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Parallel Programming
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The Need for Parallelism

Today it is hard to buy a single-core computer. The ultra-light notebook market is almost
the only place they are found. ‘Standard’ notebooks are dual core, ‘standard’ desktops
quad core, and purchasing eight core computers is not very expensive. In the future the
core count will increase further.

Something called SMT or Hyperthreading might also effectively increase the core count
by a factor of two. Intel’s i7 does this, as did the Pentium 4.

Of course, clustering multiple computers using GBit/s ethernet is also now very cheap,
and is another way of producing a single resource with many cores. If a better
interconnect is required, Infiniband is relatively inexpensive.
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Broken Philosophy

UNIX is not actually very good at letting separate processes communicate. It tries so
hard to isolate them from each other, and forgot that sometimes a little communication
can help.

In the UNIX world, resources, such as memory, file handles, and other finite things, are
associated with particularly processes. When a process exits, for whatever reason, the
kernel frees up all of the resources it was using. Nothing should ever escape, so reboots
to free lost resources should never be needed.

System V introduced the antithesis of this. SYSV shared memory and semaphores are
objects which are owned by no process, but to which multiple processes may attach
themselves. They remain even when no process is currently attached, lest some future
process should want to use them.
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Uncontrolled Leaks

If something using SYSV shared memory crashes, and fails to release that memory, it
will never be freed until the machine is next rebooted. Even if it simply forgets, the
result is the same.

Unfortunately some implementations of MPI use SYSV semaphores to aid
synchronisation. Almost nothing uses SYSV shared memory.

(On Linux, the most certain way of discovering that leaks have occurred is to examine
the contents of the three files in /proc/sysvipc)
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A Better Way

A different standard for dealing with shared memory, called POSIX shm, is saner. It
keeps a count of the number of processes currently attached to a given area of shared
memory. When the count reaches zero, the memory is freed automatically. However a
process exits, the attachment count on any shm areas it was using will be decremented.

It is a pity that the SYSV way ever became popular, but it got there first, in 1983, beating
POSIX by a decade.
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Parallel Programming with Processes

Conceptually the simplest form of parallel programming is to have multiple independent
processes which occassionally communicate in response to explicit instructions to do so.

The standard programming interface for this is MPI (Message Passing Interface), which
was designed to be used with either C89 or Fortran77. It is thus usable with C99, C++
and F90/95/2003 too.

MPI consists of a library to be linked against at compile time, an include file defining
all sorts of constants to be made available at compiler time, and a special command
(usually mpirun) to launch the resulting program.

MPI is a nice open standard. For Linux, versions from HP, Intel, MPICH, LAM and
OpenMPI exist, and maybe others too. One must use a consistent set of include file,
library and mpirun commands. Failure to do so might not produce any warnings, but is
unlikely to produce the desired behaviour.
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MPI Hello World

program hello
c

include ’mpif.h’
integer npe,mype,ierr

c
call mpi_init(ierr)
if (ierr.ne.0) stop ’MPI initialisation error’

c
call mpi_comm_rank(mpi_comm_world, mype, ierr)
call mpi_comm_size(mpi_comm_world, npe, ierr)

c
write(*,101) mype,npe

101 format(’ Hello F77 parallel world, I am process ’,I3,
& ’ out of ’,I3)

c
call mpi_finalize(ierr)
end
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Running MPI

pc0:˜$ mpifort hello.mpi.f
pc0:˜$ mpirun -np 2 ./a.out
Hello F77 parallel world, I am process 1 out of 2
Hello F77 parallel world, I am process 0 out of 2
pc0:˜$ mpirun -np 4 ./a.out
Hello F77 parallel world, I am process 1 out of 4
Hello F77 parallel world, I am process 2 out of 4
Hello F77 parallel world, I am process 3 out of 4
Hello F77 parallel world, I am process 0 out of 4
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Parallel Programming without Processes

Starting (and stopping) a process is an expensive operation. Tables of new virtual to
physical address mappings need to be created, along with control blocks describing the
process and its file handles etc. On exit all these need to be freed, and probably an entry
written to the process accounting file too. the whole start/stop cycle may take the odd
ms.

MPI runs with a fixed number of processes to avoid this overhead getting out of control.

There is an alternative: threads.
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Threads

A thread is something which can be sceduled like an independent process, but shares
everything else with its parent. It is much simpler to create and destroy, for the whole
of its address space, and much else besides, is not duplicated. Communication between
threads in the same process is also trivial, for they all automatically have access to all of
the same memory. Keeping them apart is the harder bit.

The standard model for thread programming on Linux is that of POSIX threads
(pthreads). However, people rarely use threads directly, instead using OpenMP to do
so.

Note that if a signal is set to a threaded process, all threads receive it. Usually.
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OpenMP

OpenMP, which supports Fortran and C, is implemented as a set of comments (pragmas
in C) which the compiler can ignore, producing correct serial code, or follow, producing
parallel code.

In general, the comments preceed loops, and are instructions to parallelise the following
loop, with a list of which variables should be private to each separate version of the loop.
The loop counter is automatically considered private, and everything else is shared. The
threads are created with separate stacks, where the private variables are, but everything
else is common.
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What Goes Where

#include<stdio.h>

main(){
int i,j;

#pragma omp parallel for
for (j=0;j<4;j++){
printf("j=%d Main at %lx, i at %lx, j at %lx\n",

j,(long)main,(long)&i,(long)&j);
}

}
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What Went Where

$ icc -openmp omp.c
$ ./a.out
j=0 Main at 80489a4, i at bffffcac, j at bffffb5c
j=1 Main at 80489a4, i at bffffcac, j at bffffb5c
j=2 Main at 80489a4, i at bffffcac, j at bffffb5c
j=3 Main at 80489a4, i at bffffcac, j at bffffb5c
$ OMP_NUM_THREADS=2 ./a.out
j=0 Main at 80489a4, i at bffffc9c, j at bffffb5c
j=1 Main at 80489a4, i at bffffc9c, j at bffffb5c
j=2 Main at 80489a4, i at bffffc9c, j at b7e1b15c
j=3 Main at 80489a4, i at bffffc9c, j at b7e1b15c
$ OMP_NUM_THREADS=4 ./a.out
j=0 Main at 80489a4, i at bffffc9c, j at bffffb5c
j=1 Main at 80489a4, i at bffffc9c, j at b7e1b15c
j=2 Main at 80489a4, i at bffffc9c, j at b7c1a15c
j=3 Main at 80489a4, i at bffffc9c, j at b7a1915c

One copy of main and i per process, one copy of j per thread.
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What Where in Pictures
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More Control

OpenMP does allow one to specify specific variables as being private to individual
threads, rather than shared. It also allows one to specify how a loop is distributed
amongst threads. It even allows an MPI-like parallel region with library calls for
establishing how many threads exist, and the thread number of the current thread.

Generally the number of threads is set by the environment variable OMP NUM THREADS,
or, if absent, it defaults to the number of processor cores in the machine.

15



OMP Integrates

program integrate

real (kind(1d0)) :: x, tot
integer :: i,n

write(*,*)’Input number of steps’
read(*,*)n

tot=0d0
do i=1,n
x=2*(i-0.5d0)/n
tot=tot+sqrt(4d0-x*x)

enddo

write(*,*)’Integral is ’,2*tot/n

end
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OMP for π

The above serial code integrates over one quadrant of a circle of radius 2. It can readily
be timed:

$ echo 1e9 | time ./a.out
Input number of steps
Integral is 3.14159265358961

8.22 real 8.19 user 0.01 sys

At 8s on a laptop for quite a few significant digits, it hardly needs parallelising.
However, one could try a quick

!$omp parallel do

immediately in front of the loop.
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Disaster!

The loop is now much faster, about 4.26s with two threads. However, the answer is now
either
1.91322295498106,
or sometimes
1.22836969860869.

If we compile without optimisation (-O0), the answers become more varied. Picking
three consecutive runs:

2.52073484901867
2.58922465376122
2.54830746007760

Yet worse, the time for one thread as -O0 is 24.2s (and the answer is correct). For two
threads it is 23.8s – almost no speed-up.
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What Went Wrong

We should have written

!$omp do parallel private (x) reduction(+ : tot)

This is slightly faster for one thread (21.2s), much faster for two (10.8s), and now gives
the correct answer with two threads. Remove the -O0 and the answer is still correct,
and the time is reduced to about 41

4s again.

The mistake is ‘obvious’ – each thread needs its own value of x, and its own value of
tot. However, tot is special – on exit from the parallel region, the master thread must
gather the sum of all the tots on the slaves.
The default in Fortran is that all variables apart from the loop counter are shared.

The nervous may wish to try something like
default(none) private(i,x) shared(n) reduction(+ : tot)
which explicitly specifies everything, and will give an error if anything is omitted.

The result may be split over several lines as

!$omp do parallel default(none) private (i,x)
!$omp+ shared(n) reduction(+ : tot)
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The Error in Detail

The loop is fairly trivial. With standard optimisation, both x and tot were held in
registers. As registers are not shared between threads, each thread correctly calculated
its own part of the integral. Which part finally ended up in tot was random, but the
division of the integral between threads seems to have been constant between runs, so
the sum of the two wrong answers does give the correct answer!

With no optimisation, both x and tot are written out to memory. The same location
for each thread. The result is chaos. One thread reads tot and a few clock cycles later
writes it out again updated, but the other thread may well have read it in the meantime,
and will obliterate the first thread’s attempt to update it.

The reason it is no faster is that the two CPU cores are updating the same memory
locations. The locations cannot be held exclusively in the L1 cache of either core, and,
with separate L1 caches per core, but a shared L2, the result is a lot of extra cache traffic.
The time to deal with this almost exactly cancels the gain in dividing the work between
two cores.
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Private Fun

A variable declared as private in an OpenMP statement will not be initialised at the
start of the parallel region, and will be undefined on exit from the parallel region. The
sane therefore don’t attempt to access private variables from the serial part of the code.

It is possible to change this behaviour using firstprivate (the variable is initialised
in each thread to the value it held in the master thread), and lastprivate (the value
written to the variable in the last iteration of the loop only is retained in the master
thread). A variable may be listed in both clauses.
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Genuine Varience

Of course, sometimes answers genuinely vary as the number of processors varies.
Consider summing

n∑

i=1

e−i/10 000 + 10−13

The sum quickly reaches around 10,000, after which the further additions of 10−13 have
no effect, and the exponential soon decays to below this level too. So, summing the first
2× 109 terms on varying numbers of processors gives:

Processes Sum
1 9,999.500 008 360 36
2 9,999.500 108 360 35
4 9,999.500 158 360 36
16 9,999.500 195 860 36
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program series
include ’mpif.h’

integer npe,mype,ierr,i,n,n1,n2
real (kind(1d0)) :: sum,total

call mpi_init(ierr)
call mpi_comm_rank(mpi_comm_world, mype, ierr)
call mpi_comm_size(mpi_comm_world, npe, ierr)

if (mype.eq.0) then
write(*,*)’Input number of terms’
read(*,*)n

endif

! mpi_bcast(buffer, count, type, source, communicator)
call mpi_bcast(n,1,mpi_integer,0,mpi_comm_world,ierr)

n1=(n/npe)*mype+1
n2=(n/npe)*(mype+1)
if (mype.eq.npe-1) n2=n

sum=0d0
do i=n1,n2

sum=sum+exp(-real(i,kind(1d0))/10000)+1d-13
enddo
write(*,*)’Node ’,mype,’ total ’,sum

! mpi_reduce(send, receive, count, type, operation, root, comm)
call mpi_reduce(sum,total,1,mpi_double_precision,mpi_sum,0,mpi_comm_world,ierr)
if (mype.eq.0) write(*,*)’Total is ’,total

call mpi_finalize(ierr)
end
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OpenMP Restrictions

The do loop following a parallel do directive must obey additional restrictions
above those standard in Fortran:

• no data dependencies between iterations

• using exit or goto to end the loop are not permitted
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Restrictions in C

The restrictions in C are much more numerous, as C does not really have a for loop.
The C construction

for(expr1;expr2;expr3){expr4;}

is equivalent to

expr1; while (expr2) {expr4; expr3;}

For an OpenMP loop, expr1 must simply initialise an integer loop counter, expr2
must test that counter against a loop-invarient expression, and expr3 must modify it
by a constant stride. The loop body may not alter the value of the counter.

Common C constructions such as

while (*s++ = *t++);

fail at almost every level.
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Thread Safety

As OpenMP is always implimented with threads, anything called from a parallel region
of an OpenMP code must be thread safe. In other words, it must be able to cope with
multiple copies of itself being run simultaneously, with each copy having a unique stack
but sharing everything else.

To a first approximation, things written in C which avoid static, and things written in
Fortran which are declared recursive and avoid save will be OK, but one often needs
to tell the compiler at compile time to make something thread safe.

The current NAG library is not thread safe.

MPI avoids these issues.

26



OpenMP History

Version 1.0 1997
Version 1.1 1999
Version 2.0 2000
Version 2.5 2005
Version 3.0 2008

(Version 1.1 was Fortran only. The others are all Fortran and C/C++.)
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MPI History

Version 1.0 1994
Version 1.1 1995
Version 1.2 1997
Version 1.3 2008

Version 2.0 1997
Version 2.1 2008

MPI-2 introduced one-sided communication and parallel I/O. It is treated as a separate
product to MPI-1, of which it is a superset. MPI 1.3 is intended to be the last of the
MPI-1 series.

The changes between 1.0 and 1.2 are very minor.
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Parallel Problems

Parallel programs are often awkward to debug or optimise, because whereas serial code
is by and large deterministic in its behaviour, parallel code is less so. Well-written
parallel code is, but that does not need debugging. . .

Poorly written parallel code may behave differently depending on which order different
threads/processes arrive at given points in the code. Behaviour may also vary according
to the size of the messages sent.
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Trivial Deadlock

Process 0 Process 1

Send to proc 1 Send to proc 0
Receive from proc 1 Receive from proc 0

If the messages sent are small, the above may work. At some point it is likely to fail,
for the sends are to processes not attempting to receive, and eventually buffers will fill
and the sends must be suspended until the receiving process accepts some data. Which
it will never do because it is buried in a similar send itself.
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Deadlock Solutions

MPI has a solution to this problem called non-blocking communication. It initiates a
send (or receive), but returns without completing if completion is not immediate. The
programmer must guarantee not to touch the buffer being used until he has checked that
the communication has completed.

Of course, the lazy programmer posts a non-blocking receive, and assumes that a
hundred lines later in the code the data are bound to have turned up, so uses the buffer
without checking. Some/most of the time this will work.
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Strong or Weak Progess?

Any two-sided communications model (two-sided: both send and receive required) must
have a concept of progress. What is needed for a communication to progress?

Consider a two process code in which

Time Process 0 Process 1
0s Non-blocking send to 1 Waits for 10s

Non-blocking recv from 1
Waits 20s

10s Still waiting Matching non-block recv from 0
Matching non-block send to 0

20s Finish waiting Waits 100s
Wait for comms to end

110s Makes MPI call

One might naı̈vely expect the comms status to be complete after 20s. It might well not
be.
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The Weak

MPI communication does not occur by magic. In most implimentations, when any MPI
call is made, the MPI library checks to see if any other outstanding work exists which
can be progressed. If no MPI call is made, the MPI library has no chance to do anything,
and nothing will happen. Running the above code under LAM 7.1.2 shows that process
0 does not return from its comms status check until process 1 calls MPI Finalize and
is able to progress its side of the communications. Thus process 0 takes 110s to finish.
Under MPICH it takes just 20s. OpenMPI takes 110s.

MPICH is not magic. It just has bigger buffers. The above timings were for exchanging
messages of 100,000 bytes. Increase this to 1,000,000 bytes and MPICH takes 110s too.

The lesson is that behaviour can change radically between MPI implimentations and
message size, without either behaviour being wrong.
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#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
#include<mpi.h>

int main(int argc, char *argv[]){
char *a,*b;
int length=100000;
int this_process, num_processes, error_code;
MPI_Status status;
MPI_Request r1,r2;
double start_time;

a=malloc(length); b=malloc(length);

error_code = MPI_Init(&argc,&argv);
if(error_code != MPI_SUCCESS){

printf("MPI initialisation error\n");
exit(1);

}
MPI_Comm_size(MPI_COMM_WORLD,&num_processes);
MPI_Comm_rank(MPI_COMM_WORLD,&this_process);
start_time=MPI_Wtime();

printf("Hello, I am process %d\n", this_process);

if (this_process==0){
MPI_Isend(a,length,MPI_CHAR,1,1,MPI_COMM_WORLD,&r1);
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MPI_Irecv(b,length,MPI_CHAR,1,2,MPI_COMM_WORLD,&r2);
printf("Process 0 has completed MPI calls, time=%f\n",

MPI_Wtime()-start_time);
}
else if (this_process==1){

sleep(10);
MPI_Irecv(a,length,MPI_CHAR,0,1,MPI_COMM_WORLD,&r1);
MPI_Isend(b,length,MPI_CHAR,0,2,MPI_COMM_WORLD,&r2);
printf("Process 1 has completed MPI calls, time=%f\n",

MPI_Wtime()-start_time);
}

if (this_process==0){
sleep(20);
printf("Process 0 waiting for MPI completion, time=%f\n",

MPI_Wtime()-start_time);
MPI_Wait(&r1,MPI_STATUS_IGNORE);
MPI_Wait(&r2,MPI_STATUS_IGNORE);
printf("Process 0 finished, time=%f\n",

MPI_Wtime()-start_time);
} else sleep(100);

printf("All done, time=%f\n", MPI_Wtime()-start_time);
MPI_Finalize();

}
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MPI vs OpenMPI

MPI has one enormous advantage over OpenMP. Because MPI uses separate processes,
with all communication being explicit and no shared memory, there is no need for the
processes to run on the same computer. Provided a mechanism exists for launching
processes on a remote computer, and exchanging data thereafter, MPI will work. So an
ethernet-connected cluster of PCs can be treated as one MPI cluster.

OpenMP effectively requires all the threads to run on a single computer. Thus the job
size is limited by the amount of memory (and CPU power) in a single box. And the cost
of a computer scales faster than linearly with the memory size above a certain limit.

However, if one’s ambitions are modest, OpenMP can be most useful at extracting an
extra factor of two or more performance out of current computers, and maybe four or
more out of computers which will shortly be available.
The author is aware of many projects to run OpenMP on distributed clusters, and is aware that some of these work in trivial cases.

One can even program in OpenMP in something more like an MPI-style. There are OpenMP function calls to determine how many threads exist, and
what one’s thread number is, so one can make decisions based on these results. Beware that variables will still default to being shared amongst threads
unless one explicitly requests the contrary.
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MPI vs F90

The MPI function calls in Fortran are ugly. Most need a buffer, a type, and a length.
Surely the overloading and enquiry facilities in F90 should not require this?

MPI_Send(buffer, count, type, dest, tag, comm)

could surely be

MPI_Send(object, dest, tag, comm)

Unfortunately Fortran is rather too strongly typed, requiring an explicit interface for
every combination. All Fortrans support seven data types (logical, char, int, two floats,
two complexes), and most a couple more. They also support scalars, and arrays of up
to seven dimensions. So that is 7 × 8 = 56 interfaces to MPI Send as a minimum,
and there are over 50 functions like MPI Send. So there are around 3,000 interfaces
required, and F90 requires all interfaces to be in a single source file. Almost doable until
one discovers those MPI functions which take two buffers of independent type, and thus
will require over 3,000 interfaces each.
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Simple Parallel Programming

Various libraries are themselves parallelised using OpenMP. If one links against such a
library, then though one’s own code is serial, all the library routines may run in parallel.

The obvious example is Intel’s MKL, which certainly parallelises LAPACK, Level 3
BLAS and multiple FFTs (or 2D and higher FFTs) efficiently.

Beware! If OMP_NUM_THREADS is not set, this library will produce one thread per
core on the machine it is run on. So if you run an MPI job on a quad core machine, and
each of the four MPI processes uses MKL, each is liable to split into four threads, giving
a total of sixteen. MPI users with MKL probably wish to ensure that the product of the
number of MPI processes and OMP_NUM_THREADS is the number of cores present.
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The Mandelbrot Set

For a slightly more detailed example of parallel programming, we consider the
generating the Mandelbrot set. This set is formed from the equation

zn+1 = z2
n + z0 (1)

Those points in the complex plain for which zn does not tend to infinity as n increases
are deemed to be in the set. Obvious examples include
z0 = 0, zn = 0 z0 = −2, z1 = 2, z2 = 2. . .
z0 = −1, z1 = 0, z2 = −1, z3 = 0. . . z0 = 0.25, z1 = 0.375, z2 = 0.39...z∞ = 0.5

It can be shown that once |zn| exceeds 2, then |zn| will increase without limit.

The usual way of producing a pretty picture is, for each z0 to iterate until either |zn| > 2,
or some interation limit is reached. The resulting point is then coloured based on the
number of iterations.
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Fortran, Page 1

function mand(z0,n)
complex (kind=kind(1d0)) :: z,z0
integer i,n,mand

z=z0
do i=1,n
z=z*z+z0
if (abs(z).gt.4d0) exit

enddo

mand=512-512*(log(real(i))/log(real(n)))
end function

It is conventional to use a logarithmic scale for the colouring.
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Fortran, Page 2

module pnm
contains

subroutine ppm_write(set,unit,name)
! set(3,resx,resy) contains r,g,b components for each pixel

integer :: i,j,k,resx,resy,unit
integer, allocatable :: set (:,:,:)
character(*) :: name

resx=size(set,2)
resy=size(set,3)

open(unit,file=name)
! NB First two bytes must be "P3", an initial space is wrong,
! so write(unit,*)’P3’ would be wrong

write(unit,’(’’P3’’)’)
write(unit,*) resx,resy
write(unit,*) 255

do i=resy-1,0,-1
write(unit,*)((set(k,j,i),k=1,3),j=0,resx-1)

enddo
close(unit)

end subroutine
end module
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Fortran, Page 3
program mandel

use pnm
complex (kind=kind(1d0)) :: z
real (kind=kind(1d0)) :: x,y
integer :: ix,iy,res,i,pallette(3,0:512)
integer, allocatable :: set(:,:,:)

write(*,*)’Please input resolution’
read(*,*) res
allocate(set(3,0:res-1,0:res-1))

pallette(:,0)=0
pallette(:,512)=0
do i=1,256

pallette(1,i)=256-i
pallette(2,i)=256-i
pallette(3,i)=i
pallette(1,255+i)=i
pallette(2,255+i)=0
pallette(3,255+i)=256-i

enddo

!$omp parallel do private (x,y)
do ix=0,res-1

x=-2d0+ix*3d0/(res-1)
do iy=0,res-1

y=-1.5d0+iy*3d0/(res-1)
set(:,ix,iy)=pallette(:,mand(cmplx(x,y,kind(1d0)),1024))

enddo
enddo

call ppm_write(set,10,"m.ppm")
end
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Check

First check that things work in serial mode.

$ ifort mandel.f90
$ echo 1000 | time ./a.out
Please input resolution
5.26user 0.12system 0:06.56elapsed 82%CPU
$ xv m.ppm
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And in Parallel

$ mv m.ppm m_serial.ppm
$ ifort -openmp mandel.f90
mandel.f90(66): (col. 7) remark: OpenMP DEFINED LOOP WAS PARALLELIZED
$ echo 1000 | OMP_NUM_THREADS=2 time ./a.out
Please input resolution
5.48user 0.15system 0:05.31elapsed 106%CPU
$ diff m.ppm m_serial.ppm
$ echo 1000 | OMP_NUM_THREADS=4 time ./a.out
Please input resolution
5.53user 0.14system 0:04.90elapsed 115%CPU
$ diff m.ppm m_serial.ppm
$

Good news! Same answer, and faster.
But 4.9s on four cores compared with 6.6s on one is not very impressive.
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A Black Hole

The inside of the set takes 1000 iterations per pixel, and the outside many, many fewer.
The standard OpenMP division of the loop will result in one thread dealing with the first
250 columns, the next the next 250, etc. With four threads, the first and last will have
very little work, and the third a large amount of work.

Thread 1 Thread 2 Thread 3 Thread 4
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More Appropriate Scheduling

To change the division of the loop, we can add
schedule(static,1)
to the !$omp statement. Then with four threads the first thread will get the first column,
and the fifth, and the nineth, the second thread the second, sixth and tenth, etc.

As the amount of work per column changes little between adjacent columns, this should
be rather better.

Before After
Serial 6.56s 6.56s

Two Threads 5.31s 4.08s
Four Threads 4.90s 2.87s

Another scheduling option is schedule(dynamic). This distributes the iterations between threads dynamically at run-time according to when
threads become idle. It is no longer the case that each thread will perform the same number of loop iterations. The overhead of dynamic scheduling is
higher. Here it is not measurably higher, for each outer loop contains 1000 iterations of the inner loop, so a reasonable amount of work.
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Detecting Black Holes

No of Threads Before After
2 5.31s 4.08s
4 4.90s 2.87s
8 3.68s 2.86s
16 3.12s 3.03s

The computer used for the above timings has just four cores, so the program has no
business getting faster as the thread count increases above four. However, whereas with
the old loop division and four threads, two threads finish quickly and leave two cores
idle, with sixteen threads thirteen must exit before CPU cores become idle.
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Better I/O

The output file is huge.

$ head m.ppm
P3

1000 1000
255

256 0 0 256 0 0 256 0 0 256

It is three integers taking four character per byte, or 12MB.

However, Fortran 2003 allows binary output using ‘streeam’ access, and there exists a
binary form of the PPM output format.
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Fortran 2003module pnm
contains

subroutine ppm_write(set,unit,name)
integer :: i,j,k,resx,resy,unit
integer, allocatable :: set (:,:,:)
character(*) :: name
character, allocatable :: line(:)

resx=size(set,2)
resy=size(set,3)
allocate(line(3*resx))

open(unit,file=name)
! NB First two bytes must be "P6"

write(unit,’(’’P6’’)’)
write(unit,*) resx,resy
write(unit,*) 255
close(unit)

open(unit,file=name,access=’stream’,position=’append’)
do i=resy-1,0,-1

do j=0,resx-1
do k=1,3

line(3*j+k)=char(set(k,j,i))
enddo

enddo
write(unit) line

enddo
close(unit)

end subroutine
end module
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Faster

The wall-clock times are:

ASCII Binary
Serial 6.56s 5.40s

Two Threads 4.08s 2.92s
Four Threads 2.87s 1.64s

And the final output file is now 3MB, not 12MB.

(Of course, it would be foolish to store even this for long periods.

$ pnmtopng m.ppm > m.png
$ ls -lh m.???
-rw-r--r-- 1 spqr roma 150K Jan 17 16:16 m.png
-rw-r--r-- 1 spqr roma 2.9M Jan 17 16:16 m.ppm

Lossless, and 20× smaller.)
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Predicting Times

A simple model would suggest that the time taken would be the time for the serial part,
plus the time for the parallel part divided by the number of threads. Assuming that
the serial part takes 1.6s, and the parallelisable part takes 5s, except on for the binary
version, where the serial part ought to be 4× faster, or 0.4s, gives:

ASCII Binary
Expt Theory Expt Theory

Serial 6.6s 6.6s 5.4s 5.4s
Two Threads 4.1s 4.1s 2.9s 2.9s
Four Threads 2.9s 2.9s 1.6s 1.7s

Pretty good. This simple model is known as Amdahl’s Law. It assumes perfect load-
balancing and no overheads involved with parallelisation – ridiculously optimistic.

Amdahl’s Law is often written as t = ts + tp/n.

To slow things down suitably, the output was to an NFS-mounted disk on a 100MBit/s network. So the I/O time would be expected to be about 1s per
10MB.
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More Amdahl

Amdahl’s Law is hopelessly optimistic. It says that t decreases monotonically as n
increases. However, even with Amdahl a decent 90% of the code being parallelised will
lead to a speed-up of just 4.7 on eight cores, and 6.4 on sixteen. To get decent scaling
up to hundreds of cores it is necessary to parallelise well over 99% of the code (by serial
execution time).

In many cases, the parallel part has a worse scaling in time with problem size than the
serial part (perhaps N2 matrix initialisation vs N3 diagonalisation). Then big problems
will scale to higher core counts than small problems.

In other cases, an MPI broadcast, or an OpenMP/MPI reduce, lurks in the code. That
must take a time which scales as log2 n, producing a term for which time increases as n
increases.

That HPC Centres are excellent for turning CPU-bound problems into I/O bound ones
is well known, for parallelising I/O can be hard.
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Fractal Fun

Lower left corner, (-0.8,0.1). Range 0.1.
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More Fractal Fun

Lower left corner, (-0.8,0.144). Range 0.015.

As the pictures get more complex, so the compressed size increases. The whole set was 129K, the first detail 206K, and this 421K (all sizes as EPS).
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Ping Pong

Another, more useful, game is ping-pong. Most relevant to MPI-like systems, it
addresses the question of how long it takes for one process to send a message to another.

As for any other network, the obvious model is that there is simply a latency and a
bandwidth. For a decent interconnect between separate nodes, the latency might be
around 2µs and the bandwidth around 1GB/s. For MPI implimented within a single
node, one might hope for 0.5µs and 2GB/s.

Note that sending a message containing a single double precision number will take
2.008µs in the first case. A message containing one hundred double precision numbers
would take 2.8µs, whereas a hundred messages containing one number would have
taken 200µs.

If possible, bundle small messages into big messages.
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More Cans of Worms
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The Worms

The above is an approximate diagram of a dual socket quad core Intel computer based
on the Core2 processor. At the top are the two CPUs, each with four cores, and at the
bottom right is the main memory.

It is immediately obvious that whilst all cores have identical connectivity to memory,
the path to transfer data between core 0 and core 1 on the same CPU is shorter than that
between core 0 and core 2 on the same CPU, and much shorter than that between cores
on different CPUs.

If a parallel job uses little memory, and does much communication between processes,
it will run fastest if on a pair of cores sharing an L2 cache on the same CPU. If the
opposite, then it would run faster if the processes were on different CPUs.

If a process has exclusive access to core 0, anything running on core 1 (perhaps another
job from another user) will cause contention on the L2 cache, and even things on cores
2 and 3 will cause contention on the main memory bus.
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Keeping Worms Coherent

Suppose core 0 CPU 0 and core 1 CPU 1 both read the same item from memory, so
there is a copy in both of their L1 caches. Then core 0 CPU 0 writes a new value. Will
core 1 CPU 1 see the new value, or the old ‘stale’ value in its cache?

It had better see the new value, or data transfer will become awkward. Which means
what looked like an L1 cache hit has become something involving sending a message
via the North Bridge between the CPUs. Messy. (Or MESI, but that is another lecture!)

MESI: Modified, Exclusive, Shared, Invalid – a simple set of book-keeping bits for caches to help determine when problems like the above occur.

The ideal way of using this architecture is probably to place a four process MPI job on cores 0 and 2 of each CPU, and then let each MPI process use a
threaded BLAS / LAPACK / FFT library with the second thread running on the other core connected to the same L2 cache. Can I show you the Fortran
for that? No. There is no way of enforcing such detailed distribution from Fortran (or C).
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Alternative Worms
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The speed of the weak link between the two CPUs is doubled in some current, and some near-future, designs.
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A More Interesting Collection

The above is AMD’s solution, which will become more relevant because it is very
similar to the solution Intel will adopt for the dual socket i7 CPUs.

The big difference is that each CPU has its own memory controller, and own bank(s) of
memory. Whereas the Core 2 CPU had a single bus for all memory, cache coherency
and I/O traffic, this design uses a dedicated memory bus.

Most importantly, if there are four CPUs, there are four memory controllers and buses,
and four times the usual memory bandwidth.
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Placement

This solution has a Non Uniform Memory Architecture. Accesses from the cores of
the first processor to the memory attached to that processor are faster than accesses to
memory on the other processor. However, the programmer sees a single pool of memory,
and is unaware of the division. Indeed, the division is dynamic.

This causes a head-ache for the OS. Suppose two processes are running on each core,
and each process has been allocated memory attached to its local CPU. Then suppose
all eight processes on one CPU finish. Should the OS:

1/ Do nothing, leaving one CPU idle
2/ Migrate half the processes to the idle cores, so forcing them to access memory on the
‘wrong’ processor
3/ Migrate both processes and memory pages, even though that could be several GB?
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More Parallel Problems

The last lecture commented that the result given by a buggy parallel program may vary
depending on the detailed timing of a given run – which process or thread reached a
given point first.

Now we see that the detailed timing may vary considerably depending how the OS
decided to distribute processes and memory. This will depend on what else is running
on the machine (including kernel and OS processes), and even the recent history of
things running on it.

Optimising on current parallel machines is painful, because repeated identical runs can
vary in time by several percent, so detect when a code change has made even a 5%
improvement is hard.

But for ‘hard,’ read ‘challenging’ or ‘stimulating.’
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