (and Windows NT) is different. It
contains a long list of extra privileges a process might
wish to have, such as read all files on local disks (a
backup process), send ‘interesting’ network packets (see
later), change user id, listen on privileged network ports,
send signals to any process, etc.

This model is begining to creep into UNIX, particularly
IRIX and Linux, in the form of ‘capabilities.’

It may seem more sophisticated, and therefore superior, but it does have significant pitfalls. The
capabilities overlap considerably, so it is much harder to work out how much privilege one really
has given a user or a process. E.g. the privilege of writing to any file allows one to change any part
of the OS, and thus gives one full control. So would giving full access to the raw disk device,or to
the disk controller,or to the bus the controller is on. Writing to any file not owned by the system
would probably be sufficient if one is cunning, sending signalsandlistening on privileged ports
would surely be enough, etc.

The traditional UNIX model is so simple that the Board can almost understand it, so mistakes are
less likely.

32

Libraries

Although user programs can call the kernel directly,
usually they don’t. Kernel functions are usually
referenced by unmemorable numbers, and have a calling
sequence which requires one to write in assembler.

In UNIX, the C library (libc) provides wrappers for all
useful kernel functions so that they can be called directly
from C with sensible names, and it provides all other non-
maths functions required by ANSI C. (Maths functions
required by ANSI C (trig, logs, etc.) are traditionally in
a separate library,libm .)

So libc contains functions which are little more than
wrappers for kernel functions (write()), functions
which do a lot of work, and then probably call a kernel
function (printf()), and functions which will not call
the kernel at all (strlen()). Most other libraries will
call functions fromlibc rather than calling the kernel
directly.

Hence Fortran compilers usually link againstlibc as well as their own Fortran-specific libraries.

33

ASCII

Computers are not very good with text: they prefer
numbers. Text is stored by converting each character into
a number, a nasty little number in the range 0-255 which
thus takes just 8 bits, and is not processed very efficiently
with a 32 bit computer. One mapping of characters to
numbers is almost universal, and that is ASCII. It is also
almost memorable:

Binary Decimal Characters
000 0000 0 control codes start
001 1111 31 control codes end
010 0000 32 {space}
011 0000 48 0
011 1001 57 9
100 0001 65 A
101 1010 90 Z
110 0001 97 a
111 1010 122 z

Punctuation fills the gaps.
Note:
The eighth bit is unused (all numbers are< 128).
One bit distinguished uppercase from lowercase.

34

Control

In the bad old days, the same communication channel
would be used both for talking to humans and for
controlling peripherals. Hence thirty-two non-printable
control-codes above. These include:

Binary Decimal Representation Purpose
0 0100 4 ˆ D end of data
0 0111 7 ˆ G sound bell
0 1000 8 ˆ H backspace (delete)
0 1001 9 ˆ I tab
0 1010 10 ˆ J line feed (enter)
0 1100 12 ˆ L form feed (new page)
0 1101 13 ˆ M carriage return
1 0001 17 ˆ Q XON (transmit on)
1 0011 19 ˆ S XOFF (transmitt off)
1 1011 27 ˆ [escape

The control codes from 1 to 26 can be produced by holding down the control key and typing the
corresponding letter of the alphabet.

35

Forgotten, but not gone

Many interactive applications will exit if control-D is
pressed, control-H works as a delete key at least as
reliably as the key above enter, control-S will, in some
circumstances, successfully request that the other end
cease transmitting until it receives a control-Q, control-
L is widely recognised as meaning ‘redraw screen,’ and
control-G will cause a beep to be sounded.

Agreement over how lines should be ended has not yet
been reached. DOS believes in carriage return and line
feed, UNIX in line feed only, MacOS in carriage return
only.

Old printers agreed with DOS: carriage return only caused overprinting – useful for generating
bold or struck-out text, and line feed only produced ‘staircases’. However, a single character for
end of line is much more convenient.

36

Mastering control

Entering a control character into text can be taxing. The
usual convention (shells and vi) is to precede it with
control-V. Emacs disagrees, and needs control-Q.

Viewing files containing them is also tedious. Simply
using cat is a disaster, as eacĥG will cause the
computer to beep, and most sequences starting with
ˆ[will cause one’s terminal to do odd things. The
programless does a very good job of handling these
files without causing pain for one’s terminal or one’s ears.
The convention for representing them is either reverse-
video and the caret notation used here, or their hex code
in angled brackets. The latter has to be used for non-
printable characters with codes above 32.

For completeness, zero is represented byˆ@ (as @ has ASCII code 64), and 27 to 31 byˆ and
those characters whose ASCII codes are 91 to 95, namely[\]ˆ_ . So pressing the control key
means ‘subtract 64 from the ASCII code of the following symbol’, just as pressing the shift key
means ‘add 32’ in the case of letters.

Emacs is vile. It does not follow the conventions forˆC , ˆH , ˆS , ˆQ and others besides, and thus
needs a very forgiving terminal.

37

The Great Unknown

In the early days, the ‘unused’ (for text) ‘top’ bit of each
byte was used as a parity bit to provide simple error
detection: set to one if an odd number of bits in the rest
of the byte were one. Although it has long since stopped
being used thus, there is no universal standard on how it
should be used. The ISO 8859/1 ‘Latin 1’ standard is the
most widely used in Western Europe and the US. It adds
important characters such as£, and enough squiggles
over letters to amuse the French, Germans and Spanish.
However, it contains no Greek at all.

ISO 8859/1 is not what DOS used, nor what HP
printers default to, and whereas ISO 8859/1 believes that
character number 163 is ‘£’, DOS tends to think it is ‘́u’,
and ISO 8859/2 thinks it is ‘Ł’. All agree that character
number 65 is ‘A’.

Thus if using ‘high ASCII’, it is important to specify
which encoding one is following.

38

Clean or unclean

ASCII is divided into ‘printable’ (32 to 126) and ‘non-
printable’ characters (character 127 is delete, character
8, ˆH , is backspace).

The phrase ‘7 bit clean’ (ASCII) refers to a document
which contains only printable characters, plus tab, line
feed and carriage return. These documents are least
likely to cause any surprises, and should be used where
reasonable. Certainly program source files (including
PostScript) and emails should fall into this category.

Data which describes itself as ‘8 bit clean’ adds all
characters in the range 128 to 255, and 8 bit binary data
contains simply any possible byte value.

A simple recipe for converting 8 bit data to 7 bit clean data would be to take each triplet of bytes
(24 bits), split into four groups of six bits, each of which can be considered to be a number in the
range 0-63, and then add 32 to each. This expands three bytes to four, but keeps each in the range
32 to 95. Thus the originaluuencode program. Base64 encoding (as used by email for binary
attachments) is similar, but avoids using space and much punctuation in its output. PostScript uses
a marginally more efficient encoding, ASCII85, which expands four bytes of binary data to five,
and also avoids relying on spaces being preserved.

Some people believe that codes 27 to 31 are acceptable in ‘clean’ ASCII.

39

Unicode

The future, if we are unlucky, is Unicode. This permits
one to encode all conceivable characters in a scheme
which has a single character occupying multiple bytes:
at least two, and maybe more.

The good news is that it can cope with the Latin,
Greek and Hebrew alphabets, as well as Near and Far
Eastern scripts. And Microsoft has firmly embraced it in
Windows.

The bad news is that for simple Latin text, it doubles
the file size, and makes interpretationmuch harder,
as characters can potentially be of variable length.
However, in its simplest form it looks like ASCII with
nuls (̂ @) added every alternate byte.

40

7 Bit ASCII

00 0x00 ^@
01 0x01 ^A
02 0x02 ^B
03 0x03 ^C
04 0x04 ^D
05 0x05 ^E
06 0x06 ^F
07 0x07 ^G
08 0x08 ^H
09 0x09 ^I
10 0x0A ^J
11 0x0B ^K
12 0x0C ^L
13 0x0D ^M
14 0x0E ^N
15 0x0F ^O
16 0x10 ^P
17 0x11 ^Q
18 0x12 ^R
19 0x13 ^S
20 0x14 ^T
21 0x15 ^U
22 0x16 ^V
23 0x17 ^W
24 0x18 ^X
25 0x19 ^Y
26 0x1A ^Z
27 0x1B ^[
28 0x1C ^\
29 0x1D ^]
30 0x1E ^^
31 0x1F ^_

32 0x20
33 0x21 !
34 0x22 "
35 0x23 #
36 0x24 $
37 0x25 %
38 0x26 &
39 0x27 ’
40 0x28 (
41 0x29)
42 0x2A *
43 0x2B +
44 0x2C ,
45 0x2D -
46 0x2E .
47 0x2F /
48 0x30 0
49 0x31 1
50 0x32 2
51 0x33 3
52 0x34 4
53 0x35 5
54 0x36 6
55 0x37 7
56 0x38 8
57 0x39 9
58 0x3A :
59 0x3B ;
60 0x3C <
61 0x3D =
62 0x3E >
63 0x3F ?

64 0x40 @
65 0x41 A
66 0x42 B
67 0x43 C
68 0x44 D
69 0x45 E
70 0x46 F
71 0x47 G
72 0x48 H
73 0x49 I
74 0x4A J
75 0x4B K
76 0x4C L
77 0x4D M
78 0x4E N
79 0x4F O
80 0x50 P
81 0x51 Q
82 0x52 R
83 0x53 S
84 0x54 T
85 0x55 U
86 0x56 V
87 0x57 W
88 0x58 X
89 0x59 Y
90 0x5A Z
91 0x5B [
92 0x5C \
93 0x5D]
94 0x5E ^
95 0x5F _

 96 0x60 ‘
 97 0x61 a
 98 0x62 b
 99 0x63 c
100 0x64 d
101 0x65 e
102 0x66 f
103 0x67 g
104 0x68 h
105 0x69 i
106 0x6A j
107 0x6B k
108 0x6C l
109 0x6D m
110 0x6E n
111 0x6F o
112 0x70 p
113 0x71 q
114 0x72 r
115 0x73 s
116 0x74 t
117 0x75 u
118 0x76 v
119 0x77 w
120 0x78 x
121 0x79 y
122 0x7A z
123 0x7B {
124 0x7C |
125 0x7D }
126 0x7E ~
127 0x7F �

The full 7-bit ASCII set, with decimal and hex values for each character. Note that 32 is space,
and 127 delete.

41

Shells

42

Shells

Most operating systems are provided with some form
of command line interface or shell. This is not strictly
part of the operating system, but rather a useful utility
program.

DOS hadcommand.com, Windows 2000 hascmd.exe ,
UNIX has the Bourne shell, and MacOS Classic
demonstrates that one can have an operating system
without a command line interface.

Sometimes the graphical interface of an OS is also referred to as a shell, particularly OS/2’s
‘workplace shell’.

The shell interacts with humans, and launches other
programs for them. It itself is just a program too, so one
can replace one’s shell without changing one’s operating
system in any sense. The free shell4DOSexisted for
DOS, UNIX has a choice of half a dozen shells.

The shell is often called a command interpreter: it obeys
commands, and interprets (rather than compiles) them.

43

UNIX shells

The first UNIX shell was Steve Bourne’s, developed in
1974 at Bell Labs. It is not well suited to interactive use,
although significant enhancements were made to it for
the next decade.

The next, the C shell (csh), came from Berkeley in
around 1978. It was rather better suited to interactive
use, but its syntax was significantly incompatible with
the Bourne shell.

Since then several improvements of these two basic
shells have appeared.

44

Improved Shells

• Korn Shell (ksh) developed by David Korn in 1983.
A superset of the Bourne shell with better interactive
features.

• ash Another superset of the Bourne shell, loved by
the BSD project.

• Z Shell (zsh) circa 1990. Yet another superset of the
Bourne shell designed for interactive use.

• bash (Bo(u)rn(e) Again SHell, 1989). A great
improvement on the above, whilst retaining compatibility
with the Bourne shell. Loved by GNU and Linux.

• Tenex Shell (tcsh) – a C shell superset with good
interactive functionality.

Thebash andtcsh shells both allow command recall
and editing with the cursor keys, whereassh andcsh do
not.

45

Variables

All shells support two classes of variables. The
most important,environment variablesare passed on to
programs launched from the shell, and the other class,
shell variablesare not.

Shell variables are used for defining one’s prompt, setting
(or unsetting) automatic logout or mailcheck features,
and other aspects of the shell’s behaviour. They can also
be used as a programming convenience.

Here the Bourne-like and C-like shells differ in syntax. To set a shell variable:
sh: x=5
csh: set x=5

To set an environment variable:
sh: x=5 export x
csh: setenv x 5 (N.B. no ‘=’ sign)

In all cases, to see the result:
echo $x

46

Prompt Conventions

One shell variable sets the default prompt sting.
Convention says that this string ends in ‘%’ forcsh , ‘>’
for tcsh and ‘$’ for sh andbash , but ‘#’ for all shells
if the user is root.

Several characters are treated specially, hence the
standard TCM prompt of

$ PS1=’\h:\w\$ ’
> set prompt=’%m:%˜%#’

which gives prompts such as

tcm30:˜/talks>

For the full list of options, see thebash or tcsh man page as appropriate.

This is all quite similar to DOS’s usual
set prompt=pg

However, in DOS all variables are environment variables, that is, they are inherited by child
processes.

47

Finding Programs

When a command is typed, it is first checked against the
(short) list of shellbuilt-in commands. If not found, it is
assumed to be anexternalcommand, and is searched for
by looking in the directories specified in the environment
variable called$PATH.

The path is an ordered colon separated list of directories
to be searched:
$ echo $PATH
/usr/local/bin:/bin:/usr/bin:

/usr/X11R6/bin

For efficiency, Bourne-like shells remember where they
last found a command, and never look elsewhere for
commands they have found once. C-like shells build
a complete table of all the commands which exist on
the path when they are started, and never search the
directories themselves.

C-like shells do rebuild their table should$PATHbe modified.

If a command is added to a directory in the path, C-like shellswill not notice. One must type
‘ rehash ’ to cause them to rebuild their tables. Bourne shells can be confused by commands
moving, and ‘hash -r ’ is the solution.

48

. and /

The current directory, ‘.’, is a special case for the path.
If present it will always be searched without reference to
hash tables. However, it shouldn’t be present.

If the command name contains a ‘/’, the path is not used,
and the precise command specified is executed.

> cat test.f
write(*,*)’Hello’

> f77 -o test test.f
> test
> ./test
Hello

All UNIX systems have a command called test already as
a shell builtin function, so the first form will not execute
the newly-compiled program whether or not ‘.’ is on the
path.

49

The dot heresies

Should ‘.’ be on the $PATH, and, if so, where?

Some believe it should be first: if someone puts a
program called ‘test’, or ‘wish’ in his current directory,
he clearly wants that version executed, not the standard
one. This is insane, as one then cannot do anything in a
directory to which others have write access, for they can
booby-trap commands there:

> cd /tmp
> ls
Gotcha!
> /bin/ls -l
-rwxr-xr-x 1 spqr1 spqr1

23 Dec 3 20:17 ls
> less /tmp/ls
#!/bin/sh
echo Gotcha!

And it could be much worse than that. . .

50

The last heresy

Others believe that ‘.’ is safe if last on the $PATH. If last
the above trick will not work. However, seeding/tmp
with common misspellings (mroe , ks , xs) will.

So ideally dot is not placed on the $PATH, and people
learn to type a leading ’./’ if they wish to execute
something from the current directory.

However, the default $PATH should include a user-
specific directory, such as$HOME/bin , before all
system directories so that the user can over-ride system
commands if he is mad.

In TCM ‘dot’ is on the $PATH, for historical reasons. At least it is last. $HOME/bin is also on the
$PATH.

51

Filename completion

The csh , tcsh and bash shells all offer filename
completion. If, whilst typing a filename, one presses
{TAB}, any extra characters which can be uniquely
determined are filled in automatically. If there
are multiple alternatives, pressing{TAB} twice in
succession will list them.

Completion also works for command names:

$ ep{TAB}{TAB}
eps2gif eps2ps epstopdf
eps2eps epsffit epszip

For tcsh , alternatives are listed if{crtl}D is pressed and the cursor is at the end of the line.

For csh , only basic completion is available, the key is{ESC} not {TAB}, and the shell variable
filec must be set.

52

Built-in commands

Most common UNIX commands areexternalto the shell:
they are simple stand-alone programs, usually found in
/usr/bin , and one runs precisely the same program
independent of one’s shell.

A few commands are, necessarily,internal: that is, they
are part of the shell. These fall the follwing categories:

• flow control commands: loops,if , case , etc.
• commands altering the shell’s internal state:alias ,

pushd , popd , set , shift , history , (re)hash .
• commands altering the shell’s process status:

setenv/export , (u)limit , cd , umask.
• job control: fg , bg , exit , exec

• there for efficiency:echo

53

An external cd

An externalcd command exists on some systems as
/usr/bin/cd , and it is a good example of near
uselessness.

When run, it changes its current working directory
and then exits. However, because the current working
directory is held on a per-process basis, and a child
cannot affect the state of its parent, the current working
directory of the process which launched it is unchanged.

MS-DOS also has internal and external commands in the same fashion, although slightly more
commands, such ascopy anddir , are internal for efficiency. Many DOS commands, such as
format , xcopy andmore are external.

54

In and Out

The C programming language has the concept of three
I/O channels: one for input, one for output, and one
for error messages. These are calledstdin , stdout
and stderr respectively. By default a shell will run
a program with all of these attached to the (pseudo)
terminal the shell was using. However, they can be
redirected.

The> character redirectsstdout , and< stdin . Using
>> causesstdout to be appended to a file, rather than
over-writing it.

The C-like shells use>& and>>& to redirectstdout
and stderr together, whereas the Bourne-like shells
can redirect these separately:

$./a.out > output 2>errors

DOS has just> and<.

55

Experiments

$ ls -ld .
drwxrwxrwt 6 root root 4096 Dec 18 18:41 .
$ ls -ld . > output
$ cat output
drwxrwxrwt 6 root root 4096 Dec 18 19:48 .
$ ls -ld womble > output
ls: womble: No such file or directory
$ cat output
$ ls -ld womble > output 2>errors
$ cat output
$ cat errors
ls: womble: No such file or directory

Note that when there is no output, the output file will get truncated to zero length.

Note too that the use ofcat is not recommended. Usingless is much safer if you accidentally
hit a long, or binary, file.

56

Throwing things away

UNIX provides various special files, one of which can
be very useful with redirection. The ‘file’/dev/null
simply discards anything given to it. Thus

> rm womble >& /dev/null

will delete and not give an error if the file does not exist
(or if the file is undeletable).

If one reads from/dev/null , an immediate ‘end of
file’ error is produced.

57

Pipes

One can also direct the output of one command into the
input of another.

> ls -l
total 28
-rw-r--r-- 1 spqr1 spqr1 1024 Dec 18 19:59 magnum
-rw-r--r-- 1 spqr1 spqr1 2048 Dec 18 19:59 maior
-rw-r--r-- 1 spqr1 spqr1 10240 Dec 18 19:59 maximum
-rw-r--r-- 1 spqr1 spqr1 0 Dec 18 19:58 minimum
-rw-r--r-- 1 spqr1 spqr1 1 Dec 18 19:58 minor
-rw-r--r-- 1 spqr1 spqr1 2 Dec 18 19:58 parvum
> ls -l | sort -nr -k 5
-rw-r--r-- 1 spqr1 spqr1 10240 Dec 18 19:59 maximum
-rw-r--r-- 1 spqr1 spqr1 2048 Dec 18 19:59 maior
-rw-r--r-- 1 spqr1 spqr1 1024 Dec 18 19:59 magnum
-rw-r--r-- 1 spqr1 spqr1 2 Dec 18 19:58 parvum
-rw-r--r-- 1 spqr1 spqr1 1 Dec 18 19:58 minor
total 28
-rw-r--r-- 1 spqr1 spqr1 0 Dec 18 19:58 minimum

Valid options for thesort command vary enormously between different flavours of UNIX: use
themancommand to determine what is permitted.

58

Pipes in detail

DOS has pipes too, and, in DOS
C:\> dir | more
is precisely equivalent to
C:\> dir > tempfile
C:\> more < tempfile
C:\> del tempfile

This is not true in UNIX, where
> ls -l | less
causes the two processesls and less to be launched
‘simultaneously’, and output to be transferred from one
to the other, possibly (probably) after some buffering.
This is much more useful: in the DOS world, one does
not start to see any output until the first command has
completed.

59

Launching programs

The actual launch of a program is done by the OS, not
directly by the shell. The UNIX kernel understands
just two calls related to process creation:fork() and
exec() . The former creates a clone of the current
process. The original keeps its own PID, and gets the
PID of its child returned by thefork() call. The child is
identical in every respect – it, too, appears to have run up
to the same point as its parent, and to have just returned
from the fork() call – except that it will have a new
PID, and the value returned byfork() will be zero.

The latter,exec() replaces the current process with
the process formed by executing the specified file. The
PID is unchanged byexec() , as are the environment
variables, but all the process’s memory is obliterated by
the new process.

A value of -1 is returned byfork() if it fails. In this case there is no child.

A process mayexec() itself to restart, thus, for instance, re-reading its configuration files.

60

A team

Thefork() andexec() calls are often used as a pair:

i=fork();
if (i>1){ /* I’m the parent */
}
else if (i==0){ /* I’m the child */

exec("/some/program");
}
else{ /* Bother: fork() failed */
}

In the case of the shell, it, the parent, by default
backgrounds itself and lets its child take control of the
keyboard. However, if the command line ends with &,
the child is left in the background, and the shell in the
foreground.

61

Foreground and Background

foreground process

shell
(i)

shell
(ii)

background process

time

The solid line represents the process which has control
of the terminal, aforeground process, the dotted line
a process running but not receiving input from the
terminal, abackground process.

Case(i) is the default, case(ii) is achieved simply
by placing an ‘&’ at the end of the command line.

To make the last background process a foreground process, type ‘fg ’, and to background a
foreground process, suspend it by typing{ctrl}{Z}, then type ‘bg ’.

62

Magic and exec

Forexec() to work on a file, that file must have execute
permission for the user callingexec() . What happens
next depends on the contents of the file.

If the first two characters are ‘#! ’ then it is a script.
The word immediately after the ‘#! ’ is the full path to
the program to launch as the interpreter, any arguments
after this are then passed to the interpeter, followed by
the name of the script, and finally any command-line
arguments.

The key signatures at the beginning of files which allow their type to be detected in this manner
are called ‘magic numbers’.

63

More magic

If the first two characters are not ‘#! ’, then the one hopes
the file is a standard executable. Linux knows about
several formats, the current one being ELF, which starts
‘<7f>ELF ’ and goes on to specify what processor the
file is intended for, etc, as the ELF file format is used by
many UNIX variants.

Tru64 on Alphas uses a format called COFF, and
its executables start ‘<01><83> ’, and thus an Alpha
running Tru64 can immediately spot if it is being asked to
run a program compiled for Intel Linux, and vice versa,
and both will refuse.

The commandfile will read the first few bytes of a file,
and compare it with a known table of magic numbers,
and report its deductions. The Gnu version on Linux has
a particularly comprehensive table.

ELF: Enhanced Library Format
COFF: (un)Common Object Format File

64

Much more magic

Note that the concept of ‘magic numbers’ applies just as
much to data files as to executables. The world of DOS
and Windows may believe that the filename denotes the
type, and MacOS may believe that such information is
embedded in a fork, but that is not how the UNIX world
works.

%! Postscript or EPS file
%PDF- PDF file
BZ bzipped data
GIF GIF graphics file
MZ MS DOS (Windows or OS/2) executable
0x1f8b gzipped data
0xedabeedb RPM file (RedHat package)
0xffd8 JPEG graphics file

As usual, text given if the magic is printable, otherwise given in hex following ‘0x ’. Thus ‘BZ’
could equivalently have been written ‘0x425a ’.

Using ‘less -U ’ to examine the beginning of a file is sane and safe.

UNIX compilersdo use the name to determine type, and treat.c , .o , .cc , .f and.F files very
differently.

65

Command Arguments

In the wonderful world of DOS, the first 126 characters
one types including the command name are simply
passed to that command, unchanged. The command is
responsible for all the parsing.

UNIX is very different. The command expects its
arguments to be presented as a list ofwords, and it
expects wildcard expansions, variable substitutions, and
similar processing, to be done for it. This has one clear
advantage: whereas in DOS some commands understand
how to process wildcards such as ‘*’ and ‘?’, and some
do not, in UNIX all behave in the same manner, because
the processing is always done by the shell before the
command is even started.

This interfaces directly with C’s idea ofargv .

66

An example

> cat > args
#!/bin/sh
echo "The first argument is: $1"
echo "The second argument is: $2"
ˆD
> chmod +x args

We now have a simple shell script which will echo back
its first two arguments.

Use your favourite editor to create the above script. If usingcat , remember ‘̂D ’ means type
{ctrl}{D}. Thechmod command makes this script as executable. As . is not necessarily on the
default search path for commands, we shall use a preceding ‘./’ to execute this script.

67

Hello world

> ./args hello world
The first argument is: hello
The second argument is: world
> ./args "hello world"
The first argument is: hello world
The second argument is:
> ./args hello world
The first argument is: hello
The second argument is: world
> ./args hello\ world
The first argument is: hello world
The second argument is:
> x=hello ; y=world
> ./args $x $y
The first argument is: hello
The second argument is: world

Note the silent removal of excess spaces between words. What happens for
./args " hello world"

68

Hello Again

> mkdir test
> cd test
> touch hello
> touch world
> ls -l
total 0
-rw-r--r-- 1 spqr tcm 0 Dec 20 9:37 hello
-rw-r--r-- 1 spqr tcm 0 Dec 20 9:37 world
> ../args *
The first argument is: hello
The second argument is: world
> ../args ˜ ˜spqr1
The first argument is: /home/mjr
The second argument is: /domus/spqr1

The character ‘˜ ’ is expanded to the home directory, and a tilde followed by a userid to that user’s
home directory.

69

Hello, hello

> x="hello world"
> ./args $x
The first argument is: hello
The second argument is: world
> ./args "$x"
The first argument is: hello world
The second argument is:
> ./args ’$x’
The first argument is: $x
The second argument is:

Note:
variables expanded first, then result split into words.
variables in double quotes are expanded.
variables in single quotes are not expanded.

70

Backquotes

There is one other sort of quote in 7 bit ASCII, the
backquoteor tic, usually found at the top left of the
keyboard. Anything between backquotes is executed in a
sub-shell, and is substituted by anything sent to stdout.

> ls
hello world
> ../args ‘ls‘
The first argument is: hello
The second argument is: world
> echo "3+4" | bc
7
> ../args ‘echo "3+4" | bc‘
The first argument is: 7
The second argument is:

Note that stderr is not collected by the backquotes:

> ./args ‘ls womble‘
ls: womble: No such file or directory
The first argument is:
The second argument is:

71

Scripts vs typed input

A shell script is run in a separate process from the
invoking shell. Thus any changes it makes to its
environment are lost when the script exits.

To read commands from a file into the current shell, and
interpret them as though they had been typed in,csh
users must type ‘source filename ’ and Bourne
shell users ‘. filename ’.

tcmpc52:˜> cat silly
#!/bin/sh
cd /
tcmpc52:˜> ./silly
tcmpc52:˜> source silly
tcmpc52:/>

Note that the prompt shows when the current directory of the shell changes

72

Shell startup

Whenever a new shell is started, it sources certain files,
depending on both the type of shell and whether or not it
is a login shell(not by default). Fortcsh , the sequence
is:

/etc/csh.cshrc
/etc/csh.login (if a login shell)
˜/.tcshrc or, if not found,˜/.cshrc
˜/.login (if a login shell)

Forbash the sequence is:

/etc/profile (if a login shell)
˜/.bash profile or ˜/.bash login

or ˜/.profile (if a login shell)
˜/.bashrc if not a login shell

Thecsh is astcsh but without˜/.tcshrc , andsh asbash but without files containing ‘bash’
in their name.

73

Startup logic

Any shell is either a login shell, or the descendant of
a login shell, so anything which will be inherited need
only be set once in the files read only by login shells.
Unfortunately many installations of X get this wrong.

Scripts read on login may produce output (‘Good
morning, sir, you are 4KB below you disk quota again’).
Scripts read by non-login shells may not.

Shell startup is depressingly common: many programs
do it to expand wildcards, or because a C library
function calledsystem() neatly does thefork() ,
exec("/bin/sh",...) , wait() magic one needs
to launch another program and wait for it to finish. Thus
simple shell startup needs to be fast. For/bin/sh it is:
no configuration files read unless it is a login shell.

Bash’s startup sequence is also slightly odd. Some systems are configured so that.bashrc is
read by login shells too, and some so that a global/etc/bashrc exists.

74

Dot files are important

Needless to say, a file whose contents are executed every
time one logs in is really quite important. Mistakes here
can even prevent one logging in at all. (So, if you feel
the urge to change one of these files, do test it by logging
in (ssh or rlogin to localhost) beforelogging out
and then finding that you cannot get back in.)

Do also make sure that you keep half an eye on the
contents. In TCM one can delete these files and still
have a workable account. For systems where this is
not true, tradition places minimal working examples in
/etc/skel , or otherwise as advertised.

75

Wildcards

Most people are familiar with thewildcards ‘*’ (any
number of any character) and ‘?’ (any single character),
and the fact that neither will match a leading ‘.’. These
are expanded by the shell, and are not passed to the
program.

One can also specify a sequence of characters using
square brackets.

> ls
apple Bill pear
> ls [a-z]*
apple pear
> ls [A-Z]*
Bill
> ls [a-mA-M]*
apple Bill

76

Order, order

It is clear to any sane computer that such sequences,
and the natural order for textual things, is simply the
numerical ordering of the ASCII codes, so digits before
letters, all upper case before all lower case.

Meddling humans disagree, believing the correct
collating sequence to run ‘AaBbCc. . . ’, with ‘A’ and ‘a’
scoring identically, not ‘ABC. . . abc. . . ’ Thus madness
such as:

> ls
apple Bill pear
> LANG=C export LANG
> ls
Bill apple pear

It is important to ensure that the second form is the default, or there is a danger that ‘[A-Z]’ will
match all lowercase letters too, as it will be interpretted as meaning any character which comes
between ‘A’ and ‘Z’ in the collation sequence. Certain versions of RedHat Linux default to the
‘human-friendly’ collation sequence.

The French believe that ‘e’, ‘è’, ‘ é’ and ‘̂e’ rank equal for sorting. That is 101 = 231 = 232 = 233
as far as their codes in ISO 8859/1 are concerned, and that is before one considers capitalisation.
The overhead of teaching computers such insanities can be significant.

77

Miscellaneous Commands

78

find

The find command finds files based on their metadata
(not their contents). It can find by name, size,
modification date, type, etc., and it will descend a tree
starting at a given directory. Hence

find ˜ -type l -print

will list all symbolic links in your home directory, and

find ˜ -size +4m -ls

all files larger than 4MB.

However,find is the cause of endless confusion.

N.B. Somefind commands need+4096k , not+4m.

79

First things first

The first argument tofind is the directory to start
searching from. It may not be omitted, so, if one wishes
to start at the current directory, a dot must be given
explicitly.

find . -size +4m -ls

And NEVERtry something like

find / -size +4m -ls

because this will search through all remotely-mounted
disks too. Instead use

find / -xdev -size +4m -ls

if you really must search the root filesystem. The-xdev
flag will prevent find from moving across mount-points.

All finds have a flag with the functionality of-xdev . Unfortunately, some call it-mount , others
-x , . . .

80

Quote!

The most common use offind is dealing with half-
remembered filenames:

find . -name *.eps -print

But this isn’t how it’s done, because the shell will expand
that * and chaos will result. So

find . -name ’*.eps’ -print

is the answer.

81

Do what?

The find command effectively evaluates a string of
conditions, stopping when the first one evaluates to false.
So

find . -name ’*ps’ -size +1m -ls

will list all files whose names end in ‘ps’ and which are
over 1MB in size. The operator ‘-print ’ prints the
current filename, and returns true. The operator ‘-ls ’
prints something like the output ofls -l for the current
filename, and returns true. Use neither, and nothing may
result.

find . -name ’*.eps’

Gnu’s find will assume one meant-print at this point, but a traditionalfind will print
nothing, whether or not anything is found. Somefind s do not support-ls .

Replace ‘-size +1m ’ by ‘ -mtime -8 ’ for all ps files modified in the last week.

82

Living dangerously

One can causefind to launch commands on files found:

find . -name core -exec rm {}\;

Such automation is normally a guaranteed recipe for
wholesale, unexpected destruction. It may be just about
safe withtouch , preferably in conjunction with-xdev .

The sequence ‘{}’ is replaced by the full path of the file found, and the command to be launched
by -exec must be terminated with\; . If you suffer from afind which does not support-ls ,
then-exec ls -l {}\; is the answer.

83

The manCommand

Themancommand is probably the most important UNIX
command: it displays the on-line manual, which will
explain all the others anyway.

Most UNIXes impliment themancommand as described
below, but, beware of AIX, which strongly prefers IBM’s
own ‘info’ system.

Man pages are stored in a simple typesetting language
called ‘troff’. The man command is responsible for
finding the correct page, calling some troff variant in
order to typeset it, and then displaying the result through
a pager, usuallymore .

84

Manual Chapters

An individual page covers a single command, routine, or
file. Some are a few lines long, and some (such as that
for tcsh or bash) many thousand of lines.

The pages are grouped into chapters, depending on the
class of the item described. Important chapters include:

1 user commands
1x X-based user commands
2 system functions
3 C functions
3f Fortran functions (if present)
5 configuration file formats
8 administrative commands

85

Man on Disk

There are usually several collections of man pages on
a single computer. The commands in/usr/bin
may be documented in/usr/man , whereas those
in /usr/local/bin in /usr/local/man . Each
collection has the following structure.

• whatis file containing index of all pages in this tree

• mann directory/ies containing troff source of pages

• catn directory/ies of preformated pages

There is no need for all possible chapters to be present,
or for the preformatted pages to exist at all.

86

Reading a man page

WC(1) FSF WC(1)

NAME
wc - print the number of bytes, words, and lines in files

SYNOPSIS
wc [OPTION]. . .[FILE]. . .

DESCRIPTION
Print line, word, and byte counts for each FILE, and a
total line if more than one FILE is specified. With
no FILE, or when FILE is –, read standard input.
–c, – –bytes

print the byte counts
–l, – –lines

print the newline counts
[etc.]

87

Another man page

wc(1) wc(1)

NAME
wc - Counts the lines, words, characters, and bytes in a file

SYNOPSIS
wc [–c | –m] [–lm] [file. . .]
Thewc command counts the lines, words, and
characters characters or bytes in a file, or in the
standard input if you do not specify any files,
and writes the results to standard output.
It also keeps a total count for all named files.

OPTIONS

–cCounts bytes in the input.
–l Counts lines in the input.
–m Counts charcters in the input.
–l Counts words in the input.

DESCRIPTION

[etc.]

EXAMPLES

[etc.]

88

The Similarities

The header line repeats the name of the man page, ‘wc’,
and gives the chapter number in brackets. It may also
give the author in the centre (Free Software Foundation).

The next line is very important: it is a one-line summary
of the page, and these is the line which is used when
searching for man pages, and which is returned by the
whatis command.

> whatis wc
wc (1) - Counts the lines, words, characters, and bytes in a file
> man -k words | grep 1
wc (1) - Counts the lines, words, characters, and bytes in a file

Thewhatis command prints the one-line summary of a manpage.
Theman -k command (equivalent to theapropos command) searches the whatis database for
the keyword given. In the example above, the output is piped throughgrep to ensure that only
answers containing ‘1’ (i.e. from chapter one) are given.

89

More similarities

The Synopsis section should give a brief summary of
the syntax for the command. Things included in [] are
optional, and the syntax [a| b] shows that a and b are
mutually exclusive options. It is possible to nest the
brackets and or symbols. It should also give a c. one
paragraph summary of what the command does.

This should be followed by a (usually alphabetical) list
of options, and a description of what they do.

Towards the end one should see examples, lists of
standards to which the command conforms, and, finally,
a list of related man pages.

Single-character options are often grouped, so that ‘[-ab] ’ means any, all, or none of the options,
i.e., nothing, ‘-a ’, ‘ -b ’, or ‘ -ab ’.

Linux’s man pages tend to be somewhat patchy in quality. Tru64 is usually significantly better, and
Solaris better still.

90

Search Order

Sometimes man pages appear in multiple sections.
Examples includeexit , printf , mkdir , cvs ,
crypt and many others.

The whatis command will display all appropriate
summaries, whereas theman command may display
just one, using a precidence order which is non-obvious
(1,8,2–7 for RedHat, other orders for Tru64 and Solaris).
To specify a precise page, one must specify the section
too, as in
man 3 printf
or
man -s 3 printf
the latter being Solaris’s syntax.

If the whatis database is missing, or out-of-date, then
man -k cannot work correctly, althoughman itself will
find pages not in the whatis database.

91

Other sources of documentation

The Gnu project is hopelessly fond of its info system
for documentation. Keenemacs users will be familiar
with it, and will also like the text-basedinfo command.
For the rest of us,tkinfo provides a friendly graphical
interface to this system.

92

The more command

The more command is used to display a text file one
screenful, or page, at a time. It is often known as apager,
and some programs will use the environment variable
$PAGERto indicate which pager is prefered.

Most will be familiar with the following keypresses:
{space} next page
{enter} next line

d scroll about half a page
/text next occurance oftext

n repeat previous search
v startvi
q quit

{ctrl}L redraw screen

93

More enhanced

Many versions of more offer considerably greater
functionality, including:

b previous page
j previous line
u reverse scroll c. half a page

?text previous occurrance oftext
G goto end of file

numG goto line numbernum (1G for beginning)
{ctrl}G display current position in file

:i toggles case-sensitivity of searches

A very fully-featured variant ofmore is Gnu’sless (a
horrible pun).

94

manand more

The man command uses an external pager, oftenmore
or less . Hence the above keystrokes should work when
viewing man pages.

RedHat Linux usesless with searches defaulting to
case-insensitive. Solaris uses a version ofmore which
does not support moving backwards at all, and thus
one should consider setting the environment variable
$PAGERto ‘less -isr ’ to encourage man not to
use this pager. Tru64 usesmore , but a rather better
version than Solaris’s, and it does support the ‘b’ and ‘G’
commands.

95

All for less

Of course, these pagers can be used withanycommand,
by using a pipe to pipe the output of one command into
another. E.g.

> ls -l | less
> du -sk * | less
> du -sk * | sort -nr | less

This works because althoughmore and less will
display a file if a filename is given, if no filename is given
they simply displaystdin page at a time.

Users of DOS will find that DOS’smore command is similar, except that it does not accept
filenames: it only reads from stdin. So, to display a file page at a time one types:

c:\> more < autoexec.bat

96

Cool and Calculating

It is always depressing to see someone sitting in front of
a computer ask for a pocket calculator. Computers can
do arithmetic too!

The programxcalc is a well-known GUI calculator
which one can drive with a mouse. It has basic scientific
operations, and one can cut and paste from (but not to) it.
(‘xcalc -rpn ’ gives a Reverse Polish version.)

The programbc is less well-known, but more common,
and is a text-mode programmable calculator. It defaults
to be an arbitrary-precision integer calculator, with just
thesqrt function defined.

> bc
6*7
42
2ˆ 10
1024
7/6
1

97

More calculating

Envoking bc as bc -l sets the scale (the number
of decimal places) to 20 and predefines the following
functions: a(x) (atan), c(x) (cos), e(x) (exp),
j(n,x) (Bessel) andl(x) (ln).

> bc -l
7/6
1.16666666666666666666

scale=30
4*a(1)
3.141592653589793238462643383276

define f(x){
auto i,s;
s=1; for(i=1;i<=x;i++) s=s*i
return(s)
}
f(4)
24

f(24)
620448401733239439360000

Gnu’s version ofbc is more accommodating than those found in most commerical UNIXes,
happily calculating 1000 digits ofπ. However,bc can be very slow compared to other high-
precision packages.

98

Finding things

Thegrep command is very useful for searching files. It
will print every line which contains a given string:

> grep ’TOTAL ENERGY’ output.dat
TOTAL ENERGY IS -745.4575585
TOTAL ENERGY IS -783.9824520
TOTAL ENERGY IS -789.4217177
TOTAL ENERGY IS -790.2230024
TOTAL ENERGY IS -790.3021778
TOTAL ENERGY IS -790.3107729

with the ‘-v ’ option it will print every line which does
not contain a given string:

> ps aux | grep -v root

99

Quoting and counting

When usinggrep , it is important to remember which
characters need quoting from the shell, and safest simply
to enclose the string one is seaching for in quotes. For
instance, if looking for running processes,
> ps aux | grep R
is mostly right, but
> ps aux | grep ’ R ’
will avoid any process with an ‘R’ in its name, and just
match those with an isolated R (presumably the status
column).

If one merely wants to count the number of matches,
> ps aux | grep -v root | wc -l
certainly does the job. However, the ‘-c ’ option togrep
is somewhat quicker and simpler:
> ps aux | grep -cv root

100

More complexity

Most people are familiar with the shell wildcards ‘*’ and
‘?’ used for filename ‘globbing’. However, the general
syntax for wildcards for matching text, as used bygrep ,
perl , vi , emacs and many others, known asregular
expressions, is rather different.

The character corresponding to ‘?’, which matches any
single character, is ‘.’.

> grep ’independ.nt’ /usr/dict/words
independent

The file/usr/dict/words traditionally exists on UNIX systems, and contains a list of English
words, one per line. Some UNIXes prefer to call it/usr/shre/dict/words .

> wc -l /usr/dict/words
25143 /usr/dict/words

101

A beginning and an end

The characters ‘ˆ ’ and ‘$’ match the beginning and end
of lines respectively:

> grep ’pret$’ /usr/dict/words
interpret
> grep ’ˆpret’ /usr/dict/words
pretend
pretense
pretension
pretentious
pretext
pretty

Such regular expressions are calledanchored.

102

Repeats

The character ‘*’ means any number (including zero) of
the preceeding character.

> grep ’a.*e.*i.*o.*u’ /usr/dict/words
adventitious
facetious
sacrilegious

Thus ‘.*’ is the equivalent of ‘*’ as a shell wildcard.

103

Ranges

Square brackets denote ranges, just as for shell wildcards.

> grep -c ’ˆ[A-Z]’ /usr/dict/words
4974
> grep ’[aeiou][aeiou][aeiou][aeiou]’

/usr/dict/words
aqueous
Hawaiian
obsequious
onomatopoeia
pharmacopoeia
prosopopoeia
queue
Sequoia

Yes, that really is 4,974 proper nouns and abbreviations.

104

Extensions

Somegrep s offer extended regular expressions, enabled
by specifying ‘-E ’. These enable one to specify repeats
more explicitly:

> grep -E ’ˆo.*[aeiou]{4}’
/usr/dict/words

obsequious
onomatopoeia
> grep -E ’ˆa.{9,}d$’ /usr/dict/words
aboveground
abovementioned
absentminded
aforementioned

105

More extensions

One can also specify multiple expressions to match for
used extended regexps:

> ps aux | grep -Ev
’ˆroot|ˆrpc|ˆlp|ˆexim’

106

Negated Ranges

A ˆ as the first character of a range negates the range
(even for non-extended regexps). So

> grep -Ei ’ˆ[ˆaeiou]{6,}$’
/usr/dict/words

rhythm
syzygy

(The ‘-i ’ makes the search case-insensitive, thus
removing UNESCO from the answer.)

107

More ideas

Find lines containing only numbers
> grep ’ˆ[0-9+.eE-]*$’
(note ‘.’ stands for itself with a range, and ‘-’ for itself if
it is the first or last character.)

Find lines containing more than 72 characters
> grep -E ’ˆ.{73,}$’
or simply
> grep -E ’.{73}’

Find lines containing two or more adjacent capitals
> grep -E ’[A-Z]{2,}’

And read the man page. . .

108

More regular expressions

The search facility ofmore and less (and hence of
man), and also ofvi , is based on regular expressions.
Hence one can get funny results if searching for a special
character such as ‘.’, ‘[’ or ‘*’.

This can be avoided by preceding such characters with a
backslash.

> grep ’\.’ /usr/dict/words
e.g
i.e
Ph.D
U.S
U.S.A

Emacs offers both a fixed string and a regexp search.

It is worth learning a little about regular expressions: they can be very useful, and very many
programs can use them:awk, ed , emacs, expr , grep , less , more , perl , python , sed , vi
to name a few.

109

Polylingualism

Sometimes it is useful to be able to exchange text files
with people using DOS’s or MacOS’s odd conventions.
Usually one’s editor will cope, but otherwise the ‘tr ’
program is good at single-character translations to
change the different end-of-line codes.

DOS to UNIX (CRLF to LF)

Simply delete all carriage returns.

> tr -d ’\r’ <file.dos >file.txt

Mac to UNIX (CR to LF)

> tr ’\r’ ’\n’ <file.mac >file.txt
> tr ’\n’ ’\r’ <file.txt >file.mac

The tr command can also do multiple substitutions. The most well-known example is to
impliment the ‘ROT13’ code, which moves each letter forward 13 places in the alphabet, and
for which encoding and decoding are equivalent.

> echo ’Hello World’ | tr ’[A-Za-z]’ ’[N-ZA-Mn-za-m]’
Uryyb Jbeyq
> echo ’Uryyb Jbeyq’ | tr ’[A-Za-z]’ ’[N-ZA-Mn-za-m]’
Hello World

110

sed

To perform replacements more complicated than single
character substitutions, one needs to usesed .

UNIX to DOS (LF to CRLF)

> sed ’s/$/ˆM/’ <file.txt >file.dos

This finds end-of-line characters, and addsˆM before
them.

For this simple example, usingsed ’s substitute
command (s), the regular expression to search for is
between the first two ‘/’ characters, and the replacement
string between the second two. Only the first occurance
on each line will be replaced.

Remember that you may have to typeˆM as{ctrl}V{ctrl}M

111

More sed

Code uglification

Remove indentation:
> sed ’s/ˆ *//’ < code.old > code.new

Remove C++ comments:
> sed ’s%//.*%%’ < code.old > code.new

Remove F90 comments:
> sed ’s/!.*//’ < code.old > code.new

Remove F77 comments:
> sed ’/ˆ[cC]/d’ < code.old > code.new
(on any line matching the regexp ‘ˆ[cC] ’ perform the operation ‘d’ (delete line))

Code conversion

Convert C++ comments to C comments:
>sed ’s%//\(.*\)%/*\1 */%’ < old > new

For those unfamiliar with the above languages:
> echo ’foo // bar’ | sed ’s%//\(.*\)%/*\1 */%’
foo /* bar */

WARNING: the above are merely examples: they do not deal correctly with comment characters
in strings, etc.

112

tar and backups

The traditional UNIX backup command istar : Tape
ARchive. It takes one or more files or directory trees,
and bundles them up as a single stream of data suitable
for placing on a tape. It can also perform the reverse
operation. There are several, marginally incompatible
tar formats, and all impose some restrictions on filename
length, file sizes, and similar tedious aspects.

The tar command does not compress the data. If
compression is required, it must be requested explicitly
(Gnu’s tar), or obtained by using a pipe and another
program.

To create an archive:
> tar -cf castep.tar castep
or
> tar -cf - castep | gzip > castep.tgz
or
> tar -czf castep.tgz castep

The ‘c ’ option specifies ‘create’. The ‘f ’ option the file to create: otherwise the default is the tape
drive on the local machine! As is the case for many commands, specifying an output file of ‘- ’
meansstdout . On Tru64, ‘z ’ means ‘position tape after EOF marker’, not ‘compress’. One can
use ‘gnutar ’ instead.

113

tar tricks

List files in a bzipped archive:
> bunzip2 -c x.tar.bz2 | tar -tvf -

Copy a directory from one computer to another:

> tar -cf - castep | ssh spqr1@remote cd somewhere \; tar -xf -

(Note the backslash before the semicolon: we do not want this shell

to interpret the semicolon as a command separator. It will remove

the backslash, so the remote computer sees a plain semicolon and

does interpret it as a command separator. Note too that one can pipe

via ssh , and that ‘- ’ as an input file meansstdin .)

If the network is very slow, one may wish to use compression with the above. If the network is
even close to 100MBit/s, don’t bother.

If speed is an issue, one may wish to considerrsh notssh , but take care.

If you are confused about semicolons, try:
> ssh spqr1@remote uname -a \; uname -a
and
> ssh spqr1@remote uname -a ; uname -a

If backing up to CDs,tar is not the answer.

114

Heads or tails?

Two very simple commands:head displays the first few
lines of a text file, andtail the last few.

Display 20 most recently modified files:
> ls -last | head -20

Display last 40 lines of output:
> tail -40 output

Lose the summary (first) line fromls -l :
> ls -l | tail +2

The tail command can also display from a file as it
grows:

> cgion.x > output.dat
> tail -f output.dat

One can even use
> tail -f output.dat | grep ’TOTAL ENERGY’

To stoptail -f , press{ctrl}C.

115

Shell Scripts

116

Scripts in which shell?

Writing scripts to do common tasks can save much time,
and the shell provides a simple language well-suited for
manipulating files and jobs.

The first problem is to choose one’s shell. The choice is
really no choice, for shells derived from the C shell do
not allow one to define functions, whereas the Bourne
shell introduced functions in 1984. Worse, there is
no formal standard describing what the C shell does,
whereas POSIX has standardised a Bourne shell. Finally,
/bin/sh is guaranteed to exist, and no other shell is.

So clearly the C shell loses for portability, it loses for
being poorly defined, and it loses for scripts of more than
a couple of dozen lines due to its lack of functions.

The result is that no sane person scripts in the C shell,
and therefore there is no corpus of decent scripts for one
to learn from by example. Also, being little used for
scripting, C shells are likely to be more buggy.

117

Other scripts

Although the C shell is almost never the correct language
to use, the Bourne shell is not invariably correct either.
One should not forget alternatives such asawk, perl ,
python and evensed .

There is also the matter of which of the various Bourne
shell derivates to use. Here we shall look at the lowest
common denominator, which is therefore likely to lead
to best portability. There are some useful extensions in
other shells:bash (like csh) supports basic arithmetic
operations. However, one can live without.

The shell gets used for the very basic control structure,
and almost everything else is done by external programs.

The result is often somewhat inefficient, so really serious scripts should be written inperl ,
python or C.

118

Special variables

We have already seen that $1 to $9 contain the first nine
parameters passed to the script. $0 actually contains the
script name itself, as typed, and $# the total number of
arguments.

The commandshift moves all arguments, except $0,
up one, with $1 disappearing, and the tenth parameter (if
any) becoming $9, and $# decremented. It is an error to
shift when $# is zero.

Other special variables include $? which returns the exit
status of the last command, and $$ which returns the
script’s PID.

A variable name can be enclosed in{}, and must be if
followed by an alphabetic character.

$ x=foo
$ echo $xbar

$ echo ${x}bar
foobar

119

Simple if statements

#!/bin/sh
if cd $1
then

echo We can change directory to $1
if touch womble
then

echo And we can create files in it
rm womble

fi
else

echo We cannot cd to $1
fi

Note that the condition expression is simply a command.
A command which executes successfully gives a return
code of zero, which is considered to be true. One which
fails, non-zero, and false.

Yes, this is the opposite of most programming languages.

120

Testing times

The commandtest allows one to test most aspects of
file existance, and some string operations too. Common
uses are

test -d dir : true if dir exists
test -f file : true if file exists
test str1 = str2 : true if strings are equal
test int1 -eq int2 : true if integers are equal

The command[is a synonym fortest , and if invoked
as[the expression must be terminated by a] preceeded
by a space. So
if test -d /temp
can equally, and more usually, be written
if [-d /temp]

For integer comparisons,-lt , -gt and -ne exist, and all comparisions can be negated with a
leading ‘!’, such as[! -d /temp]

See ‘man test ’ for more.

121

Expressing oneself

The expr command performs simple arithmetic and
string matching functions. It is fussy about spaces.

#!/bin/sh
x=1
while [$x -le 12]
do

echo $x ‘expr $x ’*’ $x‘
x=‘expr $x + 1‘

done

At this point it is tempting to use thebash arithmetic extensions, and to write the loop body as

echo $x $(($x * $x))
x=$(($x + 1))

If you are tempted, be sure to change the first line to read#!/bin/bash , rather than fall into the
Linux sh -is-always-bash trap.

Again, see ‘man expr ’ for more.

122

Rotating

Log rotation usually consists of taking a log, renaming
with a ‘.1’ suffix and compressing it, and also moving
the previous version, ‘.1.gz’ to ‘.2.gz’, etc.

#!/bin/sh
keep=6
[-f $1.$keep.gz] && rm $1.$keep.gz
x=$keep
y=‘expr $x - 1‘
while [$y -gt 0]
do

[-f $1.$y.gz] && mv $1.$y.gz $1.$x.gz
x=$y
y=‘expr $x - 1‘

done
mv $1 $1.1
touch $1
gzip $1.1

Just like the C language, the shell alwaysshort circuitsthe conditionals and (&&) and or (||).
That is, for and the second expression is evaluated only if the first is true, and for or only if it is
false.

123

For loops

#!/bin/sh
for f in 3 6 9 10 13 33
do

rsh tcm$f status
done

should display the status of TCM’s XP1000 machines.

Thecsh equivalent is

#!/bin/csh
foreach f (3 6 9 10 13 33)

rsh tcm$f status
end

Try using both in an interactive shell (bash andtcsh respectively), and then press cursor up, and
see which you prefer. . .

124

Remote printing

#!/bin/sh
target=tcm0.phy.cam.ac.uk

usage(){
echo ’Usage:’
echo ’ slpr [-Pprinter] [filename]’
exit

}

["$1" = -h] && usage
printer=
if expr "$1" : -P. > /dev/null
then

printer=$1
shift

fi
if [-n "$1"]
then

if [! -r $1]
then

echo "Error: unable to read file $1"
usage

fi
fi
cat $1 | ssh $target lpr $printer

125

A different angle

#!/bin/sh
target=tcm0.phy.cam.ac.uk
printer=

if [$# -gt 0]
then

case $1 in
-h)

echo ’Usage:’
echo ’ slpr [-Pprinter] [filename]’
exit
;;

-P*)
printer=$1
shift
;;

esac
fi
if [-n "$1" -a ! -r "$1"]
then

echo "Error: unable to read file $1" 1>&2
exit 1

fi

cat $1 | ssh $target lpr $printer
126

Other languages

> less unix2dos
#!/bin/sed -f
s/$/ˆM/
> ./unix2dos file.unix > file.dos

Recall how #! is interpretted. The above command is
equivalent to
> /bin/sed -f ./unix2dos file.unix > file.dos

Whereas the shell will accept a script file merely as its
first argument,sed expects scripts to be preceeded by
‘ -f ’. Any further arguments are then passed after the #!
magic has first added the name of the script file.

127

Other scripts

Many more ideas can be found from:

The contents of/etc/init.d (see later)

Thexon command (usually a script)

> cd /usr/bin; file * | grep script

(and similarly other directories on the$PATH)

Beware! Some will have errors. . .

Numquid potest cæcus cæcum ducere?
Nonne ambo in foveam cadent? (Luc. VI xxxix)

128

Filesystems

129

Filesystems

One very important feature of an OS is that of producing
the concept of a filing system from a disk drive.

Disk drives do not store files. They store blocks of data.
The blocks are typically 512 bytes, and the commands
between the computer and disk drive look like:
Give me block number 43578
Write these 512 bytes to block 1473

A disk drive has no concept of a ‘file’.

Different operating systems conjure files out of disk
drives in different ways, depending partly on perceived
requirements.

130

Files: the requirements

The following items are almost essential for any filing
system:

• a concept of a ‘file’ as an ordered set of disk blocks.
• a way of refering to a file by a textual name.
• a way of keeping track of free space on the disk.
• a concept of subdirectories.

The data which describes the layout of the files on disk is
called ‘metadata’, as opposed to the plain data which the
files contain.

131

Files: the options

The following items are useful, but not so essential:

• last modification timestamp
• last access timestamp
• ownership
• access permissions
• symbolic links
• quotas
• identication of file type

132

Files: the limits

Inevitably limits creep in when one tries to construct a
filing system. Such limits might include:

• largest possible filesystem
• largest possible filesize
• longest possible filename component
• longest possible complete path
• smallest allocation unit
• characters which may not occur in a filename
• maximum number of files per directory
• maximum number of files in total

133

FAT

An old and simple filesystem is that from DOS: FAT. It
is still widely used, and, in its VFAT form, is used by
almost all floppy disks and USB mass storage devices.

From the above list of options, it supports only a last
modification timestamp, and a simple read-only flag. It
has no concept of multiple users or ownership.

Plain FAT uses upper-case only filenames which are a
maximum of eight characters long, followed by a dot,
and then an extension of up to three characters. The
extension is meant to indicate file type. The legacy of this
naming convention is still widespread:.htm for .html ,
.jpg for .jpeg , .mpg for .mpeg , .tif for .tiff ,
.tgz for .tar.gz are all attempts to get within the
three character extension limit.

HTML = HyperText Markup Language; JPEG = Joint Photographic Experts’ Group;
MPEG = Motion Picture Experts’ Group; TIFF = Tagged Image File Format

134

VFAT

VFAT (introduced in Windows 95) adds one important
extension to the FAT system: filenames can now be
mixed-case and 255 characters long.

Another late introduction was (V)FAT 32. Previous
forms of FAT had divided the disk into212 (FAT 12)
and216 (FAT 16) allocation units, and FAT 32 makes the
obvious extension and permits filesystems of more than
2GB.

Floppy disks use FAT 12, whereas anything with a capacity of more than 2MB uses FAT 16 or
FAT 32.

135

UFS

The UNIX File System exists more on paper than in
reality. Most vendors implement something which is
mostly compatible with the specification, but which
differs in detail between vendors. So although Tru64,
Solaris and Linux all support a filesystem which is
effectively UFS, one will not be able to read a disk made
with the other.

Unlike FAT, UFS does store file ownership and last
access times. It also has a more flexible, case-sensitive,
naming system. However, the ‘/’ character is the
directory separator, and can never appear in a UFS
filename.

Many of FAT’s problems arise from its use of fixed-
length directory entries (32 bytes each) which store not
only the name (11 bytes!), but also the starting point of
the file on the disk, the last modification time, the file
size, and therefore most of the file’s metadata.

Almost all filing systems do not permit their directory separator to appear in a filename. Hence
FAT bans\ , UFS /, and MacOS :. Most also banˆ@ (nul), C’s end of string marker. FAT bans
many more too (:<>?*|).

136

Index nodes

UFS uses index nodes for a file’s metadata. When a
filesystem is created, a certain number of index nodes
are created in a table, and this for ever limits the number
of files which can be stored on the disk. Eachinodeentry
is typically 128 bytes, and stores all the file’s metadata
apart from its name. These metadata include:

File length
File ownership (user and group)
File ‘creation’, modification and last access times
File access permissions
Number of directory entries pointing at this file (link
count)
A list of the first ten clusters occupied by the file
Three pointers to clusters containing details of further
clusters used

137

Directories

A directory entry under UFS is exceptionally simple. It
consists of a name, and the corresponding inode number.
With most implimentations of UFS, the directory entry
is of variable size, in order to allow long filenames
efficiently.

The directory itself is stored on disk as though it were a
normal file (it itself has a corresponding inode). The only
distinction is that a single bit in the inode entry is set to
indicate that the inode refers to a directory, not a data file.

The ‘..’ entry is explicitly stored in the directory, and
points to its parent. Likewise ‘.’ points to itself.

FAT is similar in this respect: subdirectories are effectively files with one bit set in their own
directory entries.

138

Fun with inodes

With UFS, directory entries are mostly for the enjoyment
of humans. When a human names a file he wants opened,
the directory structure is used to convert the name to an
inode number, and everything else is done via the inode.

The mv command, when possible, moves files by
changing directory entries but leaving the inode number
unchanged. Thus it is often possible to usemvon an open
file without the application which has it open noticing.

Two directory entries could point to the same inode, and
this is permitted by thelink countin the inode. Deletion
decrements the link count, but the inode is only marked
free, and likewise the blocks occupied by the associated
file, when the link count reaches zero.

If the mv command is used to move between different filesystems, then it falls back to a copy
followed by a delete.

139

The consequences of choice

Because FAT stores so much metadata in the directory,
all forms of ls (dir in the DOS world) are as fast as
each other: all simply require the directory to be read.

With UFS, a simplels is still fast and efficient, but even
ls -F (or a ‘colour’ ls), which indicates the difference
between files and directories, is much slower, for not only
does the directory need to be read, but, for each entry,
the corresponding inode needs to be read in order to
determine whether the entry relates to a file or a directory.

Progressing tols -l , one not only needs the inode for
type, link-count and size, but also a user-id lookup to
convert the numeric user-ids stored in the inodes to a
textual form. Thusls -l can bemuchslower than a
simplels .

140

Permissions

The standard read, write and execute permissions for
owner, group and others are familiar. A few subtleties
are sometimes missed.

If the process’s uid matches the file’s, the user
permissions are applied; else if one of the process’s
groups matches the file’s, the group permissions are
applied; else others. This is true even if the permissions
for ‘others’ are more generous than the first match.

To make a script executable, it needsrx permissions,
whereas a binary file needs justx .

To access a file or subdirectory, execute permission on
(all) parent directory(s) is necessary. To list the contents
of a directory, read permission for that directory is
required.

If one knows the name of a file, execute permission on its directory is sufficient.

141

An open and shut case

Most operating systems have the concept of opening and
closing files. A file must be opened before it can be
read or written to, and should be closed when no longer
required (and will be closed when the application exits).
On opening a file, it is possible to specify whether one
wishes to read or write to the file.

With UFS, opening is one of the few operations to
involve the directory entry, and closing does not. With
FAT, closing may need to write updated file length and
modification times to the directory entry.

The kernel can keep a count of how many applications
have a certain file open simultaneously. ‘Real’ file
deletion, the freeing of space occupied, occurs only if
this count is zero as well as the link count in the inode.

A file held open by an application, but deleted from all directories, will not be really removed until
the last application closes it. However, it is very hard for another application to open it, as it has
no corresponding directory entry.

142

Locks

Bad things can happen if two applications try to write
to a file at once. Even one reading and one writing can
be bad. Thus applications can request that the OS gives
them exclusive access to a file. UNIX calls this ‘locking’,
and Windows, being positive, ‘sharing’.

If an application which has locked a file dies, its
lock(s) are immediately freed. If it simply goes into an
unresponsive sulk, then the locks are not freed. . .

Locks exist in the kernel’s memory, not on the physical
disk, and therfore they do not survive reboots.

Consider what will happen if I change the title of this document to reflect that published in ‘The
Reporter’. By altering the length of a line near the begining, the text editor may feel forced to
truncate the file at that point, and write out again everything following. If a second program tries
reading the file the instant the truncation occurs, it will get a rather odd result.

143

Free space

So that space for new, or growing, files, can quickly
be found, all filesystems maintain a simple structure
indicating which blocks are free. This also enables
commands which report the total free space to work
efficiently, although they may be aided by another entry
simply giving this value.

The UNIX command df indicates the free space
available on a filesystem:

> df -k .
Filesystem 1k-blocks Used Available Use%
/dev/hda2 1548096 1357860 111520 93%

The numbers do not add up (1357860 + 111520 =
1469380) because some space is usually reserved for root
only with UFS.

Thatdf command in full:

> df -k .
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda2 1548096 1357860 111520 93% /

144

Consistency

A consistent UFS filesystem has the following properties:

• Each inode’s link count corresponds to the number of
directory entries pointing to it

• Each block marked ‘in use’ in the free block table is
associated with an inode

• No block marked ‘free’ in the free block table is
associated with an inode

• The file length in each inode is consistent with the
number of blocks allocated to the file

• Each subdirectory’s ‘..’ entry points to its parent
• Each subdirectory’s ‘.’ entry point to itself

145

Inconsistency

A filesystem cannot hope to remain consistent. Simply
deleting a file requires a directory entry to be deleted,
the inode to be marked free, and the blocks occupied by
the file to be marked free. These actions cannot happen
simultaneously, so the filesystem may be consistent
before and after, but no during, a deletion. The same
is true for many other operations.

UNIX assumes the worst. It marks a filesystem as being
dirty (potentially inconsistent) when it first considers
writing to it. If the system is shut down in a controlled
fashion, it ensures all operations have completed, and
then makes the filesystem unavailable and marks the
filesystem as beingcleanagain. If the system crashes (or
suffers a power loss), when it is next booted the dirty flag
will still be set, and the system will check the filesystem’s
consistency.

Modern versions of Windows behave in a similar fashion. However DOS and early versions of
Windows fail to detect improper shutdowns

146

Automatic repair

Windows hasscandisk and UNIX fsck which can
detect and repair filesystem inconsistencies. It is
worth pointing out that consistency and correctness are
different: formatting a disk also reduces its filesystem to
a consistent state, but in a slightly unhelpful manner.

It is also quite possible to get a filesystem into a state
which these utilities cannot cope with, or, indeed, where
they make matters worse.

Both are quite good at finding ‘lost’ files: files with no
directory entries, but still with space allocated to them. In
the UNIX world, these are retrieved to the corresponding
lost+found directory.

fsck = File System CHeck

147

Fragmentation

When accessing a disk drive, reading consecutive blocks
of data is much faster than reading blocks scattered
randomly over the physical surface of the disk. It
typically takes around 5ms to move the disk heads to a
new location, and a further 2ms for even a 15,000rpm
drive to complete the typical half-revolution necessary to
find a piece of data. By contrast, consecutive disk blocks
will be read at around 100 blocks/ms.

The filesystem will usually record in 4K or 8K blocks,
not the 512 byte blocks which the disk may well
suppport, but it is still very helpful to keep blocks which
are consecutive within a file consecutive on disk. UFS
tries to do this, whereas DOS-based systems default to an
allocation scheme which is extremely poor, as it always
takes the first free block regardless of where any other
blocks in the same file are.

The fsck and scandisk programs usually report
fragmentation as they run, each fragment of a file being
a run of consecutive blocks on disk.

148

Journalling filesystems

Because checking filesystem consistency is painful on
large fileservers – it can often take over an hour – various
filesystems which never need a full consistency check
have been developed.

They all work by keeping a log, or journal, of operations
which they are about to do. Deleting a UNIX file might
be broken down as:

write to journal ‘I am about to remove this
directory entry, free this inode, and mark
these clusters as free.’

do the above
remove the journal entry

After a crash, the journal is scanned and those entries
which have not been completed are finished.

A journalling filesystem must flush the journal from cache to disk before attempting the updates
described by the journal.

Digital UNIX has AdvFS as a journalled filesystem, Irix has xfs, AIX has jfs, Linux has ext3,
Solaris ufs (with logging),and WinNT has NTFS. SGI and IBM have donated xfs and jfs to the
Linux project.

149

Journal problems

Journalling produces a significant performance penalty,
as every write is turned into two: one to the journal,
and one to the real file. For this reason most journalled
filesystems only journal metadata.

Journalling metadata can ensure that the filesystem
remains consistent, and guards against the type of errors
which can cause whole directories to vanish. The
contents of files can still be corrupted by crashes.

Journalling data as well as metadata is a serious
performance penalty, and requires a much bigger area for
the journal. Many journalling filesystems do not support
data journalling at all.

The final problem with journalling is that hardware errors
or bugs in the OS can still cause a journalled filesystem
to become inconsistent. Because the recovery tools for
journalled filesystems are used less frequently, they tend
to be less tested and less effective.

Linux’s ext3 and Solaris’s UFS support journalling and still use the same layout as the older, non-
journalled, filesystem they are based on. Hence the old recovery tools are valid.

150

Remote files

It is often convenient to use files physically located on
a remote computer as though they were stored locally.
This UNIX, MacOS and Windows can all do, and you
do every time you use TCM’s computers, for your UNIX
home directory is physically on one machine, and your
Windows home directory another. Neither of these two
servers do you ever touch directly.

That UNIX, MacOS and Windows use three completely
incompatible protocols for this will be no surprise.

In all cases there is a speed and reliability penalty to
pay compared to local disk access, but the increase in
convenience can be great.

Disk drives not only typically have a higher bandwidth than networks, but also a lower latency,
especially once the overheads of going through the networking protocols is considered.

151

Remote trouble

An obvious performance increase for local disks can be
achieved throughtcaching. The kernel knows that only
it can modify the contents of the disk, so it can store
recently accessed data, and much of the metadata, in
RAM, and use that fast copy for most purposes, writing
changes to the disk only occasionally, and never reading
the disk just to check that the disk agrees with a copy of
some data which the kernel already had in its cache.

All OSes do this: UNIX, Windows, even DOS, and
simply caching the most important metadata can make
a significant difference to performance, as the physical
latency of a disk drive is around 10ms, and of the memory
system around 100ns. Although software overheads
reduces this difference to a mere factor of 1,000 or so,
it is still huge.

But caching fails with network drives. The client has
no way of knowing if the server, or another client, has
modified some data, and therefore must assume that the
worst has happened.

152

Remote confusion

Losing all caching is too big a penalty, so most clients
will cache metadata from remote drives for a few seconds
for reads, and not at all for writes. This can cause
amusement when caches become stale.

Locking is a bigger problem. With a local process and
a local drive, if the process dies the kernel will know,
and will be able to free the lock. With a process and a
remote drive, the local kernel might not even know that
the lock has been requested, as the process was, in some
sense, communicating directly with the remote server.
Hence when the process dies the local kernel is unware it
should return some remote locks. Or it might know, but
a network problem might prevent it.

Or perhaps the server suddenly reboots. The local
process can survive this, but how can it be told, reliably,
that it has lost its lock? With entirely local access, if the
computer reboots, processes don’t survive.

153

NFS

The UNIX protocol for remote file access is called NFS
(Network Filing System). It isn’t quite the same as UFS.
Important differences include:

NFS v1 and v2 have a 2GB filesize limit.

NFS has no real concept of a file being ‘open’, so a file is
deleted as soon as its link count becomes zero, regardless
of whether some clients think they have it open still.

NFS’s attempt at providing locking is interesting and
fraught.

The good thing is that applications are usually unware
of whether they are using a local UFS filesystem, or a
remote NFS one.

NFS’s unencrypted, IP-based, client-side authentication ‘security’ model is a complete joke. It is
not, in general, suitable for storing passwords or anything else vaguely sensitive.

154

NFS quirks

Listing all the infelicities of NFS would take forever.
However, just one for amusement. Suppose an NFS
client has a file open, and deletes it while it is open. What
should it do?

Given that the same machine has the file open and is
trying to delete it, it can be expected to notice the
problem. Standard UNIX semantics say that the delete
should succeed in removing the directory entry, but that
subsequent access to the open file via its inode should
also succeed.

What the client actually does is that it causes the delete
operation to rename the file to the a name starting
‘ .nfs ’ and ending with a ‘random’ number. Humans
are content, as they see the file disappear. Applications
are content, because they can still use their open file in
safety. The world is not content, because these.nfs
files are not deleted when the original file is closed, and
simply accumulate.

155

Special files

The basic programming interface to files: opening,
seeking to a given position, and reading or writing, is so
simple and convenient that it is useful to be able to apply
it to other things too. This UNIX does.

The directory/dev containsdevice files, each of which
corresponds to (usually) a hardware device, and each of
which obeys standard file permissions. Noteable entries
include each disk drive (for reading raw blocks), tape
drives, serial, USB and parallel ports, sound cards, and
physical memory. Most can be read only by root.

The directory /proc contains information about
processes, and the machine in general. These files
have no physical existance on any disk, but the kernel
interprets attempts to read from them as requests for
certain information, and supplies same.

One should be very careful if one attempts to backup files in/dev or /proc . One,/dev/zero ,
contains an infinite number of zero bytes, and backing it up by opening it and reading its contents
will take a very long time indeed.

156

/proc on Linux

Linux has a comprehensive set of files under/proc ,
almost all of which can be safely prodded with theless
command. Being slightly unreal, many report zero size
to ls -l , although they contain data.

/proc/cpuinfo
CPU type and speed.

/proc/meminfo
Memory size and utilisation (used byfree).

/proc/PID/cwd
Symbolic link to process’s current working directory.

/proc/PID/exe
Symbolic link to process’s executable file.

/proc/PID/cmdline
Process’s command line.

/proc/PID/status
Process’s memory use, uids, gids, ppid, and signal info.

/proc/PID/maps

Process’s memory map.

157

Multiple filesystems

DOS, Windows and MacOS present each filesystem to
the user as a separate ‘disk drive.’ With DOS, they
are called friendly things likeC: , D: andE: , whereas
MacOS pops up icons with configurable textual names.

UNIX does things rather differently. It presents a single
directory tree with a single root directory. Different
filesystems are then grafted on to that tree using
the mount command. On a typical TCM Alpha,
there are three filesystems resident on local disks:/ ,
/usr and /temp . There are also several remote
filesystems including/u/tcmsf1 (where the home
directories reside) and/usr/local/shared (where
many applications are to be found).

The joins between these filesystems are almost invisible
to the user.

‘df -k . ’ will tell you where you really are.

‘umount ’ unmounts a filesystem, and ensures that all changes are flushed from the caches to the
disk, and that the filesystem is marked ‘clean’ (consistent).

158

The Internet

159

The Internet

The Internet is a global network based on the IP protocol
and to which computers in TCM are attached.

Many different types of machine are connected to the
Internet, and the network itself travels over various
media (copper, fibre and wireless) using many protocols
(ethernet, ATM, modems, etc.)

The design is a flexible layered design, with each layer
specifying as little as possible about the others.

160

Ethernet

Ethernet is the protocol on which the TCM network, and
almost every network in Cambridge, is based. It runs
over both fibre and copper at several different speeds,
from 10 MBit/s to 1 GBit/s.

It is the lowest level of the protocols used, and very few
programs use it directly. It is useless for communication
beyond TCM.

Like most networking protocols (from carrier pigeons
onwards), it is based on the transferal of packets of data.

Other possible network protocols which are alternatives to ethernet include ATM and TokenRing.
The latter is firmly dead, but ATM has advantages over ethernet when long distances are involved.

161

An Ethernet Packet

D
a
t
a

l
e
n
g
t
h

A
d
d
r
e
s
s

S
o
u
r
c
e

D
e
s
t
i
n
a
t
i
o
n

A
d
d
r
e
s
s

C
h
e
c
k
s
u
m

Datapacket
marker

of
Start

8 6 6 <=15002 4 bytes

The addresses refered to are the ‘unique’ 6 byte MAC
addresses which every ethernet card must have, not the
IP address.

There is no protocol for acknowledging receipt of a
packet, and the network is quite likely to throw the packet
away before it reaches its destination anyway.

The destination address must be on the same physical
network as the source: long-distance routing is
impossible.

A useful system for a few hundred computers, but
thereafter increasingly unworkable.

162

An IP packet

The next protocol level is IP (Internet Protocol). Such a
packet has a header of 20 bytes, the important fields of
which are:

Source address(as IP address) (4 bytes)
Destination address(as IP address) (4 bytes)
Packet Length(2 bytes)
Checksum of header(2 bytes)
Protocol (2 bytes)
Time To Live (2 bytes)

The TTL field gets decremented by one every time
the packet passes through a router, and the packet gets
discarded if it reaches zero. This prevents packets
wandering aimlessly around the world for ever.

When an IP packet is sent over an ethernet network, it
is enclosed in the data section of an ethernet packet.
Other ethernet packets on the same network may be
transporting other protocols, such as DECNet, NetBEUI
or Ethertalk.

163

Local or remote?

It is useful to be able to reach beyond one’s local network.

A correctly configured computer will know which IP
addresses correspond to machines on its local network,
and, for those which don’t, the IP address of arouter or
gatewaythat will forward the packets on.

Thus a computer is always sending out packets either
directly to another computer on the same physical
network, or to a router on its physical network which will
know where to send the packets next.

The local physical network stops at the nearest router.

A router will usually cope if it is sent a packet unnecessarily: that is, it will simple return the packet
to the same network it came from, but addressed to the correct computer this time.

Some routers (including TCM’s) also look for packets lost on the wrong network and rescue them.
Details to follow. . .

164

IP or MAC Address

An important extra step is the translation of a numeric IP
address to an ethernet (MAC) address. The protocol for
resolving this, called ‘ARP’, is depressingly simple.

A computer sends out a broadcast ethernet packet
containing the question ‘who is 131.111.62.175?’
(Broadcast: to all machines on the local network,
specified as an address of all ones.)

The first reply it receives reading ‘I am 131.111.62.175,
my MAC address is 00:06:2b:00:ca:b7’ is believed.

Security? None. All computers were explicitly sent the
query: any could have chosen to reply.

This is the point where a helpful router can see a request saying ‘who is 131.111.8.12?’ and think
‘no-one around here, you fool: give it to me, I’ll handle it.’ It thus replies to the ARP request on
behalf of 131.111.8.12 giving its own MAC address so that it will get sent the real packets. Such a
reply is called aproxy ARPfor obvious reasons.

Ethernet cards will respond to packets sent to their own address (e.g. 00:06:2b:00:ca:b7) or to the
broadcast address (ff:ff:ff:ff:ff:ff). Broadcasts are inefficient as they must be transmitted to every
machine. Unicast packets can be kept away from machines which do not need them.

165

Routing

One routes packets, one routs armies.

Yes, dear American friends, these words are pronounced differently.

A router connects to a small number of networks. If it is
sent an IP packet, it knows to which network to send it
so that it can move towards its destination. Sending it on
will involved re-encapsulating it, maybe in an ethernet
packet with different source and destination addresses,
maybe in (several) ATM packets, etc.

The router will decrement the TTL field of the IP packet,
sending back an error and not forwarding the packet if
it reaches zero. It may also return an error if it does not
know how to reach the requested address.

Addresses are allocated in blocks. Hence anything of
the form 131.111.xx.yy can be sent to this University for
further routing, and anything of the form 131.111.62.zz
will end up in the Cavendish. So no, your College IP
address will not work in TCM!

Telephone systems work in a similar fashion, but on a larger scale. Unlike ’phone systems there is
no national code: 131.112.2.zz is in Japan!

166

Networks

Specifying an individual IP address is simple:
131.111.62.129.

To specify a contiguous block of addresses, that is
to say a network, in the bad old days one used
classes, depending on which bytes were ignored, so
131.111.62.zz would be called a ‘class C’ network,
and have 256 addresses, and 131.111.xx.yy a ‘class B’
network with 65,536 addresses. Class As are rare.

These can also be specified using anetmask, as
131.111.62.0/255.255.255.0. This is more flexible, as
the netmask, in binary, has ones for the bits which
are constant in the network, and zeros for those which
can change. One is now permittedclasslessnetworks
such as 131.111.62.128/255.255.255.128, which is half
a class C.

As the netmask must have the form, in binary, (bunch
of ones)(bunch of zeros), it is quicker to specify just
the number of ones. Hence 131.111.62.128/25 or
131.111.0.0/16.

167

Public and Private Addresses

There are232 ≈ 109 possible internet addresses. Most
of these are routed around the world in a conventional
fashion. Cambridge has three class B networks.

There are also addresses which are defined to be private
to an institution. That is, an institution (in this case
the University) may use them on its private network,
but they should never appear outside, and, indeed, are
meaningless outside as different institutions may well
be using identical addresses. Such addresses are fine
for printers and other things which really do not need
an address which enables them to be contacted from the
other side of the world.

These addresses are sometimes calledRFC 1918
addresses, after the standard which defines them. They
include 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16.

168

Private addresses in Cambridge

The University (and JANet) have divided the RFC 1918
addresses as follows:

• reserved: 10.128.0.0/9
• routed across the CUDN: 172.16.0.0/12 except

172.31.0.0/16
• not routed anywhere: 10.0.0.0/9, 172.31.0.0/16,

192.168.0.0/16

This greatly increases the number of addresses available:
for every public IP address the University has five
CUDN-routed private addresses and over forty unrouted
ones.

CUDN: Cambridge University Data Network – the internet within the University.
JANet: Joint Academic Network, the UK’s govt funded academic network.

169

Addresses in TCM

We have one public range: 131.111.62.128/25.
We have one CUDN-routed private range: 172.24.25.0/24.
We, with BioPhysics, have all the ‘unrouted’ ranges on
the previous slide.

Thus the routing table for a TCM machine might
specify 131.111.62.128/25 and 172.24.25.0/24 as local
networks, and 131.111.62.190 (or 172.24.25.62) as a
default gatewaywhich knows what to do with all other
destinations.

Note that the gateway must be within (one of) the local
network(s), otherwise it is unclear how to reach the
gateway. . .

BioPhysics has 131.111.75.192/26 and 172.24.125.0/25 as its public and private ranges.

The terms ‘gateway’, ‘default gateway’ and ‘default route’ are used interchangeably.

The command ‘netstat -nr ’ displays a machine’s routing table, androute modifies it.

170

The World

et alia

Rest of
World

www.tcm tcmsf1 your computer

TCM/BP switches

TCM/BP firewall

HPCF Remote
Backup

TCM/BP PoP

Churchill PoP

Vet School PoP

CMS PoP

Cavendish network

Cavendish PoP

Route−North−3

and Depts.

Random Colls

CUS Hermes

JANet

Route−West−3

Route−Cent−3

DNSwww.cam

HPCF

Various other central CS routers are not shown, e.g.route-sidg-3 (Sidgwick site),
route-down-3 (Downing site) androute-south-3 .

A ‘PoP’ is a Computing Service Point of Presence: a physical network switch which it manages
and an institution plugs into. Most of these are omitted from the above diagram.

The CS routers are named by their own physical location. Hence Wolfson College is connected
directly to the Sidgwick router, and Hughes Hall to the Downing router.

Route-West-3 lives physically just beside Reception at the Cavendish.

171

Helpfulness

If, in TCM, 131.111.62.129 wants to talk to 172.24.25.1,
it should just broadcast an ARP request on the local
network, and talk to it directly. If it doesn’t realise that its
target is on the same network, it will send the packet to its
gateway instead. The gateway is sufficiently intelligent
to realise that the packet needs returning to the same
network from which it received it (but with a different
ethernet destination address) and will do so. However,
bouncing traffic off the gateway like this is inefficient, as
the gateway will surely be a bottle-neck.

The converse is 131.111.62.129 wanting to talk to
131.111.8.1, and simply sending an ARP request to the
local network. The broadcast cannot possibly reach the
intended target sitting on a quite distinct network, but the
gateway will see the broadcast, notice the error, and reply
on behalf of 131.111.8.1. Thus the gateway gets sent the
traffic, which is what should have happened anyway.

This form of ‘fake’ ARP reply is calledproxy ARP.

172

Say that again?

Yes, the previous paragaph does read as follows:

131.111.62.129:could 131.111.8.1 please give me its
ethernet address, so that I can send data to it?
131.111.62.190:here, this is my ethernet address, I am
131.111.8.1.
131.111.62.129:yipee! I’ve found my friend: now I’ll
send him that data.

The silly fool called 131.111.62.129 is simply unaware
that the machine claiming to be 131.111.8.1 isn’t. If one
has access to the local network, intercepting IP traffic in
this fashion is incredibly easy.

Naturally anyone caught playing such tricks can expect
to suffer an involuntary change of employer or place of
work.

173

Caching ARP

It would be extremely inefficient to have to send out
an ARP request for every IP packet, particularly as the
ARP request isbroadcastto all machines, rather than
beingunicastto a single machine. Thus when a machine
receives an ARP reply, it will remember the result for a
while. Occassionally (minutes) it will check that nothing
has changed (if it is still using that IP address) by sending
another ARP request, initially just unicast to the address
which it expects will respond ‘That’s me!’

The contents of a computer’s arp cache can be listed with
the command
> arp -a

If an IP address changes its ethernet address (e.g.
replacement after ahrdware failure), it can take some
machines an hour or so to time-out the incorrect entry
in their cache and to go looking for the correct one again.

174

ICMP

A simple IP protocol is ICMP: Internet Control Meta
Packet. It is used for diagnosing faults on the internet
and for keeping the internet running smoothly.

A common use of ICMP is by the program ‘ping ’. This
sends a packet with the request that it is echoed straight
back. One can thus see how far packets are getting, how
long they are taking, and how many are being lost.

One should not make excessive use ofping , but, when
network problems are apparent, it can be useful to see if
one can ‘ping’ a machine on the local network (should
give a time of 1-2ms and no losses), one’s gateway
(ditto), a slightly more distant machine (e.g.cus),
something in another town, etc.

Many commercial networks block ‘ping’ packets. In Cambridge, ITS Rules require that connected
machines respond to ping packets from 131.111.8.0/25.

TCM’s gateway is 131.111.62.190.

Most versions of ping (but not Solaris’s) run for ever. Press control-C to stop them.

175

TCP and UDP

TCP and UDP are the two protocols which most widely
used. UDP is the simpler, and is mainly used by NFS,
DNS and some logging facilities. It has a header of just
eight bytes, containing four two-byte fields: source port,
destination port, length and a checksum.

The port number, used by both TCP and UDP, is used by
the machines at either end of the connection to determine
which program should handle the incoming packet. It is
a 16 bit integer. Common values include:

21/TCP ftp
22/TCP ssh
23/TCP telnet
25/TCP SMTP (mail server)
79/TCP finger
80/TCP WWW server
123/UDP NTP (clock synchronisation)
161/UDP SNMP
515/TCP lpd (printing)
993/TCP IMAP/SSL (secure email)
6000/TCP X11

176

TCP

TCP has a twenty byte header, again containing source
and destination IP addresses and ports, but also sequence
and acknowledgment numbers, and various flags.

Ethernet, IP and UDP are allconnectionlessprotocols. A
packet is sent, it has no explicit relationship to any other
packet, it is not acknowledged, it might not even arrive.

TCP is a protocol which establishes a two-way
connection over an unreliable medium. Packets do have
sequence numbers within an established connection, so
the receiver can tell if one is missing or if some arrived
out of order, and all packets are acknowledged so that the
sender knows if they have been received.

As TCP creates a point-to-point connection, it has no
concept of broadcasting. UDP and ICMP can broadcast
by specifying an IP address which has all bits in the
network-variable part set to one (e.g. 131.111.62.255 for
TCM’s public address range).

UNIX uses broadcasts rarely, and usually as a result of poor configuration. Windows uses
broadcasts much more heavily, particularly heavily in early versions.

177

Funny handshakes

To establish a TCP connection from A to B, the following
exchange occurs:

Computer A sends a TCP packet with the SYN flag set
to the relevant port on the remote machine and a random
initial sequence number.

Computer B replies either with the RST flag (no program
is listening on this port: go away), or with both the SYN
and ACK flags set.

Computer A replies with a packet with ACK set to
acknowledge B’s packet, and with the sequence number
incremented. This is the first packet which may contain
real data.

Each packet will be resent a small (3-4) number of times
if no reply is received after a reasonable time.

ACK: acknowledge (previous packet)
RST: reset (connection)
SYN: synchronise (sequence numbers)

178

Saying Goodbye

Having established a connection, it can be closed either
if one end stops responding for about a minute, or,
more cleanly by one end requesting that the connection
be closed, and then the other end acknowledging the
closure.

If a connection is transmitting no data, neither machine
will notice if something breaks. Thus one has the concept
of ‘keep alive’ packets: packets sent intermittently (about
once an hour or so) which carry no data by require the
remote machine to acknowledge them and thus confirm
that all is well.

The command ‘netstat -a ’ lists open TCP connections.

179

A TCP packet

TCP packet

IP packet

Ethernet packet

IP
 h

ea
d

er

h
ea

d
er

T
C

P

E
th

er
n

et
h

ea
d

er

Data

Remember that the data section of an ethernet packet cannot be larger than 1500 bytes. It is
permissible to fragment an IP packet across several ethernet packets, but it can be messy.

180

Trust

Don’t – a TCP connection could come from anywhere.

Always demand that a password be supplied with
each connection, unless anonymous connections are
acceptable.

Thus telnet , ftp and mostimap and pop clients.
Pity that none bothers to permit the passwords demanded
to be encrypted.

This form of authentication is calledserver-side
authentication, for it is the remote server which handles
the authentication, and is responsible for verifying that
the connection is from the user it claims to be from.

Strictly imap does permit encrypted passwords, but this extension is rarely implemented.

181

Be Trusting

And reduce the number of unencrypted passwords flying
around.

Base trust on IP address and user details that client
program sends.

One needs to believe the IP address spoofing cannot
happen, and one needs to trust the client program.

Thusrsh , rcp , xon , lpr and NFS.

And this form of authentication is calledclient-side
authentication, for it is the local client which handles
the authentication, and the server trusts that the client is
behaving.

182

Be very trusting

Require no authentication: offer service to anyone who
requests it.

In many ways ideal: no false sense of security!

Thus http (WWW), SMTP (email(!)), finger, daytime,
anon. ftp. . .

183

Packets and Processes

UNIX requires processes to use the kernel for all
interactions with hardware devices, including network
cards. The kernel permits:

Outgoing UDP/TCP with a source port≥ 1024
Listening for UDP/TCP on a free port≥ 1024

Anything else (ICMP, sending from ports< 1024, raw
ethernet packets) can be done by root only.

UNIX does have a mechanism for giving users root
privilege. An executable program can be ‘setuid root’,
which means, when run, it gains all the privileges of root.
This is how theping program is able to send ICMP for
non-root users.

There are no restrictions on the port numbers one can connect to, only on those one can connect
from or listen on.

> ls -l /bin/ping
-rwsr-xr-x 1 root root 22620 Jan 16 2001 /bin/ping

the ‘s’ in the user permissions shows that the program is executable and setuid to the user who
owns the file.

184

Privilege

Whenrsh on machine A contacts machine B and says
‘this is spqr1 from A,’ how can B tell thatrsh is really
being run byspqr1 , nota.n.other ?

Certainly a.n.other can compile a version of rsh
which will always (falsely) claim to be being run by
spqr1 . But one hurdle remains. It cannot sendfrom
TCP ports in the range 0-1023. The modified user-
installed version ofrsh will have to use a port number
in the range 1024-65535. Machine B will refuse all rsh
connections from such ‘non-privileged’ ports.

The realrsh is installed setuid root, so is able to connect
from a privileged port, and might be trusted by the remote
machine.

Neither Windows nor MacOS follow this convention, so user data supplied byrsh running on
such machines is untrustable.

185

Cryptography

Cryptography is a marvellous thing. It allows
information to be exchanged in such a way that third
parties cannot eavesdrop,and it allows remote machines
to prove their identity.

Unfortunately, very few programs use it. Windows NT,
ssh and ssl all do a good job though.

Without cryptography, when typing a password you
know neither who is eavesdropping, nor that the machine
to which you are sending the password is really what
it claims to be, unless you fully understand and trust
the management of all the networks between the two
machines.

The sensibly encrypted protocols includessh , https
and imaps . The last two are simplyhttp and imap
sent though an encryptedtunnelusing ssl.

186

Firewalls

Most firewalls, whether implimented on the machine
they are protecting, or as a separate machine through
which all traffic to a network must pass, are very
simplistic. They examine the IP header of each IP
packet, and make decisions about whether to forward or
reject the packet based on the sender’s and recipients IP
addresses and port numbers, and the TCP flags.

Possible rules include:
Reject all incoming TCP packets with SYN set and
ACK not set (rejects all TCP connections initiated from
outside)
Reject all incoming TCP packets to port 6000 (rejects all
attempts to contact X server from outside)
Reject all outgoing TCP packets going to port 80 (stop
people browsing the WWW)
Reject all incoming packets except TCP to port 22 (allow
justssh)

One does need to think hard about what one intends to achieve with a firewall, and which protocols
use ‘random’ ports, before going too far though.

187

Packets and Hardware

Most network devices examine some part of the packet
in order to optimise where they send it next. The list is
roughly:

Hubs/repeaters: none
Switches: ethernet destination
Routers: IP destination
Firewalls: IP source and destination, TCP and UDP
headers

As one moves down the list, the problem becomes more
complex, and the price goes up. However, so does the
largest network size one can support.

188

X11

189

X11

The X Windowing system is one area of UNIX which is
frequently badly misunderstood.

X is a system for the display of graphical applications. It
was developed at MIT in the 1980s as a research exercise,
not as a application intended for general use.

It divides the problem of displaying graphics into two
distinct parts. Firstly there is the X server, which
is responsible for getting the images onto the screen,
and for reading keyboard and mouse events. Secondly
there is the X client, which is the program which sends
requests to the X server, and receives information about
keypresses and mouse movements from the X server.

190

The X server

The X server needs to know precisely how to interact
with the particular video hardware and keyboard and
mouse attached to the computer on which it is running.
Once it has initialised the graphics hardware, it just sits
listening for requests to display things and requests to be
sent keyboard and mouse information. These requests
come encoded in the ‘X protocol.’

The server really does listen: it listens on TCP port
number 6000. Anyone connecting to this TCP port can
talk to the server, and in the bad old days there was no
further security whatsoever.

A computer will usually run a single X server, usually
run as root to permit more direct access to the
graphics hardware, and usually written by the hardware
manufacturer: henceXdec , Xsun , etc.

191

The X client

The X client is any of the multitude of processes which
will use the X server in order to be displayed: your
window manager, an xterm, an xclock,gv , xdvi ,
acroread , xcalc are all X clients.

The client will speak to the server using the X protocol,
but, because the X protocol is tedious to program, every
X client in fact uses the X11 library (libX11.so) which
offers simple C functions one can call in order to open
windows, select fonts, write text, write bitmaps, draw
rectangles and arcs, and do the other simple operations.

The X client knows which X server to contact by looking
at the environment variable$DISPLAY, whose syntax is
[host.domain]:offset.head
The optional host.domain part specifies which
computer to connect to (if absent, the local machine is
assumed). The offset specifies the TCP port number, as
an offset from 6000. It is usually zero unless one is using
ssh . The head part is (usually) non-zero only for multi-
headed displays.

192

Toolkits

The standard X library is rather limitted. It does not
provide for the standard scroll-bars, menu bars, drop-
down menus and other similar items that one might
expect. True, one can construct them all out of the
primitive functions it does provide, but this is tedious.

Hence various ‘toolkits’ or ‘widget sets’ exist, which are
pre-packaged collections of such useful things. Two very
common ones are ‘Xt’ (the X toolkit, really rather basic)
and ‘Xaw’ (the Athena widgets set) which ship freely
with X11. Commerical libraries exist too, such as Motif
(libXm). It is often possible to guess which widget set(s)
an application uses just by looking at it.

193

Extending X

The X protocol is usefully extensible, and most X servers
support far more than the basic operations of the original
X11. The commandxdpyinfo will return a list
of extensions supported by the server. Notably ones
include:

MIT-SHM - permit clients to send information to the
server via shared memory segments. Increases speed, but
works only if client and server are running on the same
computer.

DPMS - enables clients to request that the monitor
switch to a low-power state (Display Power Management
System).

SHAPE - permits non-rectangular windows.

GLX - see next page.

194

GLX

GLX, or OpenGL, is a set of library routines for doing
common operations in 3D graphics, particularly filling
triangles with the correct shade of colour given their
natural colour and reflectivity and the prevailing lighting
conditions, mapping textures onto triangles, and dealing
with fog. All this can be done in software, but usually
these operations are done in hardware by the video card:
the library simply sends a request to the video card,
and a processor on the card does the work leaving the
computer’s CPU free to do other things.

Video cards with this sort of computing power became
widely and cheaply available in around 2000. Before
then, hardware GL was extremely expensive. Now it is
ubiquitous, and driven by the mass games market. Games
running under both MS Windows and X11 can use GL
for rendering their 3D scenes.

195

GL surprises

Because the calculations required by the GL operations
are done by the video card, and because approximations
are permitted, indeed, almost encouraged in order to
achieve decent speed, the same program running on
machines identical apart from their video cards can
display different images. The differences are usually too
slight to be worth worrying about.

A brick texture mapped without (left) and with (right) regard to perspective. A GL-supporting
graphics card can do either mapping itself.

196

Window Managers

The window manager is a rather special X client. It
is responsible for adding thedecorationsto a window:
the border and title bar, and for controlling move and
resize operations using them. It is also responsible
for any menus which appear when one clicks on the
bare background of the X server (theroot window),
for controlling the focus policy (which window gets
keyboard input) and iconisation.

There are many different window mangers, including
twm (one of the first), tofvwm, dtwm (commercial, part
of the CDE environment),mwm(Motif) and wmaker .
No more than one application may register itself with
the X server as the window-manager at any one time. It
is possible (just) to run without a window manager, but
do not expect to be able to move or resize windows, or
to raise or lower them, or have anything other than the
default focus-follows-mouse policy.

197

xterm

Most people claim to be familiar withxterm . It is a
simple GUI wrapper for a text application, which, by
default, runs one’s preferred shell. It can run any text
application:
> xterm -e tail -f output.dat &
> xterm -e vi talk.tex &
> xterm -e pine &
or one’s preferred shellas a login shell:
> xterm -ls &
One can also set the number of lines remembered in the
scroll-back region:
> xterm -sb -sl 500 &

It has menus, accessed by{ctrl} and the mouse buttons:

198

fvwm2

The window manager most people in TCM use on the
Linux PCs isfvwm2 . The Alphas tend to usedtwm, and
some people preferwmaker on the PCs.

A good window manager is small, configurable, and easy
to configure sanely. The above come close. . .

Fvwm2 is smallish, and reads its configuration from
˜/.fvwm2rc , or a system-wide file if that does not
exist. It can be configured to support the common focus
policies (focus follows mouse, click to focus, lazy focus),
it supports multiple desktops, switching between them
using the mouse, keypresses and / or a pager, it allows
windows to be moved or resized from any part of their
frame. It supports iconisation, and configurable pop-
up menus when one clicks on the root window, and the
closing of errant windows.

Lazy focus: follows mouse, but never switches to root window

199

fvwm2 continued

‘It does?’ I hear some of you say. Well, in TCM it does.

Iconise button

title bar

corners resize height

(menu also appears

and width

edges resize height (top and bottom)
or width (sides)

menu button

Maximise button
if middle mouse
button clicked
on any edge)

‘Raise’ and ‘Lower’ will move the window up and down a stack of overlapping windows. ’Stick’
makes the window appear on all virtual desktops.‘Close’ will close an errant window, and ‘Destroy’
ditto but overly forcibly. A double-click on the top left button is equivalent to selecting ‘close.’

200

Bad window managers, bad clients

Features of some window managers are silly. For
instance, resizing from the bottom corners only (useless
when the bottom of the window is off the screen),
moving the window via the title bar only (similar), using
excessive numbers of colours and thus crippling older
computers, and having single click to close an application
(particularly on a button close to the iconise button).

The worst client is the GUI file manager. Whereasls
does what a human expects: it lists the current state of a
directory, a GUI filemanager does not: it shows the state
when the window was opened.

Updates from other clients, or even programs on the same
client, qickly cause the GUI’s view to date. Soreally
bad GUI filemanagers refresh their displays periodically
automatically. This does not guarantee that they are
correct when a human looks at them, but does add nicely
to the server load.

Does your GUI filemanager distinguish between directories with subdirectories, and those without?
To do so, it may need to open each subdirectory and check its contents: much more work thanls
does. Is it obvious that one should press{F5} to cause Windows to update its filemanager?

(MacOS and Win9x have much to answer for, and are someway behind Windows 3.x andmwm.)

201

More clients

The ability to take a snapshot of the display (or part of it)
is clearly useful, and X provides this functionality. The
programsxwd, xv andgimp , amongst others, can all do
so.

The ability to follow the mouse, even when it is over
other windows, can be useful. The programxeyes can
do this.

The ability to received copies of all keypresses, even
when they are destined for other windows, certainly has
its uses, and such a program is simple to write.

202

Security?

Having anyone anywhere in the world being able to
contact the X server one is using and request a screen-
dump, or a copy of all keystrokes, is a disaster. But
this project was designed to demonstrate the feasibility
of remote graphics display on a trusted network, not to
be routinely used, nor to be anywhere near an untrusted
network.

The first improvement was host-based authentication:
xhost . This restricts access to the X server to a list of
machines. This is useful if the machines listed are single-
user machines and cannot readily be spoofed. Thus it is
fine if the list contains the single entry ‘localhost’, and
the machine in question is running Windows. In most
other situations it is dodgy.

203

Magic Cookies

The next improvement was the use ofMIT magic cookies.
These are 128 bit random numbers which the X server
generates when it is started or reset. Any connection
presenting the currently-valid cookie is accepted.

The cookies, along with the name of the display
for which they are valid, are stored in a file called
‘ .Xauthority ’ in a user’s home directory. An X
application knows which display to connect to from the
value of the$DISPLAY variable, and it can then look
at the file of cookies to see if there is a corresponding
cookie to offer. The commandxauth can manipulate
the .Xauthority file. In particular,xauth list
lists all cookies currently held.

One problem with cookies is that they get transmitted
unencrypted every time a new connection to an X server
is made. However, if one logs out frequently, they
quickly become useless and thus any hacker has a small
window of time (hours, not weeks) in which to trap and
exploit one.

204

Failed Magic

These cookies need to be stored in a file in one’s home
directory, one which is readable only by its owner.
However, if one’s home directory is unavailable (server
half dead), or unwritable (over quota), there is a problem.
This normally results in one being unable to log in.

The solution, on Linux machines, is to press{CTRL}
{ALT}{F1} for a text-mode login, and see what has
happened. {CTRL}{ALT}{F7} usually restores X: if
not, tryF6 andF8.

On machines running CDE, one can choose a text-mode
login from the login screen.

Sometimes runningssh whilst over quota results in
one’s.Xauthority file being deleted (or truncated to
zero length). Then one cannot open any more windows,
and must solve the quota problem, then log out and in
again.

In general, text mode logins are better at reporting what error occured.

205

X and ssh

Thessh program does some useful tricks with X. It sets
up a dummy X server on the remote machine, usually on
port 6010, and sets$DISPLAY to remotehost:10.0
at the remote end of the connection. This dummy server
accepts X traffic, and passes it over the encrypted ssh
link back to the originating host. The X traffic is then
represented to the originating host’s X server (actually,
whatever$DISPLAY specified on the machine from
which ssh was used). Magic cookies are magically
changed during this process.

This is ideal: everything happens automatically, and
neither the cookies nor anything else are not transmitted
uncrypted. However, graphics applications (particularly
animated ones) do produce a lot of X traffic, and there
may be a noticeable overhead associated with encryption
and decryption.

Between machines which trust each other closely, it may
be better simply to usexon or, if home directories are
shared, to set$DISPLAY manually, if one is worried
about performance.

206

A Process and its Memory

207

The world of a process

A processes exists in its own private virtual address
space. This address space contains different regions or
segments:

Text
(The machine instructions themselves, and read-only
data.)

Data (Initialised data.)

BSS(Uninitialised static data.)

Heap (Dynamically allocated data.)

Shared Libraries (optional)

Stack

208

Executable files and heaps

The executable file contains the whole of the text and
data segments, and a note of the size of the bss segment.
As the bss segment contains data which does not need
initialising, there is no need for the executable file to
contain any real data for it.

The commandsize will show the sizes of these three
segments, and totals in both hex and decimal.

The heap is (conventionally) where storage requested
with C’smalloc() function or Fortran’sallocate()
is found. Thus it can grow (and shrink) during program
execution, and its maximum size is unknown when the
program starts. ‘Old’ F77 programs make no use of this
sort of dynamic storage.

209

Shared Libraries

Non-shared libraries, e.g. libc.a , are added to a
program’s text segment when the program is linked.
Shared libraries, e.g.libc.so , are not, nor are they
stored in the executable: they are linked dynamically at
run-time.

If multiple programs use the same shared library
(certainly true with libc.so) only one copy will
occupy physical memory, with multiple virtual addresses
pointing to it.

A shared library loaded at runtime need not be the same as that checked at compile time, or even
that used last time the same executable was run. It might be newer, less buggy, and specifically
optimised for the given machine. However, there is usually a slight overhead on each call to a
shared library function, so sometimes one links statically (i.e. non shared) for speed. Theldd
command show which shared libraries an executable will use.

Windows uses shared libraries extensively too, calling them.dll files.

.dll dynamic linked library;.so shared object.

210

Memory maps

(3GB)

(1GB)

(128MB)

kernel
stack

mmap

reserved

text

data
bss

heap

0xffff ffff

0xc000 0000

0x4000 0000

0x0000 0000

0x0804 8000

(4TB−2GB)

(4TB)

(5GB)

(4.5GB)

reserved

shared libs

kernel

stack
text

data
bss

heap

reserved

0xffff ffff ffff

0xfc00 0000 0000

0x0400 0000 0000

0x03ff 8000 0000

0x0001 2000 0000

0x0000 0001 0000

0x0000 0000 0000

0x0001 4000 0000

The left shows IA32 Linux 2.4, the right Tru64 UNIX.

Linux uses the mmap area for shared libraries, and for large allocations which would
conventionally go onto the heap.

Tru64 does not really have a 64 bit virtual address space, but merely a 43 bit one. One could
equally draw the map with the kernel directly above the shared libraries, and the highest address
being0x0800 0000 0000 .

Note the very different scales: Linux gives a user process just under 3GB of virtual address space,
Tru64 almost 4TB.

211

Memory maps in action

It is easy to examine the memory map of a running
process on most modern UNIX systems. Linux
is simplest, particularly if one recalls that the shell
interprets ‘$$’ as its own PID.

> less /proc/$$/maps
08048000-080c0000 r-xp 00000000 03:02 115456 /bin/bash
080c0000-080c6000 rw-p 00077000 03:02 115456 /bin/bash
080c6000-0811e000 rwxp 00000000 00:00 0
40000000-40016000 r-xp 00000000 03:02 82360 /lib/ld-2.2.2.so
40016000-40017000 rw-p 00015000 03:02 82360 /lib/ld-2.2.2.so
...
4019e000-401b1000 r-xp 00000000 03:02 82378 /lib/libnsl-2.2.2.so
401b1000-401b3000 rw-p 00012000 03:02 82378 /lib/libnsl-2.2.2.so
401b3000-401b5000 rw-p 00000000 00:00 0
bfffb000-c0000000 rwxp ffffc000 00:00 0

Text segment from0x0804 8000 to 0x080c0 0000 , marked read-only.
Data segment next (initialised from/bin/bash , but writable).
Then bss and heap together, not associated with any file and writable.
A large gap, and then the first shared library at0x4000 0000 : just its text and data segments are
shown.
After many more shared libraries, the last here having text, data and bss segments, a gap followed
by the stack growing down from0xc000 0000 .

In Solaris similar information can be obtained using ‘pmap $$’. As a TCM-special, Tru64 has a
pmap command giving somewhat more limited information.

212

Stack for functions

The stack is a simple storage area which (traditionally)
grows downwards in memory, and which has a register,
the stack pointer, dedicated to marking the lowest address
in it in use. Changing the size of the stack is thus trivial:
one changes the value of the stack pointer.

When a function is called, the return address (the next
instruction in the calling function) is placed on the stack,
and the stack pointer adjusted appropriately, and then a
jump made to the address of the function. To return,
the function reads the return address from the stack, and
again the stack pointer is adjusted.

The portion of the stack used by a function is called
its stack frame. The stack is a sequence of these
frames which reflects the calling sequence which the
code followed to reach the current function.

Tradition (and DOS!) has a downwards growing stack, an upwards growing heap, and they can
keep growing until they collide. Linux tends to have shared libraries in the middle causing further
confusion.

213

Stack for variables

The stack is also a convenient place to store small local
variables. (Local: destroyed as soon as the function in
which they are defined exits.)

Variables whose values are saved between function calls
(Fortran: save , C: static) cannot be placed on the
stack in this manner, and are usually placed in the
uninitialised data segment.

The stack is also used as temporary scratch space for
saving intermediate values of long expressions, or saving
register values.

The IA32 architecture has relatively few registers: eight floating-point, and eight general purpose.
This means that it is much more likely to run out of registers for holding intermediate results and be
required to resort to the stack than a typical RISC processor with 32 floating point and 32 integer
registers.

214

Arguments on the stack

Finally the stack is the placed used for transferring
arguments to functions, and returning results from them.
If the number of arguments is small, they may be passed
in the CPUs registers, and similarly for return values.

Tru64 is capable of passing up to six integer or floating-
point numbers to a function using just registers: the
seventh argument will go onto the stack. IA32 Linux
passes everything via the stack, and can return just one
integer or one floating-point value in registers.

Tru64 is marginally better on returning values, in that it can return a complex number (two floating-
point values) in registers. It also passes the return address in a register, thus avoiding any use of
the stack at all for trivial functions.

Fortran traditionally passes everything with pointers, not by value. Hence forsin(0.7) C will
pass a double, Fortran a pointer to a real.

215

The stack frame

Address Contents Frame Owner

. . . calling
2nd argument function

%ebp+8 1st argument
%ebp+4 return address

%ebp previous%ebp

local current
variables function

etc.

%esp end of stack

The above diagram is based on IA32 Linux.

When the current function exits, it will set the%esp register to the current value of the%ebp
register, and restore the old value of%ebp. Being IA32, and thus highly CISC, it will do this using
a single, one-byte instruction.

Naturally the local variables of an exited function are lost.

The Alpha uses register $30 as the stack pointer, $26 for the return address, and $15 for the frame
pointer only if the frame is of variable size.

216

Big stack problems

a=matmul(b,matmul(c,d))

Is matmul(c,d) a suitable object for placing on the
stack, or is it too big?

allocate a(n,n)
...
call wibble(a(1:m,1:m))

Where willa(1:m,1:m) be constructed?

In the world of F77 and C, it is unusual for any large
object to end up on the stack, and historically limits on
stack sizes have been low. In the world of F90 and C++,
this is not so.

217

Process limits

Limits, both hard (absolute) and soft (raisable) are placed
on a process’s use of various parts of memory:

% limit
datasize unlimited
stacksize 8192 kbytes
coredumpsize 1000000 kbytes
memoryuse unlimited
$ ulimit -a
core file size (blocks) 1000000
data seg size (kbytes) unlimited
max memory size (kbytes) unlimited
stack size (kbytes) 8192
virtual memory (kbytes) unlimited

The first form iscsh/tcsh , the secondbash .

memoryuse or max memory size is the maximum physical memory a process may use,
whereas the virtual memory controls how many pages of virtual memory it may use.

218

Core files

A core file is produced in response to certain forms of
signal, if not prevented by the process’s resource limits.

It contains a copy of the values in all the registers at
the time the core was created, the signal number which
caused the core to be created, the name of the executable
being run, and a complete dump of the virtual address
space.

This complete dump does not contain the text segment:
as that is read-only, it can be obtained perfectly from the
original executable file. Nor does it contain the read-only
segments of shared libraries, for similar reasons.

Core files can be prevented with
ulimit -c 0 (Bourne-like shells)
limit coredumpsize 0 (C-like shells)

219

Debuggers

A debugger will work either with a core file together
with the original executable, or by examining the address
space of a running process directly. The information
it gives about the function call tree, and function
arguments, is obtained by walking back through the stack
frame from the current value of%ebp.

If %ebp does not point to the start of the current stack
frame (e.g. the code was compiled withgcc and the
-fomit-frame-pointer option), this is impossible.

If the cause of the crash was that a variable stored on
the stack overflowed (array index too large, C string
too long) and overwrote part of the stack, a debugger
will display nonsense. This is a great weakness of this
stack model: a local variable overflowing can destroy
the return address of that function, causing a crash as
soon as the function exits, and destroy the stack frame
sufficiently for a debugger to have little idea how the code
got to where it did.

220

A 64 bit world

Arguments to functions are usually just pushed onto
a stack. The function knows what type of argument
to expect, so it can read them off sensibly: there is
nothing to tell it where one argument stops and another
begins. Similarly when a caller reads the return value of
a function.

With IA32 Linux, most arguments relating to pointers
or the size of objects are 32 bits: the return from
malloc() , the argument tofseek() (move to a
certain offset in a file), the file length field returned from
fstat() , ftell() (the current offset in a file) etc.

This is unfortunate. With 32 bits one can address no
more than 4GB, as there are only (approx)4 × 109

combinations for 32 binary values. The limit usually
bites at 2GB, for functions such asfseek() need to
be able to move forward and backwards from the current
point, so take signed values.

221

Tru64

Tru64 UNIX has always been 64 bit. All the above
system calls have always returned 64 bit values, and thus
there is no problem dealing with object bigger than 2GB.

Moving IA32 Linux towards 64 bits is hard. There is
no reason why some of the file I/O commands should
not support 64 bits, even if there is no hope of 64 bit
memory addressing as the CPU does not support it.
However, old applications will expectftell() to
return a 32 bit value, andfseek() to require one.
Adding anfseek64() and ftell64() is easy, but
one needs to change one’s source to gain any advantage.

The current solution is to have both sets of functions,
with gcc compiler magically changing to the 64 bit
versions if the preprocessor symbolFILE OFFSETBITS
is defined and set equal to 64.

Life under Irix is much messier, as Irix was wholly 32 bit, and is now wholly 64 bit. So there are
two versions of every library, one expecting 32 bit pointers, and one 64 bit pointers. Fortunately the
linker prevents any accidental mix-and-match approaches. AIX and Solaris have similar problems.

What should a 32 bit version offstat() do if called on a file which is larger than 4GB?

222

Not 64 bits

Floating point data has been 64 bit for double precision
and 32 bit for single precision on all major architectures
for about two decades. The IBM PC has supported 64 bit
double-precision floating-point arithmetic since it first
gained the 8087 maths co-processor in the mid 1980s,
even though the main processor was mostly 16 bit.

In the past such terms have been used to describe not the
address space of a computer, but its data bus width. The
ZX Spectrum and BBC model B were both called ‘8 bit
computers’, yet both could address 64KB of memory (i.e.
16 bits worth) not 256 bytes (8 bits worth). However,
both had 8 bit data buses.

All IA32 processors since the Pentium have had 64 bit
buses, but no-one has bothered to call them 64 bit CPUs.

Graphics cards are even more confusing in their use of the term ‘bits’. Sometimes it refers to the
width of their data buses (S3 Trio64, ATI Radeon 128), and sometimes to the number of colours
which can be displayed simultaneously: 256 for 8 bit cards, 16 million for 24 or 32 bit cards.

223

The Boot Sequence

224

POST

When first turned on, a computer begins a Power On
Self Test. Some of this progresses at the hardware level:
until the PSU has managed to achieve a stable voltage,
power will simply not be applied to the CPU or to other
important parts of the computer.

The majority of the POST is performed by the processor,
which, at this point, is running a program from a ROM
on the motherboard.

PCs typically look for some form of graphics card very
early in their POST, and then give a running commentary.
If they are unable to find a graphics card, or are facing
some other major problem (no RAM, or even no CPU),
they will make plaintive beeping noises, with the number
and duration of the beeps giving a clue as to the problem,
provided one has the correct handbook to decode them
(every motherboard is different).

Real computers do not mind if there is no graphics card,
and communicate instead via their serial port.

225

Fast or Slow?

Much of the POST is optional. It is necessary for a
computer to detect how much memory it has, but not
necessary for it to test every byte each time it is turned on.
Thus many computers offer a choice of a ‘fast’ or ‘slow’
boot, depending on whether extensive memory tests are
done.

However, whilst the POST progresses, one has the option
of pressing some key (usually{F1} or {Del}) to enter the
BIOS setup screens for changing boot devices etc. If the
POST is too fast, it is quite hard to get at these screens. . .

226

Options, options

A PC will also scan its expansion cards for ROMs at this
point, to see if any peripherals have code that they want
executed at boot time. Usually the video card will be
eager to display its manufacturer’s logo, and the SCSI
card will want to explain to the computer’s BIOS that it
can provide a valid device from which the system can
be booted. (A standard PC BIOS knows nothing about
SCSI, and can cope with IDE disks only.)

It will also go looking for interesting peripherals, such as
floppy disk drives, hard drives and CD ROMs. If it finds
something it doesn’t recognise, it will cheerfully ignore
it at this point.

BIOS: Basic Input Output System, something which provides very basic low-level access to disk
drives etc.

227

The Boot Device

Having worked out which bootable devices are
connected, the PC will then try to boot from them, in the
user-specified order which can be changed in the BIOS
setup screens. The original order was first floppy drive,
first hard disk drive, and then fail. Today CD ROMs,
Network cards and USB devices are often options.

For the drives, the BIOS understands very little about
how to operate them. It can check to see if the drive
exists, has media (if a floppy), whether the media is
bootable, and, if so, it loads the ‘boot sector’ into
memory and executes it.

The boot sector is tiny – just 512 bytes including the
partition table on a PC – and will usually immediately
load a rather larger boot loader.

228

The Boot Loader

Common boot loaders in the Linux world are LILO and
Grub. Windows uses its own, and there are many others.
These can be quite large programs, offering the user a
choice of what to do next, and interacting happily with
the user. The larger boot loaders may have a reasonable
knowledge of how to read a filesystem (Grub does), or
they may prefer to read a fixed sequence of sectors from
a disk and hope.

Either way, they need to get an OS kernel into memory.
To keep Linux happy, the minimum requirement is to
load a compressed kernel from disk, decompress it, and
also pass to it some arguments, telling it where it should
find the rest of the OS.

Which boot loader are you running?
dd if=/dev/hda bs=512 count=1 | strings -4
may well reveal the string ‘GRUB’ or ‘LILO’.

229

The Kernel

The kernel now needs to take care of loading the rest
of the OS. But note that the BIOS loads the bootloader,
and the bootloader the kernel. It is quite possible for a
kernel to be unable to detect the disk it was loaded from:
afterall, it didn’t load itself, it was loaded by someone
else. This is awkward if one believes inmodularkernels
which have most hardware drivers as separate files, rather
than integrated into a single, massivemonolythickernel.
One might have the correct driver for the kernel to be able
to access the disk, but it’s on that disk which cannot be
accessed until that driver is loaded. . .

The Linux solution involves an initrd: an initial RAM
disk. The boot loader loads a compressed image of a
(tiny) disk, decompresses that too into memory, and the
kernel is able to access this RAM disk to find any drivers
it needs before it accesses the real disk. If the real disk is
‘standard’, the initrd may be unnecessary.

Windows has similar issues: I have seen a Windows installation disk complain that it could not
find the CD drive it had just booted from.

The (Linux) computer I am typing this on does not use an initrd.

230

Hardware detection again

Just as the original ROM code needed to do hardware
detection to work out what it could do next, now the
kernel needs to perform the same trick, as the bootloader
may have loaded it, but it will not have told it much.
Processor type, amount of memory, what to use as a
console, what PCI buses and cards exist, what disk drives
and network cards exist, and how to assign IRQs are
all very interesting questions that the kernel needs to
resolve.

However, it does not need to score 100% in this test: if it
misses some items because they are “unknown”, it is not
a problem, provided that the CPU, memory and the disk
drive to boot from are all detected.

231

The next stage

The kernel will understand the filesystem perfectly, and
will mount its root filesystem, read-only, as/ . It will
also set up all the data structures it needs to act as an OS
kernel. This done, it starts one process,/sbin/init ,
and its work (for booting the machine) is over.

The kernel will, of course, be heavily used by every
process until the machine is shutdown. It is responsible
for creating and destroying processes, afterall, and all
disk and network access.

232

init

The init process, after setting itself up, runs the script
/etc/rc.sysinit . This is just a simple shell script
being run by with the privileges of root.

It configures the keyboard, checks that the filesystems
were unmounted cleanly, runsfsck if not, remounts
/ read-write, starts software RAID devices, adds swap
space, starts loggers (note nothing can be logged to the
disks until they are mounted read-write: earlier messages
are logged to a buffer in memory and then flushed to
disk when possible later) and loads drivers for the more
unusual bits of hardware.

This is just one big, ugly script, and changing it is
awkward. So the parts that one might want to change
are elsewhere.

233

Run-levels

A UNIX system can run at differentrun-levels .
These vary between vendors, but usually includesingle
user mode(designed to be used by root only),multi user
mode, the same with X, reboot and halt.

The init process is responsible for booting into the
default (or the specified) run-level, and for changing the
run-level of a running system. Hence a reboot is just a
change of run-level under the control ofinit .

The default run-level is specified in the file/etc/inittab ,
and is usually multi-user with X. For some servers it
would be without X. The main use of single user mode
is, like Windows’ “safe” mode, for recovering from
surprises: it tries to do as little as possible whilst booting,
so it is more likely to succeed.

Tru64’s single user mode leaves/ mounted read-only, and/usr not mounted at all.

234

/etc/init.d

The/etc/init.d directory contains scripts which are
always called with a single parameter, eitherstart or
stop , and which each start (and stop) a service or a set
of services.

Hence there is a script for starting the network, a script
for starting the print spooler, one forsshd , one for a
mailserver (configured off,please), and so on.

The order of calling these scripts matters, and the
calling sequence is determined as follows by the runlevel
required as follows.

Tru64 uses/sbin/init.d , some UNIX flavours use/etc/rc.d/init.d .

235

rc?.d

Each run-level is associated with a directory called
/etc/rc.d/rcN.d for runlevel N. This directory is
full of scripts, named so that the first character is either
‘K’ or ‘S’, the next two characters are digits, and the
rest is arbitrary. Tradition says that the final part of
the name is the name of the corresponding script in the
/etc/init.d directory, and these scripts are simply
symbolic links to the scripts in/etc/init.d .

On entering a new runlevel, first the scripts starting with
a ‘K’ are run sequentially, in numerical order, with the
single parameter ‘stop ’. The the scripts starting with
an ‘S’ are run in order with the parameter ‘start ’.
(Immediately after a reboot the kill scripts are usually
omitted.)

Tru64 uses/sbin/rcN.d , some UNIX flavours use/etc/rcN.d .

236

Simplicity

for script in /etc/rc.d/rc${runlevel}.d/K*
do

$script stop
done

for script in /etc/rc.d/rc${runlevel}.d/S*
do

$script start
done

The above really is pretty much the code used to change
to a new runlevel. For the runlevels corresponding to halt
and reboot, there will be no start scripts.

237

No standards

Runlevel Effect
0 Halt (Irix: halt and power off)

1 or s Single user
2 Linux/Irix: multiuser, no NFS;

Tru64/Solaris: multiuser, no networking
3 Multiuser
4
5 Linux: Multiuser with X11;

Solaris: halt and power off;
Irix: halt

6 Reboot

238

No X

Tradition dictates that X itself is not started by an init
script, but rather by a direct entry in/etc/inittab .
This is partly because entries in/etc/inittab can
specify what action should be taken when the script or
service started exits. In most cases the answer is nothing,
in the case ofxdm, the thing responsible for starting X,
the answer is to restart it. Thus if/whenxdm crashes or
is killed, init will restart it.

Sensible inits (which includes current Linux distributions)
notice how frequently they are having to restart a service,
and, once a threshold is reached, they give up for a short
while (5-10 minutes).

239

Basic Configuration

The order for mounting filesystems is, as mentioned,/
read-only, and then, much later, after runningfsck as
necessary,/ read-write, and other filesystems for the first
time (usually read-write immediately).

Two facts should be obvious. Firstly, until/ is mounted
read-write, nothing can be written to it, including logs. If
the boot fails before this point, nothing will be logged to
disk.

Secondly, everything which needs doing before mounting
and in order to mount the other filesystems must be
doable from the data in/ .

240

Filesystem layout

The directories/bin , /sbin , /etc and /lib are
always on the same device as/ . The directory tree
starting at/usr need not be (and, by default, is not with
Tru64). Thus the basic system utilities must work in the
absence of/usr .

Specifically, kernel modules are found under/lib , not
/usr/lib , the basic shells and the shared libraries
they require (if any) in/bin and /lib , and most
configuration files are in/etc .

Non-critical things, such as X11, compilers, numerical
libraries, and most convenience applications live under
/usr .

In English, ‘bin ’ and ‘lib ’ are pronounced as spelt. In American they are pronounced as the first
syllable of ‘binary’ and ‘library’ respectively.

241

Configuration files in /etc

fstab
List of filesystems to mount at boot (filesystems on
AIX, vfstab on Solaris).

hostname
The name of this machine (nodename on Solaris).

hosts
Hostname to IP address lookup without a DNS.

passwd
Password file.

printcap
Printer configuration (printers.conf on Solaris).

syslog.conf
System logger configuration file.

242

Daemons

A daemonis the name given to a program which detaches
itself from all terminals, loses its parent (so its parent is
init), and sits in the background doing some function.
Often daemons listen for connections from the network:
WWW servers, mail servers,sshd and many others.

Some daemons perform more local tasks, such as logging
(syslogd), running periodic tasks (crond), or tasks at
specific times (atd).

Having one daemon for every network service would
be excessive, so there is a daemon calledinetd
(configured by inetd.conf) which is responsible
for listening on many ports, and launching the correct
program to service requests as and when required.
Servers with a high start-up cost (such as WWW and
email) are not usually run this way, butrshd and
rlogind are almost always run thus.

Daemons produce the final ‘d’ in the names of many processes.

243

Logging

Everyone who runs a UNIX system connected to the
internet needs to be familiar withsyslogd and its logs.
For only by reading logs will one see attempted hacks,
and warnings of hardware failure or misconfiguration.

The programsyslogd starts early in the boot sequence,
reads its configuration from/etc/syslogd.conf ,
and logs messages to (usually) either/var/log/messages
or /var/adm/messages . This log file will grow
linearly, so something needs to save old copies and delete
very old copies occasionally: a procedure calledlog
rotation.

Silly computers default to throwing away most of their
logs: someone has just made a thousand unsuccessful
login attempts from Korea? Surely no-one wants to know
this? A memory chip has needed its data corrected a
dozen times in the last ten minutes? That’s life.

Such computers need shooting.

244

Logging in

The program which responds to an attempt to login (from
the network or the keyboard), must do the following
things:

Satisfy itself that you are who you say you are. It
will interpret password file enties itself if it expects a
password.

Launch a new process for you.

That process must then change its group memberships to
yours, then its uid to yours. It must previously have been
running as root in order to be able to change its groups
and uid.

Finally, exec() your prefered shell as a login shell (or
launch an X session, or whatever).

Silly: each application (rlogind , sshd , ftpd , xdm, etc.) interprets the password file on its
own, so all had better agree on its precise format.

(Many other subtleties exist, such as making a new process group, and worrying overtty
permissions.)

245

* , 76, 103
- , 113, 114
. , 72, 101
.Xauthority , 204, 205
/dev , 156
/proc , 156, 157, 212
/usr , 241
/usr/dict/words , 101
?, 76, 101
[, 121
#! , 63, 122, 127
$, 102
$? , 19, 119
$DISPLAY, 192, 204, 206
$PAGER, 93, 95
$PATH, 48–50
$PS1, 47
$# , 119
$$, 119
$prompt , 47
&&, 123
ˆ , 102
˜ , 69
‘ , 71
4DOS, 43
64 bits, 221, 222

AdvFS, 149
allocate , 209
ARP, 172, 174
arp , 174
ASCII, 34–41, 77

control codes, 35–37
full table, 41

ASCII85, 39
ash , 45
AT&T, 9, 11
Athena widgets, 193

background process, 62
backquote, 71
Base64 encoding, 39
bash , 45, 122
bc , 97, 98
bg , 62
BIOS, 227
broadcast, 165, 177
BSD, 9, 10
bss, 208, 209

caching
disk, 152

calculators, 97
cat , 37
class, network, 167
classless network, 167
cmd.exe , 43
collation, 77
command.com, 43
compilers, 65
core files, 219
cryptography, 186
csh , 45
CUDN, 169, 171

daemon, 243
data segment, 208
debuggers, 220
device file, 28
device files, 156
df , 144, 158
dot files, 73–75

environment variables, 46
exec() , 60, 61, 63
expr , 122
ext3 , 149

FAT, 134, 135

246

fg , 62
file , 64
filename completion, 52
firewall, 188
firewalls, 187
focus, 197, 199
foreground process, 62
fork() , 60, 61
fragmentation

file, 148
fsck , 147, 148, 233, 240
fvwm2 , 199, 200

gateway, 170
GL, 195
grub , 229

hash , 48
head , 115
heap, 208, 209
hub, 188

ICMP, 175
id , 9, 10
inetd , 243
init , 17, 18, 239
init.d , 235
initrd, 230
inode, 137–139
ISO 8859, 38

JANet, 169, 171
jfs , 149
journalling filesystem, 149, 150

kernel, 27, 28, 30, 184
modular, 230
monolythic, 230

kill , 23, 25
ksh , 45

ldd , 210
less , 37, 56, 65, 94, 96, 109
libraries, 33, 210
lilo , 229
limit , 218
log rotation, 244

magic cookies, 204
magic numbers, 64, 65
malloc , 209
man, 109
metadata, 131, 150
more , 93, 94, 109
Motif, 193, 197
mount , 158
multi user mode, 234
mv, 139

netmask, 167
netstat , 170, 179
NFS, 154, 155
NTFS, 149

page, 22
PID, 15, 60
ping , 175, 184
pipe, 58, 59
pmap, 212
POSIX, 10
POST, 225, 226
private addresses, 168
privileged port, 185
process, 15
process, child, 16
process, parent, 16, 17
prompt, 47
proxy ARP, 172, 173
ps , 9, 10, 20, 26

redirection, 55

247

regular expressions, 101–109
rehash , 48
repeater, 188
return code, 19
RFC 1918, 168, 169
root window, 197
ROT13, 110
route , 170
rsh , 185
runlevels, 234–238

save , 214
scandisk , 147, 148
scheduler, 27
sed , 111, 112, 127
setuid programs, 184
sh , 45
shared libraries, 210
shell startup, 73
shell variables, 46
shift , 119
shutdown , 9, 10
SIGKILL , 25
signals, 23–26
SIGSEGV, 22
SIGTERM, 25
single user mode, 234
size , 209
sort , 58, 96
source , 72
ssh , 186, 206
ssl, 186
stack, 208, 213–217
stack frame, 213, 216, 220
stack pointer, 213, 216
static , 214
stderr, 16
stderr , 55
stdin, 16

stdin , 55
stdout, 16
stdout , 55
string search, 99
switch, 188
syslogd , 244
System V, 9, 10
system() , 74

tail , 115, 198
TCP, 176–180
TCP port, 176
tcsh , 45
test , 121
text conversion

DOS to UNIX, 110
Mac to UNIX, 110
UNIX to DOS, 111, 127

text segment, 208, 209
tkinfo , 92
tr , 110

UDP, 176
UDP port, 176
UFS, 136–150
ufs , 149
ulimit , 218
umount , 158
unicast, 165
unicode, 40
uuencode , 39

VFAT, 135
virtual address space, 21, 208

wc, 100
whatis , 89
wildcards, 76
window manager, 197

X client, 190, 192

248

X server, 190, 191
X11, 190–206, 239
xauth , 204
xcalc , 97
xfs , 149
xhost , 203
xon , 206
xterm , 198

zombie, 18, 26
zsh , 45

249

