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The Problem

Love ’em or loath ’em, computers are here to stay.
Even ‘pencil and paper’ theorists use them for writing
articles, finding other people’s articles, secret sessions
with Mathematica (behind closed doors), and maybe,
sometimes, numerical work.

Others are more openly reliant on the things.

In order to get the best out of what can be a very
useful tool, it is helpful to understand a little about
how they work. If you don’t, your competitors still will,
and they will be able to do a better job of pushing the
boundaries of what is possible as a result.
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Floreat Domus

All good things come from Cambridge, and computing
is no exception. Babbage (Trinity, Lucasian Professor
of Mathematics) is generally regarded as the father
of modern computers for the ‘Difference Engine’ he
invented in 1821, a version of which was constructed
in 1854.

The move to electronic computers came in around
1944 with Colossus built at Bletchley Park by a team
containing many Cambridge men (Turing, Newman,
Tutte and others).

The Manchester Small Scale Experimental Machine
(1948) was the first genuinely programmable, fully-
electronic digital computer. A year later Cambridge
followed with EDSAC.

Other claimants include ENIAC (US, 1945), an electronic and nearly-programmable computer,
Zuse Z3 (Germany, 1944), an electromechanical programmable computer
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The Mathematical Laboratory

EDSAC ran its first program on 6th May 1949. It
was run and built by the forerunner of the University’s
Computing Service, the Mathematical Laboratory.

In 1950 it started doing real scientific work. Early
fields of study included X-ray crystallography and radio
astronomy. In 1958 EDSAC was replaced by EDSAC-
2, another Cambridge-built valve-based machine, which
lasted until 1965. EDSAC-2’s successor, Titan, was
programmable in Fortran from 1966.

EDSAC-1
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World History: to 1970

1951 Ferranti Mk I: first commercial computer

UNIVAC I: memory with parity

1953 EDSAC I ‘heavily used’ for science (Cambridge)

1954 Fortran I (IBM)

1955 Floating point in hardware (IBM 704)

1956 Hard disk drive prototype. 24” platters (IBM)

1961 Fortran IV

Pipelined CPU (IBM 7030)

1962 Hard disk drive with flying heads (IBM)

1963 CTSS: Timesharing (multitasking) OS

Virtual memory & paging (Ferranti Atlas)

1964 First BASIC

1967 ASCII (current version)

GE635 / Multics: SMP (General Elect)

1968 Cache in commercial computer (IBM 360/85)

Mouse demonstrated

Reduce: computer algebra

1969 ARPAnet: wide area network

Fully pipelined functional units (CDC 7600)

Out of order execution (IBM 360/91)
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History: the 1970s

1970 First DRAM chip. 1Kbit. (Intel)

First floppy disk. 8” (IBM)

1971 UNIX appears within AT&T

Pascal

First email

1972 Fortran 66 standard published

First TLB (IBM 370)

ASC: computer with ‘ECC’ memory (TI)

1974 First DRAM with one transistor per bit

1975 UNIX appears outside AT&T

Ethernet appears (Xerox)

1976 Apple I launched. $666.66

Z80 CPU (used in Sinclair ZX series) (Zilog)

51
4” floppy disk

1978 K&R C appears (AT&T)

TCP/IP

Intel 8086 processor

Laser printer (Xerox)

WordStar (early wordprocessor)

1979 TEX
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History: the 1980s

1980 Sinclair ZX80 £100 105 sold

Fortran 77 standard published

1981 Sinclair ZX81 £70 106 sold

31
2” floppy disk (Sony)

IBM PC & MS DOS version 1 $3,285

SMTP (current email standard) proposed

1982 Sinclair ZX Spectrum £175 48KB colour

Acorn BBC model B £400 32KB colour

Commodore64 $600 107 sold

Motorola 68000 (commodity 32 bit CPU)

1983 Internet defined to be TCP/IP only

Apple IIe $1,400

IBM XT, $7,545

Caltech Cosmic Cube: 64 node 8086/7 MPP

1984 CD ROM

1985 LATEX2.09

PostScript (Adobe)

Ethernet formally standardised

IEEE 748 formally standardised

Intel i386 (Intel’s first 32 bit CPU)

X10R1 (forerunner of X11) (MIT)

C++
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History: the RISCs

1986 MIPS R2000, RISC CPU (used by SGI and DEC)

SCSI formally standardised

1987 Intel i860 (Intel’s first RISC CPU)

Acorn Archimedes (ARM RISC) £800

SPARC I, RISC CPU (Sun)

Macintosh II $4,000. FPU and colour.

Multiflow Trace/200: VLIW

X11R1 (MIT)

1989 ANSI C

1990 PostScript Level 2

Power I: superscalar RISC (IBM)

MS Windows 3.0

1991 World Wide Web / HTTP

Tera starts developing MTA processor

1992 PCI

OpenGL

JPEG

OS/2 2.0 (32 bit a year before NT) (IBM)

Alpha 21064: 64 bit superscalar RISC (DEC)

1993 PDF version 1.0 (Adobe)

MS Windows NT 3.1 (the first version. . . )

1994 LATEX2e

MPI
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A Summary of History

The above timeline stops a decade before this talk will
first be given. Computing is not a fast-moving subject,
and little of consequence has happened in the past
decade.

By 1970 the concepts of disk drives, floating
point, memory paging, parity protection, multitasking,
caches, pipelining and out of order execution have
all appeared in commercial systems, and high-level
languages and wide area networking have been
developed.

The 1980s see the first serious parallel computers,
the RISC revolution, and much marketing in a home
computer boom.
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The CPU
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Inside the Computer
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The Heart of the Computer

The CPU is the brains of the computer. Everything
else is subordinate to this source of intellect.

A typical modern CPU understands two main classes of
data: integer and floating point. Within those classes
it may understand some additional subclasses, such as
different precisions.

It can perform basic arithmetic operations and
comparisons, governed by a sequence of instructions,
or program.

It can also perform comparisons, the result of which
can change the execution path through the program.

Its sole language is machine code, and each family
of processors speaks a completely different variant of
machine code.
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What the bits do

• Memory: not part of the CPU. Used to store both
program and data.

• Instruction fetcher: fetches next machine code
instruction from memory.

• Instruction decoder: decodes instruction, and sends
relevant data on to. . .

• Functional unit: dedicated to performing single
operation

• Registers: store the input and output of the
functional units There are typically about 32 floating point registers,

and 32 integer registers.

Partly for historical reasons, there is a separation
between the integer and floating point parts of the
CPU.

On some CPUs the separation is so strong that the only way of transferring data between the
integer and floating point registers is via the memory. On some older CPUs (e.g. the Intel
386), the FPU (floating point unit) is optional and physically distinct.
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Clock Watching

The best known part of a CPU is probably the
clock. The clock is simply an external signal used
for synchronisation. It is a square wave running at a
particular frequency.

Clocks are used within the CPU to keep the various
parts synchronised, and also on the data paths between
different components external to the CPU. Such data
paths are called buses, and are characterised by a width
(the number of wires (i.e. bits) in parallel) as well as
a clock speed (number of bus transfers each second).
External buses are usually narrower and slower than
ones internal to the CPU.

Although sychronisation is important – every good
orchestra needs a good conductor – it is a means not
an end. A CPU may be designed to do a lot of work
in one clock cycle, or very little, and comparing clock
rates between different CPU designs is meaningless.
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Typical instructions

Integer:

• arithmetic: +,−,∗,/,negate
• logical: and, or, not, xor
• bitwise: shift, rotate
• comparison
• load / store (copy between register and memory)

Floating point:

• arithmetic: +,−,∗,/,
√

,negate,modulus
• convert to/from integer
• comparison
• load / store (copy between register and memory)

Control:

• (conditional) branch (goto)

Most modern processors barely distinguish between integers used to represent numbers, and
integers used to track memory addresses (i.e. pointers).
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Languages

High-level languages (C, Fortran, Java, etc.) exist
to save humans the bother of worrying about the
precise details of the CPU in the computer they are
using. They are converted to machine code, the binary
representation of a specific CPU’s instructions, by a
program called a compiler.

Thus one can write a code once, and recompile for
many different CPUs.

The language is a compromise between being easy
for humans to understand, and easy for compilers to
convert into efficient machine-code. Fortran excels at
FORmula TRANslation (i.e. numeric work), whereas
C is a more general-purpose language.
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Diversity

Although most modern CPUs are conceptually similar,
the details vary. Different CPUs will almost certainly be
different physical shapes and expect different electrical
signals, so need different motherboards. They will
probably also have different instructions, numbers of
registers, and ways of encoding instructions into binary.

There is no way that code written for one CPU
will run on another. An instruction such as
fadd f16,f17,f18 would be nonsense for a CPU with
just 16 floating-point registers, and, anyway, there is no
reason for all CPU manufacturers to decide to encode
fadd f16,f17,f18 in the same manner.

If CPUs can be swapped between each others’ sockets,
they are said to be socket- or it plug-compatiable. If
they can run each others’ machine-code, they are said
to be binary compatible.
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Families

A family of CPUs is a series of CPUs which retains
binary compatiblity with previous members, although
instructions (and features) may be added so that the
compatibility may not work in both directions.

IA32 Intel 386, 486, Pentium, Pentium II, Pentium III,
Pentium 4, Pentium M; AMD Athlon, Athlon-64.

Motorola 68K 68000, 68020, 68030, 68040, 68060

Alpha 21064 (EV4), 21164 (EV5), 21264 (EV6),
21364 (EV7)

Power Power, Power2, Power3, Power4

PowerPC 601, 603, 604, 620, 750 (=G3), 7400
(=G4), 970 (=G5)

SPARC SPARC I, SPARC II, SuperSPARC, Hyper-
SPARC, UltraSPARC, UltraSPARC II, III, IV

22



Alpha vs IA32, Part I

The Alpha processor series was launched in 1992 as
a legacy-free(?) RISC design, whereas the IA32 line
appeared in 1985, and was proud to be merely a
binary-compatible extension of the 8086 (1978).

IA32 Alpha
Integer Regs 8 x 32 bit 32 x 64 bit
Integer Formats 8, 16 & 32 bit 32 & 64 bit
F.P. Regs 8 x 80 bit 32 x 64 bit
F.P. Formats 32, 64 32 & 64 bit IEEE

& 80 bit IEEE 32 & 64 bit VAX
Instruction length 1 - c.14 bytes 4 bytes

The IA32 range has many complex instuctions absent
on the Alpha range: trig functions, logarithms, scan or
copy string in memory. It can also transfer data directly
between arithmetic units and memory, without going
via a register. All of these involve multiple functional
units, often multiple times.
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Registers

The existance of separate floating-point and integer
registers has been discussed. There are also some
dedicated registers.

There will always be an instruction pointer, a register
dedicated to holding the address of the instruction
currently being executed. There will usually be a stack
pointer, which manages the stack (see later), and there
may be a frame pointer (again, see later).

There may also be a zero register: a register which
yields zero when read, and discards anything written
to it.

Usually the integer registers are used for both addresses
and integer data.

The Motorola 68000 series has separate registers for integer data and addresses.

The instruction pointer is sometimes also called the program counter (PC).
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Alpha Registers

There are 32 integer registers, all 64 bit, conventionally
called r0 to r31, additional to the instruction pointer.
A few of these are special purpose:

r15: Frame pointer
r26: Return address
r30: Stack pointer
r31: Zero register

Likewise there are 32 floating-point registers, all 64 bit,
called f0 to f31, and f31 is the zero register.
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x86 Registers

The IA32 processors have rather fewer registers, with
an odd arrangement.

There are eight floating-point registers, all 80 bit. They
cannot be addressed directly, but they form a stack,
with the simplest floating point instructions, such as
fadd, existing in a form which has no arguments, but
which removes the top two items from the stack, and
replaces them by their sum.

Most instructions can take forms such as
fadd %st(3),%st
(add to the third element on the stack the top), but
one of the operands must be the stack top.

These are the only double-precision floating point
registers on all IA32 CPUs up to and including the
PentiumIII, and they were introduced in the 8087 in
1978.
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IA32 Integer Registers: the beginning

The original 8086, and the 80286, had 16 bit integer
registers. These were named ax, bx, cx, dx, di, si,
bp, sp and ip. The first four could also be addressed
as 8 bit registers, with ah being the ‘high’ (top) byte
of ax, and al the ‘low’ (bottom) byte.

So that more than 64K could be addressed in 16 bits,
each address was considered to be the combination
of a segement register and one of the above integer
registers. There were four 16 bit segment registers, cs,
ds, es, and ss, and an address was written as a colon
separated pair, e.g. cs:ip, and calculated as 16×
the segment register + the offset, yielding effectively
20 bits (1MB).

There is no zero register, cs:ip is the instruction
pointer, ss:sp the stack pointer and ss:bp the frame
pointer.

The registers are not equivalent: integer multiplies always multiply by ax and place the result
in dx and ax, string instructions always use di and si, loop instructions always use cx.
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IA32: the 32 bit extension

The above 16 bit registers simply became the bottom
two bytes of a set of extended registers, with the full
names now being prefixed with an ‘e’. The segment
registers remained 16 bit, although two more, fs and
gs, were added. Messy.

ah al

eax
ax

di

edi

dh dl

edx
dx

cl

ecx
cx

bh bl

ebx
bx

ch

si

esi

bp

ebp

sp

esp

ip

eip

ds es ss cs

fs gs
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Machine Code

Most RISC processors use a fixed instruction word of
four bytes – the smallest convenient power of two.

An instruction may need to specify up to three registers,
and, with 32 registers, 5 bits are needed to identify
each, or 15 bits for three. The remaining 17 bits are
plenty to specify the few dozen possible instructions.

Some instructions might need just two registers and an
integer constant provided within the instruction itself.
Many RISC processors allow for 16 bits of data to be
stored in this manner, for a subset of their instructions.

Branch instructions need just a single register, and
the destination is usually stored as an offset from the
current position. This will always be a multiple of four,
so the two lowest bits are not stored.

Unlike byte, which always means 8 bits, there is no precise definition of word. It usually
means 4 bytes, the length of an instruction, except when talking about the 8086, when it
means two bytes, or vector Crays, when it means eight bytes.

The IA32 instruction set, with its variable length, can place double precision floating point
values as data within a single instruction, and must store all bits of its branches.

Not all possible bit sequences will be valid instructions. If the instruction decoder hits an
invalid instruction, it objects. Under UNIX this results in the process receiving a SIGILL:
SIGnal ILLegal instruction. 29



Meaningless Indicators of Performance

• MHz: the silliest: some CPUs take 4 clock cycles
to perform one operation, others perform four
operations in one clock cycle. Only any use when
comparing otherwise identical CPUs.

• MIPS: Millions of Instructions Per Second.
Theoretical peak speed of decode/issue logic.

• MTOPS: Millions of Theoretical Operations Per
Second.

• FLOPS: Floating Point Operations Per Second.
Theoretical peak issue rate for floating point
instructions. Loads and stores usually excluded.
Ratio of + to ∗ is usual fixed (often 1 : 1).

• MFLOPS, GFLOPS, TFLOPS: 106, 109, 1012

FLOPS.

As we shall see later, most of these are not worth the paper they are written on.
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Meaningful Indicators of Performance

The only really good performance indicator is how long
a computer takes to run your code. Thus my fastest
computer is not necessarily your fastest computer.

Often one buys a computer before one writes the code
it has been bought for, so other ‘real-world’ metrics
are useful.

Unfortunately, there are not many good ones. Here is
a critique of the main contenders.

Streams

Streams (a public domain benchmark) does not
really measure CPU performance, but rather memory
bandwidth. This is often rather more useful.
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Linpack

Linpack 100x100

Solve 100x100 set of double precision linear equations
using fixed FORTRAN source. Pity it takes just 0.7 s
at 1 MFLOPS and uses under 100KB of memory. Only
relevant for pocket calculators.

Linpack, the return

Taking the 100x100 Linpack source and rewriting
it to be 1000x1000 (or 2000x2000) does give a
half-reasonable benchmark. Most computers achieve
between 5 and 15% of their processor’s peak
performance on this code.

Linpack 1000x1000 or nxn

Solve 1000x1000 (or nxn) set of double precision
linear equations by any means. Usually coded using a
blocking method, often in assembler. Is that relevant
to your style of coding? Achieving less than 50% of a
processor’s theoretical peak performance is unusual.

Number of operations: O(n3), memory usage O(n2).
n chosen by manufacturer to maximise performance, which is reported in MFLOPS.
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SPEC

SPEC is a non-profit benchmarking organisation. It
has two CPU benchmarking suites, one concentrating
on integer performance, and one on floating point.
Each consists of around ten programs, and the mean
performance is reported.

Unfortunately, the benchmark suites need constant
revision to keep ahead of CPU developments. The first
was released in 1989, the second in 1992, the third in
1995. None of these use more than 8MB of data, so
fit in cache with many current computers. Hence a
fourth suite was released in 2000, and a fifth is due in
2004.

It is not possible to compare results from one suite with
those from another, and the source is not publically
available.

Until 2000, the floating point suite was entirely Fortran.

Two scores are reported, ‘base’, which permits two optimisation flags to the compiler, and
‘peak’ which allows any number of compiler flags. Changing the code is not permitted.

SPEC: Standard Performance Evaluation Corporation (www.spec.org)
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Various Results, SPEC

Processor MHz SpecInt SpecFP

Power 5 1900 – 2702

Itanium 2 1500 1243 2148

SPARC64 V 1890 1345 1803

Power 4 1700 1158 1776

Opteron 248 2200 1452 1691

Alpha 21364 1300 994 1684

Pentium 4 3600 1575 1630

Alpha 21264 1250 928 1365

UltraSPARC III 1200 905 1106

Pentium M 2000 1541 1088

Pentium III 1400 664 456

For each CPU, the best result (i.e. fastest motherboard / compiler

/ clock speed) as of 1/8/04 is given.

Note that the ordering by SpecInt would be rather different.

Regrettably Apple and SGI/MIPS do not publish SPEC scores.

SPARC64 V is Fujitsu’s licenced clone of Sun’s SPARC CPU.
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Various Results, Streams and Linpack

Linpack

Machine Year CPU/MHz Streams code dgesv

Pentium4 2002 P4/2400 1850 241 2750

Pentium4 2002 P4/1800 1140 140 1980

PentiumIII 1999 PIII/650 343 47 454

XP1000 2001 21264/667 990 125 965

XP1000 1999 21264/500 980 146 755

PW500au 1998 21164/500 233 42 590

AS500/500 1996 21164/500 170 32 505

The ‘code’ ‘Linpack’ column is for the 2000x2000 Fortran version, whereas the dgesv column
is the same problem using the vendor’s supplied maths library.

The faster P4 uses RAMBUS memory, the slower SDRAM. Similarly the two 21164 machines
have different memory subsystems, but identical processors, whereas the two 21264s have
identical memory subsystems, but different secondary cache speeds and core speeds. The
667MHz core appears to have a slower secondary cache.

35



Integers

Computers store bits, each of which can represent
either a 0 or 1.

For historical reasons bits are processed in groups of
eight, called bytes. One byte is sufficient to store one
English character.

Most CPUs can handle integers of different sizes,
typically some of 1, 2, 4 and 8 bytes long.

For the purposes of example, we shall consider a half-
byte integer (i.e. four bits).

Eight bits is one bytes, therefore four bits must be one nybble.
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Being Positive

This is tediously simple:

Bits Base-10 Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
. . . . . .
1001 9 9
1010 10 a
. . . . . .
1111 15 f

The obvious, universal, representation for positive
integers: binary.

As 4 bits implies 24 combinations only 16 different
numbers can be represented with 4 bits.

Hex is convenient as an eight bit byte can always be represented in just two digits, and
converting binary to hex is trivial: each group of four bits can be converted independently.
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Being Negative

There are many ways of being negative.

Sign-magnitude

Use first bit to represent sign, remaining bits to
represent magnitude.

Offset

Add a constant (e.g. 8) to everything.

Two’s complement

Reverse all the bits then add one to represent negative
numbers.
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Chaos

Bits s-m off 2’s
0000 0 −8 0
0001 1 −7 1
0010 2 −6 2

0111 7 −1 7
1000 −0 0 −8
1001 −1 1 −7

1110 −6 6 −2
1111 −7 7 −1

Of these possibilities, two’s complement is almost
universally used, although offset and s-m are seen
in floating point formats.

Having only one representation for zero is usually an
advantage, and having zero being the bit pattern
‘000. . . ’ is also a good thing.
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Remembering

One 8 bit byte is the smallest unit that can be extracted
from the memory system of any current computer.
However, one usually wishes to store larger values.
Consider storing the value 0x1234 (4660 in base-10)
as a two-byte value at address 0x1000. Should one
store 0x12 in the byte at address 0x1000, and 0x34
at address 0x1001, or vice-versa?

The former, which seems most logical, is called big-
endian storage, and the latter little endian. The
distinction applies to files as well as memory, so two
computers must agree on endianness before they can
exchange data succesfully.
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Why little endian?

Consider storing 0x1234 as a four-byte value at address
0x1000.

Address 0x1000 0x1001 0x1002 0x1003

Little endian 0x34 0x12 0x00 0x00

Big endian 0x00 0x00 0x12 0x34

Now consider an idiot programmer reading the value
from address 0x1000, and incorrectly assuming that
it is a two-byte value, not a four-byte value. In the
big-endian world, the value zero will be read. In the
little-endian world, the value 0x1234 will be read, and
the bug will escape detection.

Unfortunately, in the world of IA32, little-endian won.
Tru64 on Alphas is also little-endian (although the
CPU can operate in either mode). SPARC Solaris is
big-endian.

Endian conversion is messy: single-byte values (characters) need no conversion, two-byte
values need swapping, four byte values reversing in groups of four, and eight-byte values in
groups of eight. This issue applies to (binary) files as well.

41



Adding up

Trivial:

0101 + 1001 = 1110

Otherwise known as

5 + 9 = 14

But note how this would read using the various
mappings for negative numbers:

• sign-mag: 5 + (−1) = −6

• offset: (−3) + 1 = 6

• 2’s: 5 + (−7) = −2

Clearly not all mappings are equal.
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Overflow

5 + 12 = 1

maybe not, but

0101 + 1100 = 0001

as there is nowhere to store the first bit of the correct
answer of 10001. Integer arithmetic simply wraps
around on overflow.

Interpreting this with 1’s and 2’s complement gives:

• 2’s: 5 + (−4) = 1

This is why two’s complement is almost universal.
An adder which correctly adds unsigned integers will
correctly add two’s complement integers. A single
instruction can add bit sequences without needing to
know whether they are unsigned or two’s complement.

Note that this does not work with multiplication or division.
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Ranges

bits unsigned 2’s comp.
8 0 to 255 −128 to 127
16 0 to 65535 −32768 to 32767
32 0 to 4294967295 −2147483648 to 2147483647
64 0 to 1.8× 1019 −9× 1018 to 9× 1018

Uses:

• 8 bits: Latin character set
• 16 bits: Graphics co-ordinates
• 32 bits: General purpose
• 64 bits: General purpose

Note that if 32 bit integers are used to address bytes
in memory, then 4GB is the largest amount of memory
that can possibly be addressed.

Similarly 16 bits and 64KB, for those who remember
the BBC ‘B’, Sinclair Spectrum, Commodore64 and
similar.
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Text

Worth a mention, as we have seen so much of it. . .

American English is the only language in the world, and
it uses under 90 characters. Readily represented using
7 bits, various extensions to 8 bits add odd European
accented characters, and £.

Most common mapping is ASCII.

0000000-0011111 control codes
0100000 space

0110000-0111001 0 to 9
1000001-1011010 A to Z
1100001-1111010 a to z

Punctuation fills in the gaps.

The contiguous blocks are pleasing, as is the single bit
distinguishing upper case from lower case.

Note that only seven bits, not eight, are used. The ‘control codes’ are special codes for new
line, carriage return, tab, backspace, new page, etc.

ASCII = American Standard Code for Information Interchange
Other main mapping is EBDIC, used (mainly) by old IBM mainframes.
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Multiplying and Dividing

Integer multiplication is harder and (typically) slower
than addition. It also causes numbers to increase
rapidly in magnitude.

Some processors have expanding multiply instructions,
e.g. for multiplying two 16 bit numbers, and keeping
all 32 bits of the result. Other instructions simply
truncate the result to the size of the operands.

Some processors have no integer multiply instruction.
Examples include the old and simple, such as the Z80,
and the relatively modern RISC range PA-RISC (HP).

Integer division is yet more complex, and much rarer in
code. Hence even fewer processors support it. Alpha
does not.

46



Shifting and Rotating

All processors have both shift and rotate instructions.
Shift moves the bits along, filling in with zeros, whereas
rotate fills in with the bits shifted out of the other end
of the register. Illustrated for an 8 bit register.

0

rotate left

shift left

A left shift by n positions corresponds to ×2n.

A right shift by n positions corresponds to dividing by
2n with the remainder lost.

One can simulate multiplication from a combination of shifts, adds and comparisons.
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Logical operations

The other class of operations that all processors can do
is bitwise logical operations. The common operations
are provided:

and or xor
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

These operations crop up surprisingly frequently. For instance:

x and 7 = 0 implies x is divisible by eight.
(x + 7) and−8 is smallest number ≥ x divisible by 8
(any letter) or 32 = corresponding lower case letter (ASCII)
(any letter) and 95 = corresponding upper case letter (ASCII)
xor is used for trivial encryption and for graphics cursors, because (a xor b) xor b ≡ a.

C programmers will wish to distinguish between ‘3&&7’, which is one (a logical operation),
and ‘3&7’, which is 3 (a bit-wise operation).
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Typical functional unit speeds

Instruction Latency Issue rate
iadd/isub 1 1
and, or, etc. 1 1
shift, rotate 1 1
load/store 1-2 1
imul 3-15 3-15
fadd 3 1
fmul 2-3 1
fdiv 15-25 15-25
fsqrt 15-25 15-25

In general, most things 1 or 2 clock cycles, except
integer ×, and floating point ÷ and

√
.

‘Typical’ for processors such as DEC Alpha, MIPS R10000 and similar RISC processors.
Very recent processors tend to have longer fp latencies: 4 for fadd and fmul for the
UltraSPARC III, 5 and 7 respectively for the Pentium 4.

Those slow integer multiplies are more common that it would seem at first. Consider:

double precision x(1000),y(500,500)

The address of x(i) is the address of x(1) plus 8 ∗ (i − 1). That multiplication is just a
shift. However, y(i,j) is y(1,1) plus 8 ∗ ((i− 1) + (j − 1) ∗ 500). A lurking multiply!

C does things very differently, but not necessarily better.
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Floating Point

Perhaps the most important area of scientific
computing, but probably not the most well understood.

Let us begin by revising our knowledge of base-10
‘scientific notation’ and assuming that every number
we write shall be written as a four digit signed mantissa
and a two digit signed exponent.

±0.XXXX × 10±XX

e.g.
0.1000× 101

or
0.6626× 10−33

(As is conventional, the mantissa, M , is restricted to
0.1 ≤ M < 1.)
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Representable numbers

Using this notation, we can represent at most four
million distinct numbers. Having merely six digits
which can range from 0 to 9, and two signs, there are
only 4,000,000 possible combinations.

The largest number we can represent is 0.9999× 1099,
the smallest 0.1000 × 10−99, or 0.0001 × 10−99 if we
do not mind having fewer than four digits of precision
in the mantissa.
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Algebra

a + b = a 6⇒ b = 0

0.1000× 101 + 0.4000× 10−3 = 0.1000× 101

(a + b) + c 6= a + (b + c)

(0.1000× 101 + 0.4000× 10−3) + 0.4000× 10−3

= 0.1000× 101 + 0.4000× 10−3

= 0.1000× 101

0.1000× 101 + (0.4000× 10−3 + 0.4000× 10−3)

= 0.1000× 101 + 0.8000× 10−3

= 0.1001× 101
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Algebra (2)

√
a2 6= |a|

√
(0.1000× 10−60)2 =

√
0.0000× 10−99 = 0

a/b 6= a × 1/b

0.6000× 101/0.7000× 101 = 0.8571

0.6× 101 × (1/0.7× 101) = 0.6× 101 × 0.1429

= 0.8574
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Binary fractions

Follow trivially from decimal fractions:

0.625 = 2−1 + 2−3 = 0.1012

but note that some finite decimal fractions are not
finite binary fractions

0.210 = 0.0011001100110011 . . .2

(although any finite binary fraction is a finite decimal
fraction of the same number of digits)

nm is a common way of expressing ‘interpret n as a number in base m.’ Of course, m itself
is always base-10.

54



Computers and IEEE

IEEE 754 defines a way both of representing and
manipulating floating point numbers on a computer.
Its use is almost universal.

In a similar fashion to the above decimal format, it
defines a sign bit, a mantissa of fixed length, and an
exponent. Naturally everything is in base 2, and the
exponent is not signed, but rather it has a constant
offset added to it: 127 in the case of single precision.

IEEE requires that the simple arithemetic operators
return the nearest representable number to the true
result, and and consequently that a + b = b + a and
ab = ba.

Note that the IEEE mantissa is an example of sign-magnitude storage, and exponent offset.
Two’s compliment is not universal.
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IEEE Example

As an example of a single precision number:

5
3
4

= 101.112 = 0.101112 × 23

This is stored as a sign (0 for +), an 8 bit exponent
biased by 127, so 10000010 here, and then a 23 bit
mantissa. Because the first digit of a normalised
mantissa is always 1, that digit is not stored. This
leaves the sequence

01000001001110000000000000000000

So this bit sequence represents 53
4 when interpreted

as a single precision IEEE floating point number, or
1094189056 when interpreted as a 32 bit integer.

The above is perfectly valid, but very different, when interpreted as a real or an integer.
Nothing tags a value to make it clear that it is integer or floating point: a programmer must
keep track of what was stored where!

56



Underflows, and Denormals

0.1 × 10−99/0.1 × 1010 = 0 is an example of
underflow. The real answer is non-zero, but smaller
than the smallest representable number, so it is/must
be expressed as zero. A sign can be retained:
−0.1× 10−99/0.1× 1010 = −0.

0.1× 10−99/2 is more awkward. Should it be kept as
0.05× 10−99, which breaks the rule that the mantissa
must be greater than 0.1, and risks nonsense as
precision is slowly lost, or should it be set to zero?
The former is called gradual underflow, and results
in denormalised numbers. Flushing denormalised
numbers to zero is the other option.

Many processors cannot compute directly with denormalised numbers. As soon as the FPU
encounters one, it signals an error and a special software routine needs to tidy up the mess.
This can make computing with denormals hundreds of times slower than computing with
normalised numbers. Given that their use also implies a precision loss, flushing to zero is often
best.
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More Nasty Numbers

A few other ‘special’ numbers exit, for dealing with
overflows, underflows,

√−1 and other problems. For
this reason, two of the possible exponent bit-sequences
(all ones and all zeros) are reserved.

For an overflow, the resulting ‘infinity’ is represented
by setting the sign bit appropriately, the mantissa equal
to zero, and the exponent equal to all ones.

Something which is ‘Not a (real) Number’, such as
0/0 or

√−1, is represented similarly but the mantissa
is set non-zero. This is normally reported to the user
as ‘NaN’.

Zero is represented by setting all bits to zero. However
the sign bit may still be one, so +0 and −0 exist. For
denormalised numbers the exponent is zero, and all
bits of the mantissa are stored, for one no longer has
a leading one.

In comparisons, +0 and −0 compare as equal.

When reading rubbish bit sequences as doubles, one expects merely one in 2000 to appear as
a NaN.
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Signals

Sometimes it is useful for a program to abort with an
error as soon as it suffers an overflow, or generates a
NaN. Less often it is useful for underflows to stop a
program.

By convention Fortran tends to stop on overflows and
NaNs, whereas C does not and expects the programmer
to cope.

If the code does stop, it will do so as a result of
receiving a signal from the floating point unit, and it
will complain SIGFPE: SIGnal Floating Point Exception.

Also by convention, integer overflow wraps round
silently. The conversion of a real to an integer when
the real is larger than the largest possible integer might
do almost anything. In Java it will simply return the
largest possible integer.
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IEEE Ranges

Precision
Single Double

Bytes 4 8
Bits, total 32 64

Bits, exponent 8 11
Bits, mantissa 23 52
Largest value 1.7× 1038 9× 10307

Smallest non-zero 6× 10−39 1× 10−308

Decimal digits of precision c.7 c.15

Other representations result in different ranges. For instant, IBM 370 style encoding has a

range of around 1075 for both single and double precision.

IEEE is less precise about extended double precision formats. Intel uses an 80 bit format with
a 16 bit exponent, whereas many other vendors use a 128 bit format.
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Hard or Soft?

The simple operations, such as +, − and ∗ are
performed by dedicated pipelined pieces of hardware
which typically produce one result each clock cycle,
and take around four clock cycles to produce a given
result.

Slightly more complicated operations, such as / and√
may be done with microcode. Microcode is a tiny

program on the CPU itself which is executed when a
particular instruction, e.g. /, is received, and which
may use the other hardware units on the CPU multiple
times.

Yet more difficult operations, such as trig. functions
or logs, are usually done entirely with software in a
library. The library uses a collection of power series or
rational approximations to the function, and the CPU
needs evaluate only the basic arithmetic operations.

The IA32 range is unusual in having microcoded instructions for trig. functions and logs.
Even on the PentiumIII and Pentium4, a single such instruction can take over 200 clock cycles
to execute. RISC CPUs tend to avoid microcode.
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Soft denormals

x=1d-20
y=1d-28
n=1e8

do i=1,n
x=x+y

enddo

This yields x=2E-20 in under half a second on a
466MHz EV6. If x and y are scaled by dividing by
2955 before the loop, and multiplied by the same factor
afterwards, the loop takes 470s.

The EV6 hardware cannot handle denormals, so
software emulation was used for each addition. Ditto
most other RISC CPUs.

With the default compiler flags, Alphas flush denormals to zero, and thus get an answer of
x=1E-20 in under a quarter of a second after scaling. Full IEEE compliance costs a factor of
two anyway, and over a factor of 2000 with denormals present.
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Making Life Complex

Processors deal with real numbers only. Many scientific
problems are based on complex numbers. This leads
to major problems.

Addition is simple

(a + ib) + (c + id) = (a + c) + (b + d)i

and subtraction is similar.

Multiplication is slightly tricky:

(a + ib)× (c + id) = (ac− bd) + (bc + ad)i

What happens when ac− bd is less than the maximum
number we can represent, but ac is not?

What precision problems do we have if ac is
approximately equal to bd?
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The Really Complex Problem

(a + ib)/(c + id) =
(ac + bd) + (bc− ad)i

c2 + d2

This definition is almost useless!

If N is the largest number we can represent, then the
above formula will produce zero when dividing by any
number x with |x| > √

N .

Similarly, if N is the smallest representable number, it
produces infinity when dividing by any x with |x| <√

N .

This is not how languages like Fortran, which support
complex arithmetic, do division: they use a more
complicated algorithm which we shall quietly ignore.
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Rounding & the Quadratic Formula

x =
−b±√b2 − 4ac

2a

30x2 + 60.01x + 30.01 = 0

Roots are −1 and −1 1
3000.

Single precision arithmetic and the above formula give
no roots!

number nearest representable single prec. no.
30 30.0000000000
30.01 30.0100002289. . .
60.01 60.0099983215. . .

Even with no further rounding errors, whereas 4 ∗ 30 ∗ 30.1 = 3601.2 and

60.012 = 3601.2001, 60.0099983215 . . .2 = 3601.199899 . . ..

The following gives no roots when compiled with a K&R C compiler, and repeated roots with
ANSI C.

void main(){
float a=30,b=60.01,c=30.01,d;
d=b*b-4*a*c;
printf("%18.15f\n",(double)d);

}
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Backwards and Forwards

N∑
n=1

1
n

Consider summing this series forwards (1..N) and
backwards (N..1) using single precision arithmetic.

N forwards backwards exact

100 5.187378 5.187377 5.187378
1000 7.485478 7.485472 7.485471

10000 9.787613 9.787604 9.787606
100000 12.09085 12.09015 12.09015

1000000 14.35736 14.39265 14.39273
10000000 15.40368 16.68603 16.69531

100000000 15.40368 18.80792 18.99790

The smallest number such that 15 + x 6= x is about 5 × 10−7. Therefore, counting
forwards, the total stops growing after around two million terms.

This is better summed by doing a few hundred terms explicitly, then using a result such as

bX
n=a

1

n
≈ log

„
b + 0.5

a− 0.5

«
+

1

24

“
(b + 0.5)

−2 − (a− 0.5)
−2
”

+ O(a
−4

)
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The Logistic Map

xn+1 = 4xn(1− xn)

n single double correct
0 0.5200000 0.5200000 0.0520000
1 0.9984000 0.9984000 0.9984000
2 0.0063896 0.0063898 0.0063898
3 0.0253952 0.0253957 0.0253957
4 0.0990019 0.0990031 0.0990031
5 0.3567998 0.3568060 0.3568060

10 0.9957932 0.9957663 0.9957663

15 0.7649255 0.7592756 0.7592756

20 0.2214707 0.4172717 0.4172717

30 0.6300818 0.0775065 0.0775067

40 0.1077115 0.0162020 0.0161219

50 0.0002839 0.9009089 0.9999786
51 0.0011354 0.3570883 0.0000854

With just three operations per cycle, this series has even double precision producing rubbish
after just 150 elementary operations.
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Algorithms

Whereas in mathematics one reveres closed form
solutions, and despises iterative methods, in computing
the distinction is less clear.

Because floating point numbers are stored to finite
precision, it is quite possible to converge an iterative
method to the same accuracy as a closed-form method.
It may be faster to do so, it can even be more accurate,
depending on how complicated the expression for the
closed form solution is, and how rapidly errors build
up.

A few specific algorithms are considered below.
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Scaling

One often worries about how the number of operations,
and hence time, scales with the problem size. Answers
for optimal methods for common problems are:

1 hashed search

ln n tree search

n unstructured search

n ln n FFT (no large prime factors), sorting

n2 general Fourier Transform

n3 matrix inversion, matrix-matrix multiplication,

determinants, orthogonalisation

But prefactors do matter, as seen from the Linpack benchmark results, where both the

unblocked and library methods are n3.

There are worse algorithms than the above, such as the ‘Bubble’ sort (n2), and some n!
methods for finding matrix determinants.
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Error propagation

The sensitivity of the logistic map to error accumulation
has already been noted. Indeed, one can demonstrate
that, for that equation, errors grow exponentially.
Other iterative schemes exist in which errors decay
exponentially, and there is a middle ground too.

In general, unless one’s algorithm is insensitive to error
accumulation (e.g. Newton-Raphson), it may be well
to think about stability.
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Iterative Improvement

If B is an approximation to the inverse of A,

B → B−B(I−AB)

will be a better approximation.

This step involves matrix-matrix multiplications, so will
be order n3 operations. However, such techiques allow
one to obtain accurate inverses, and estimates on one’s
error.

Note that solving a system of linear equations,

Ax = b

is not best done by explicitly inverting A and calculating A−1b, and that an n2 algorithm

for iterative improvement exists, which is cheap compared to the n3 cost of the initial
approximation.
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Random Numbers

Computers, being deterministic, are bad at generating
random numbers.

Sometimes very good random numbers are required,
e.g. for generating cryptographic keys. Sometimes
much poorer randomness suffices.

When debugging, it is useful if the same ‘random’
numbers are used in each run. When generating
results, this is usually unhelpful.

A common, simple, generator is the linear congruential
algorithm:

x → (ax + b) mod c

Where common choices are a = 1103515245,
b = 12345, c = 232.

For c = 232, one need not take the modulus explicitly, but can rely on 32-bit integer
arithmetic wrapping round.
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Problems

The sequence alternates odd, even, odd, even. . .

The sequence mod 2n has period n.

The whole sequence repeats exactly after 232.

No number appears twice within this sequence.

(If one picks numbers randomly from a field of N , one
expects to pick a repeat after ≈ 1.2

√
N goes.)

Cf. the infamous problem of calculating when two people in a set share the same birthday.
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More problems

For sampling multidimensional spaces, the sequence
is very poor, with points lying on a few discrete
hyperplanes within the space.

1,000 triplets from a sequence with c = 4096.

Where ‘a few’ is no more than c1/D where D is the dimension of the space. Here no more
than 16 2D planes are expected.
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Ideas

Should the program use the same random sequence
each time it is run?

Yes, if debugging, and probably not otherwise.

If parallel, should all nodes use the same sequence?
Probably not.

If parallel, can one ensure that the precisely same result
is obtained no matter how many nodes are used?

Often Physics requires a large number of mildly random numbers, whereas cryptography
requires a small number of extremely unguessable numbers. Different generators suit different
problems.
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Pipelines
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A typical instruction

fadd f4,f5,f6

add the contents of floating point registers 4 and 5,
placing the result in register 6.

Execution sequence:

• fetch instruction from memory
• decode it
• collect required data (f4 and f5) and sent to

floating point addition unit
• wait for add to complete
• retrieve result and place in f6

Exact sequence varies from processor to processor.

Always a pipeline of operations which must be
performed sequentially.

The number of stages in the pipeline, or pipeline
depth, can be between about 5 and 15 depending on
the processor.
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Making it go faster. . .

If each pipeline stage takes a single clock-cycle to
complete, the previous scheme would suggest that it
takes five clock cycles to execute a single instruction.

Clearly one can do better: in the absence of branch
instructions, the next instruction can always be both
fetched and decoded whilst the previous instruction is
executing. This shortens our example to three clock
cycles per instruction.

Fetch Decode Execute Return
Result

Fetch
Operands

Fetch Decode Execute Return
Result

Fetch
Operands

Time

second instruction

first instruction
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. . . and faster. . .

Further improvements are governed by data
dependency. Consider:

fadd f4,f5,f6
fmul f6,f7,f4

(Add f4 and f5 placing the result in f6, then multiply
f6 and f7 placing the result back in f4.)

Clearly the add must finish (f6 must be calculated)
before the multiply can start. There is a data
dependency between the multiply and the add.

But consider

fadd f4,f5,f6
fmul f3,f7,f9

Now any degree of overlap between these two
instructions is permissible: they could even execute
simultaneously or in the reverse order and still give the
same result.
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. . . and faster

We have now reached one instruction per cycle,
assuming data independency. The problem is now
decoding the instructions.

Unlike written English, there is no mark which
indicates the end of each machine-code word,
sodecodingmustbedonesequentially.

The solution is to fix the ‘word’ length. If all
instructions are four bytes long, then one knows
trivially where the next, or next-but-ten instruction
starts without decoding the intermediate ones.

Then multiple decoders can run in parallel, and
multiple instructions can be issued per clock cycle.
Such a processor is said to be superscalar, or n-
way superscalar if one wishes to specify how many
instructions can be issued per cycle.
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Keep it simple

With short, simple instructions, it is easy for the
processor to schedule many overlapping instructions
at once.

If a single instruction both read and wrote data to
memory, and required the use of multiple functional
units, such scheduling would be much harder.

This is part of the CISC vs RISC debate.

CISC (Complex Instruction Set Computer) relies on a single instruction doing a lot of work:
maybe incrementing a pointer and loading data from memory and doing an arithmetic
operation.

RISC (Reduced Instruction Set Computer) relies on the instructions being very simple – the
above CISC example would certainly be three RISC instructions – and then letting the CPU
overlap them as much as possible.
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Within a functional unit

A functional unit may itself be pipelined. Considering
again floating-point addition, even in base 10 there are
three distinct stages to perform:

9.67× 105 + 4× 104

First the exponents are adjusted so that they are equal:

9.67× 105 + 0.4× 105

only then can the mantissas be added

10.01× 105

then one may have to readjust the exponent

1.001× 106

So floating point addition usually takes at least three
clock cycles. But the adder may be able to start a new
addition ever clock cycle, as these stages are distinct.

Such an adder would have a latency of three clock
cycles, but a repeat or issue rate of one clock cycle.
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Breaking Dependencies

do i=1,n
sum=sum+a(i)

enddo

This would appear to require three cycles per iteration,
as the iteration sum=sum+a(i+1) cannot start until
sum=sum+a(i) has completed. However, consider

do i=1,n,3
s1=s1+a(i)
s2=s2+a(i+1)
s3=s3+a(i+2)

enddo
sum=s1+s2+s3

The three distinct partial sums have no
interdependency, so one add can be issued every cycle.

Do not do this by hand. This is a job for an optimising compiler, as you need to know a lot
about the particular processor you are using before you can tell how many paritial sums to use.
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A Branch in the Pipe

So far we have assumed a linear sequence of
instructions. What happens if there is a branch?

double t=0.0; int i,n;
for (i=0;i<n;i++) t=t+x[i];

# $17 contains n, # $16 contains x
fclr $f0
clr $1
ble $17,L$5

L$6:
ldt $f1, ($16)
addl $1, 1, $1
cmplt $1, $17, $3
lda $16, 8($16)
addt $f0, $f1, $f0
bne $3, L$6

L$5:

There will be a conditional jump or branch at the end
of the loop. If the processor simply fetches and decodes
the instructions following the branch, then when the
branch is taken, the pipeline is suddenly empty.
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Assembler in More Detail

The above is Alpha assembler. The integer registers
$1, $3, $16 and $17 are used, and the floating point
registers $f0 and $f1. The instructions are of the
form ‘op a,b,c’ meaning ‘c=a op b’.

fclr $f0 Float CLeaR $f0
– place zero in $f0

clr $1 CLeaR $1
ble $17, L$5 Branch if Less than or Equal on

comparing $17 to (an implicit) zero

and jump to L$5 if less (i.e. skip loop)

L$6:

ldt $f1, ($16) LoaD $f1 with value value from

memory address $16
addl $1, 1, $1 $1=$1+1

cmplt $1, $17, $3 CoMPare $1 to $17
and place result in $3

lda $16, 8($16) LoaD Address

effectively $16=$16+8
addt $f0, $f1, $f0 $f0=$f0+$f1
bne $3,L$6 Branch Not Equal

– if counter 6=n, do another iteration

L$5:
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Predictions

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

Time

ldt $f1

Iteration i

ldt $f1

bne

addt $f0

lda $16

cmplt $1

addl $1

ldt $f1 OF D Iteration i+1RX
With branch
prediction

Without branch prediction

X RF D

X RF D

O

O

With the simplistic pipeline model of page 78, the
loop will take 9 clock cycles per iteration if the CPU
predicts the branch and fetches the next instruction
appropriately. With no prediction, it will take 12 cycles.

A ‘real’ CPU has a pipeline depth much greater than the five slots shown here: usually ten to
twenty. The penalty for a mispredicted branch is therefore large.

Note the stalls in the pipeline based on data dependencies (shown with red arrows) or to
prevent the execution order changing. If the instruction fetch unit fetches one instruction
per cycle, stalls will cause a build-up in the number of in flight instructions. Eventually the
fetcher will pause to allow things to quieten down.

This is not the correct timing for any Alpha processor.
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Speculation

In the above example, the CPU does not begin to
execute the instruction after the branch until it knows
whether the branch was taken: it merely fetches and
decodes it, and collects its operands. A further level
of sophistication allows the CPU to execute the next
instruction(s), provided it is able to throw away all
results and side-effects if the branch was mispredicted.

Such execution is called speculative execution. In the
above example, it would enable the ldt to finish one
cycle earlier, progressing to the point of writing to the
register before the result of the branch were known.

More advanced forms of speculation would permit the
write to the register to proceed, and would undo the
write should the branch have been mispredicted.

Errors caused by speculated instructions must be carefully discarded. It is no use if
if (x>0) x=sqrt(x)
causes a crash when the square root is executed speculatively with x=-1, nor if
if (i<1000) x=a(i)
causes a crash when i=2000 due to trying to access a(2000).

Almost all current processors are capable of some degree of speculation.
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Predication

Most CPUs have the branch instruction as their only
conditional instruction, so that a code sequence such
as:

if (a<0) a=-a;

must be converted to

if (a>=0) goto L1;
a=-a;

L1:

This causes a large number of conditional branches with
the problems mentioned above. With full predication,
any instruction can be prefixed by a condition. This
avoids interrupting the progress of the instruction
fetching and decoding logic.

Many modern CPUs, including Alpha, can predicate on loads. Full predication is rare,
although the ARM CPU achieved it in 1987.
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OOO!

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

F O XD R

F O XD R

ldt $f1

Iteration i

bne

addt $f0

lda $16

cmplt $1

addl $1

ldt $f1 Iteration i+1

Time

Previously the cmplt is delayed due to a dependency on
the addl immediately preceeding it. However, the next
instruction has no relevant dependencies. A processor
capable of out-of-order execution could execute the
lda before the cmplt.

The timing above assumes that the ldt of the next iteration can be executed speculatively
and OOO before the branch. Different CPUs are capable of differing amounts of speculation
and OOOE.

The EV6 Alpha does OOOE, the EV5 does not, nor does the UltraSPARC III. In this simple
case, the compiler erred in not changing the order itself. However, the compiler was told not
to optimise for this example.
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Memory
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Memory Technologies

ROM Read Only Memory: contents set at fabrication
and unchangeable.

PROM Programable ROM: contents written once
electronically.

EPROM Erasable PROM: contents may be erased
using UV light, then written once.

EEPROM Electronically EPROM: contents may be
erased electronically a few hundred times.

RAM Random Access Memory: contents may be read
and changed with ‘equal’ ease.

DRAM Dynamic RAM: the cheap and common
flavour. Contents lost if power lost.

SRAM Static RAM: contents may be retained with a
few µW.

An EPROM with no UV window is equivalent to a PROM. A PROM once written is equivalent
to a ROM. SRAM with a battery is equivalent to EEPROM.

Most ‘ROMs’ are some form of EEPROM so they can have their contents upgraded without
physical replacement: also called Flash RAM, as the writing of an EEPROM is sometimes
called flashing.
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RAM

A typical DRAM cell consists of a single capacitor and
field effect transistor. It stores a single bit, and has
barely changed since 1974.

The slow leak of charge onto or off the capacitor is
accounted for by refreshing the memory periodically
(thousands of times a second). The bits are simply
read, then written back. This refreshing is usually
done by circuitary on the motherboard, rather than the
memory module or the CPU.

Conversely SRAM has four or six transistors per bit,
and needs no refreshing.

SRAM comes in two flavours: that optimised for low-power data retention (pocket diaries),
and that optimised for speed (cache). DRAM’s requirement for refreshing leads to a very
much higher power consumption when idle than SRAM.
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DRAM in Detail{
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DRAM cells are arranged in (near-)square arrays. To
read, first a row is selected and copied to a buffer, from
which a column is selected, and the resulting single bit
becomes the output. This example is a 64 bit DRAM.

This chip would need 3 address lines (i.e. pins) allowing 3 bits of address data to be presented
at once, and a single data line. Also two pins for power, two for CAS and RAS, and one to
indicate whether a read or a write is required.

Of course a ‘real’ DRAM chip would contain several tens of millions of bits.
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DRAM Read Timings

To read a single bit from a DRAM chip, the following
sequence takes place:

• Row placed on address lines, and Row Access Strobe
pin signalled.

• After a delay, tRCD, column placed on address lines,
and Column Access Strobe pin signalled.

• After another delay, tCAS, the one bit is ready for
collection.

• The DRAM chip will automatically write the row
back again, and will not accept a new row address
until it has done so, which takes tRP

The same address lines are used for both the row and column access. This halves the number
of addess lines needed, and adds the RAS and CAS pins.

Reading a DRAM cell causes a significant drain in the charge on its capacitor, so it needs to
be refreshed before being read again.
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More Speed!

The above procedure is tediously slow. However,
for reading consecutive addresses, one important
improvement can be made.

Having copied a whole row into the buffer (which is
usually SRAM), if another bit from the same row is
required, simply changing the column address whilst
signalling the CAS pin is sufficient. There is no need
to wait for the chip to write the row back, and then to
rerequest the same row. Thus Fast Page Mode (FPM)
DRAM.

Extended Data Out (EDO) is similar, but allows the
column address for the next read to be given whilst
the data from the previous read are being read.
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DRAM Timings compared
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Address
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Address

Address

Data

Classic

Address

Data Data

Fast Page Mode

EDO

The first two lines show ‘classic’ DRAM, with both row and column addresses being sent
before each data transfer. The next two lines show FPM, with the row addresses being
omitted after the first. EDO overlaps the column addresses with the data, and finally, in Burst
Mode, a burst of successive data items is produced without any address-bus activity.

Time increases left to right in the above diagrams.
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Measuring time

The three graphs show memory of identical latencies,
that is, time from the start of a new read to the data
being available.

They also have identical cycle times, that is, the time
from the start of one read, to the start of another
unrelated read.

They have very different bandwidths, that is, how
rapidly data streams out when requested sequentially.
A group of sequential reads is often called a burst.

Classic, FPM and EDO memory is sold on latency (50-
80ns typically), although the time between data items
in a burst is less than half the latency for EDO.
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SDRAM

SDRAM is a major current memory technology. It is
advertised as being very fast: introduced at 66MHz
(15ns), soon moving to 100MHz (10ns) then 133MHz
(7.5ns). Much faster than that 60ns EDO stuff current
when SDRAM was first introduced?

Not really. ‘Headline’ SDRAM times are those between
data items in a burst, and EDO was already down to
25ns for this. SDRAM latencies are typically four to
five clock cycles, so 100MHz SDRAM has a similar
latency to 50ns EDO. SDRAM is optimised for bursts:
during a burst the CPU does not have to keep changing
the column address, the data are sent automatically.

As SDRAM is usually sold in modules which output
64 bits at once, PC100 SDRAM (100MHz) has a peak
bandwidth of 800MB/s.

The ‘S’ in SDRAM stands for synchronous: the bus has a clock and all signals on it and
within the module are synchronised to the clock pulses.
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SDRAM Timings

Three numbers usually describe the detailed timing of
SDRAM. All are expressed in clock-cycles.

CL CAS delay
tRCD RAS to CAS delay
tRP Row precharge

The data then appear one bus-width-full per clock-
cycle.

There is significant granularity for SDRAM. For
133MHz SDRAM, the clock is 7.5ns, so to be CL2
it must have a CAS delay of under 15ns, whereas CL3
is under 22.5ns.

Actually, the timings need to be slightly faster than this to give buses time to settle
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DDR-SDRAM

DDR-SDRAM transfers data on both the rising and
falling clock edges: twice per cycle. This also enables
it to have half-integer CAS delays. For DDR-SDRAM,
the timings are expressed in terms of the undoubled
clock rate, although the marketted clock rate is the
doubled one.

In other words, ‘266MHz DDR-SDRAM’ has a basic
clock rate of 133MHz, and if run at CL2, that is the
same CAS delay as a 133MHz SDRAM part running
at CL2.

The fastest DDR-SDRAM currently (Summer 2004) is 400MHz 3-3-3. This means that
random access takes at least six cycles of a 200MHz (5ns) bus, so is 30ns.

Only the data are sent at the doubled rate: commands are sent at the undoubled rate, so
tRCD must still be an integer.
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DDR2 and RAMBUS

DDR2 is similar to DDR. It uses a lower voltage
(1.8V, not 2.5V), so uses less power, and it runs the
core memory at one quarter of the doubled data-bus
speeds, so has higher latencies than DDR1 of the same
bandwidth, but is likely to be able to achieve higher
bus speeds (and hence bandwidths).

The RDRAM vs (DDR-)SDRAM debate is too complex
to be presented here, except to say that RAMBUS
provides yet another way of getting at a DRAM core
which is, in essence, very similar to that on a SDRAM
or EDO RAM chip.

RDRAM uses a 400MHz or 533MHz bus, over which data is transfered twice each clock cycle,
but the data bus is only 16 bits wide, so PC800 RDRAM, which runs at 400MHz, has a peak
data rate of 1600MB/s. Intel’s Pentium4 chipsets take RDRAM modules in pairs, to give a
theoretical 3.2GB/s with PC800 parts.

RDRAM’s latency is still around 30 to 40ns.

With an effective data rate of 1066MHz bus RDRAM issues of path length and termination
become quite exciting, and clock forwarding (different clock pulses for data travelling in
different directions) is used, because Einstein has difficulty synchronising things any other way.
(The speed of light is just one foot per nanosecond in vacuum.)
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PC Ratings

The ‘PC’ ratings often confuse, and that is probably
the idea.

For SDRAM, the PC rating is the bus speed: PC133
SDRAM uses a 133MHz bus, can burst-transfer one
bus-width (usually of 8 bytes) per clock cycle.

For RAMBUS, the PC rating is the clock-doubled
speed: PC800 RDRAM uses a 400MHz bus, and can
transfer one bus-width (usually of 2 bytes) per half
clock cycle.

For DDR-SDRAM, the PC rating is the burst rate in
MB/s.

So, for fair comparison, one should multiply SDRAM
PC ratings by eight, and RAMBUS ones by two.

The rare 32 bit variant of RAMBUS uses burst rate in MB/s also.

Note that although PC ratings place limits on the other timing parameters, they do not
specify them. Not all PC3200 DDR memory is equally fast.
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Flash RAM

Flash RAM is found in USB storage devices, digital
cameras, and it often stores computers’ BIOSes. Unlike
DRAM and SRAM, it has three distinct operations:
read, erase and write. Writes are permitted only to an
area which has been erased, and the erase operation
acts on blocks (typically 16K), not bits or bytes.

Two types exist: one based on NOR gates, which yields
‘low’ read latencies (∼ 70ns), but very slow erase times
(<100KB/s), and one based on NAND gates, which
has poor read latencies (∼ 20µs), but much faster
erase and write times (around 10MB/s). Both have
read bandwidths of over 20MB/s.

The NOR-based version is used for ‘ROMs’ holding programs to be executed: fast random
reads are needed, and writing (e.g. BIOS upgrades) is rare. The NAND-based version is used
for storage devices, where reads and writes occur at the block, not byte, level, and writes are
common.

Flash devices claim data retention periods of over 10 years, and support for 104 (MLC) or

105 (SLC) erase cycles. All perform error detection and correction internally.

SLC: single level cell, one bit per cell. MLC: multi-level cell, four different charge levels
recognised in a cell, giving two bits, and a much larger sensitivity to charge leakage.
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But is it correct?

All forms of DRAM need refreshing as the charge
leaks off their capacitors. More sudden leaks, such
as those caused by ionisation events (cosmic rays
or natural radioactive decay), or insulation becoming
slightly marginal with age, must also be dealt with.

Increased miniturisation decreases the charge difference
between a stored ‘1’ and ‘0’, so modern chips are
intrinsically more susceptible than older chips.

If a bit in memory ‘flips’, the consequences for a
program could be disastrous. The program could
simply crash, as a jump instruction has its destination
changed to something random.

Worse, it could continue, but give a completely wrong
answer, as important data could have been changed.
The change could be a sign, an order of magnitude, or
merely a fraction of a percent: it could be wrong, but
not obviously wrong.
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Parity: going for a crash

The simplest scheme for rescuing this situation is to
use a parity bit.

This is an extra bit of memory which stores a one
if an odd number of those bits which it is checking
is set to one, or zero otherwise. If a single bit flips
spontaneously, this parity bit will then disagree with
the parity of the stored value, and the error is detected.

The problem is what should one do next? The usual
answer is to cause the computer to halt immediately:
stopping is safer than continuing to calculate using a
program or data known to be corrupt.

A slightly more sophisticated response is to terminate
the process which caused the read which produced the
error. One cannot let the process continue feeding it
duff data, so killing it is the best option.

Most parity memory uses one parity bit for every 8
bits of real data: a 12.5% overhead. It cannot detect
two-bit errors.
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ECC to the rescue

A better scheme is to use an Error Correcting Code.
The standard scheme can correct for any single bit
error, and detect any two bit error. This standard
level of ECC is sometimes known as SECDED: Single
Error Corrected, Double Error Detected, and a common
implementation is called the Hamming Code.

An ECC scheme is more expensive in terms of bits.
Whereas parity requires a single bit to protect an n bit
word, the usual ECC scheme requires 2 + log2 n. For
an 8 byte word, this overhead is again 12.5%.

Bit errors are most likely to occur in DRAM: there
is a lot of it, and the charge stored is tiny. They
are less likely to occur in SRAM (cache RAM) or
registers, however the consequences there would be
more devastating, so most processors perform some
form of error checking and/or correcting on their caches
and registers, and data buses.

Cheap and nasty systems designed for wordprocessing and games tend not to bother for their
main memory, because of the price disadvantage: extra circuitry and extra memory required
to store the check bits.
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Does it all matter?

TCM had 33 DEC Alphas which log single bit errors.
In October 1999, the following error rates were seen:

No errors 29 machines
One error 2 machines
Two errors 1 machine
42 errors 1 machine

Without ECC tcm29 would be noticeably unusable and
would have a memory chip replaced. Tcm28, with one
error every three weeks over October and November,
would have a memory chip replaced too.

In the absence of any error detection, tcm29 would
be unusable, and it would be unclear what needed
replacing. Tcm28 would not stand out, but might give
occasional erroneous results, and waste much time as
a result. This is the position of all of TCM’s non-P4
PCs. . .

All Alphas and Suns have ECC as standard. ‘Server-class’ Pentium 4 systems have it as an
option, but many ‘desktop-class’ PCs do not have it at all. All but one of TCM’s P4-based
PCs has ECC.
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Speed Required

A typical CPU runs at, say, 1GHz. It can
perform a double precision floating-point addition and
multiplication each clock-cycle, which is four pieces
of data in, and two out, so potentially six memory
references.

So a latency of about 0.2 ns, maybe 2 ns if latencies
can be overlapped, and a bandwidth of 36 GB/s, are
needed.

The fastest SDRAM chips currently available, 400MHz
DDR-SDRAM, have a latency of 30 ns, and a peak
bandwidth of 6.4GB/s if configured in a 128 bit bus.
Thus the bandwidth is disappointing, and the latency
dreadful.

And it gets worse: other necessary control chips
between the CPU and the RAM chips increase the
latency (by over a factor of two) and reduce the
bandwidth.

The lowest latency machine in TCM (2003) has a latency to main memory of 100ns.
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More Conservative

Maybe somewhat less performance is actually needed.
Consider a dot product (a common operation). At
each step, two elements are loaded, a multiplication
and an addition done, and nothing stored, for the total
will be kept in a register.

In other words, two memory references, not six, so
‘only’ 12 GB/s of memory bandwidth needed.

However, those 667 MHz EV6 based Alphas in TCM
have an achievable memory bandwidth of about 1GB/s,
so a dot product will achieve a mere 125 MFLOPS, or
10% of the CPU’s theoretical MFLOPS rating.

Vector computers are somewhat different. The Hitachi S3600 which used to be in Cambridge
had a peak performance of 2 GFLOPS, but a memory bandwidth of over 12 GB/s.
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Wider Still and Wider

One obvious bandwidth enhancer is to increase the
width of the memory bus. PCs have certainly done
this: 8086 and 286 used 16 bit memory buses, 386 and
486 used 32 bits and the Pentium and above 64 bits.
‘Real’ workstations tend to use 128 or even 256 bit
buses.

There is an obvious problem: a 256 bit bus does require
256 tracks leading to 256 different pins on the CPU,
and going beyond this gets really messy. Commodity
memory modules provide just 64 bits each, so they
must be added in fours for a 256 bit bus.

It fails to address the latency issue, and fails for non-
sequential access.

Bus widths of things currently in TCM:
Pentium 4 (RAMBUS): 32 bit
Pentium III: 64 bit
Alpha (XP900): 128 bit
Pentium 4 (DDR): 128 bit
Alpha (XP1000): 256 bit
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Caches: the Theory

The theory of caching is very simple. Put a small
amount of fast, expensive memory in a computer, and
arrange automatically for that memory to store the
data which are accessed frequently.

One can then define a cache hit rate, that is, the
number of memory accesses which go to the cache
divided by the total number of memory accesses. This
is usually expressed as a percentage.

One assumes that data references have either temporal
locality or spatial locality.

Temporal locality: if a location is referenced, it is likely to be referenced again soon.
Spatial locality: if a location is referenced, its neighbour is likely to be referenced soon.

One of the reasons for the expense of the fast SRAM used in caches is that it requires around
six transistors per bit, not one.

The first paper to describe caches was published in 1965 by Maurice Wilkes (Cambridge).
The first commercial computer to use a cache was the IBM 360/85 in 1968.
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The Cache Controller

cache

memory
cache

controllerCPU

Conceptually this has a simple task:

• Intercept every memory request

• Determine whether cache holds requested data

• If so, read data from cache

• If not, read data from memory and place a copy in
the cache as it goes past.

However, the second bullet point must be done very
fast, and this leads to the compromises.
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An aside: Hex

Computers use base-2, but humans tend not to like
reading long base-2 numbers, and object to converting
between base-2 and base-10. However, getting humans
to work in base-16 and to convert between base-2 and
base-16 is easier.

Hex uses the letters A to F to represent the ‘digits’ 10
to 15. As 24 = 16 conversion to and from binary is
done trivially using groups of four digits.

0101 1101 0010 1010 1111 0001 1100 0011

5 C 2 A F 1 B 3

So
010111010010101011110001110000112

= 5C2AF1B316 = 1546318259

As one hex digit is equivalent to four bits, two hex digits are exactly sufficient for one byte.

Hex numbers are often prefixed with ‘0x’ to distinguish them from base ten.

When forced to work in binary, it is usual to group the digits in fours as above, for easy
conversion into hex or bytes.
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Our Computer

For the purposes of considering caches, let us consider
a computer with a 1MB address space and a 64KB
cache.

An address is therefore 20 bits long, or 5 hex digits.

Suppose we try to cache individual bytes. Each entry
in the cache must store not only the data, but also the
address in main memory it was taken from, called the
tag. That way, the cache controller can look through
all the tags and determine whether a particular byte is
in the cache or not.

So we have 65536 single byte entries, each with a
21

2 byte tag.

tag data
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Lines

We have 64KB of cache storing real data, and 160KB
storing tags.

We need to scan 65536 tags to determine whether
something is in the cache. This will take far too long.

The solution to the space problem is not to track bytes,
but lines. Consider a cache which deals in units of
16 bytes.

64KB = 65536 × 1 byte
= 4096 × 16 bytes

We now need just 4096 tags, and each tag can be
shorter. Consider a random address:

0x23D17

This can be read as byte 7 of line 23D1. The cache
will either have all of line 23D1 and be able to return
byte number 7, or it will have none of it.

We now have 64KB for real data, and 8KB for tags.
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Line Size

Whenever the CPU wants a single byte which is not in
the cache, the cache controller will fetch a whole line.

This is good if the CPU then requests the following
item from memory: it is probably now in cache.

This is bad if the CPU is jumping randomly around:
the cache will cause unnecessary memory traffic.

As current DRAM is so much faster at consecutive
accesses than random accesses, filling a cache line
which is four or even eight times the width of the data
bus takes only about twice as long as filling one the
same size as the data bus.

For a fixed total size of cache, doubling the line size halves the number of tags required, and
reduces the tag length by one bit too. The UltraSPARC III Cu procesor has 16,384 tags for
its secondary cache, and a line size of 64, 256 or 512 bytes depending whether the cache is
1MB, 4MB or 8MB in size. The longer lines are broken into sub-blocks of 64 bytes with
independent ‘dirty’ and ‘valid’ bits.

116



A Further Compromise

We have 4096 tags, potentially addressable as tag 0 to
tag 0xFFF.

On seeing an address, e.g. 0x23D17, we discard the
last 4 bits, and scan all 4096 tags for the number
0x23D1.

Why not always use line number 0x3D1 within the
cache for storing this bit of memory? The advantage
is clear: we need only look at one tag, and see if it
holds the line we want 0x23D1, or one of the other 15
it could hold: 0x03D1, 0x13D1, etc.

Indeed, the new-style tag need only hold that first
hex digit, we know the other digits! This reduces the
amount of tag memory to 2KB.
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Direct Mapped Caches

We have just developed a direct mapped cache. Each
address in memory maps directly to a single location
in cache, and each location in cache maps to multiple
(here 16) locations in memory.

0xFFF

0x3D1

line no.

cache

address

memory

0x03D10

0x10000

0x13D10

0x20000

0x30000

0x40000

0x00000

0x23D10

0x33D10

2

tag data
0x000
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Success?

• The overhead for storing tags is 3%. Quite acceptable, and

much better than 250%!

• Each ‘hit’ requires a tag to be looked up, a
comparison to be made, and then the data to be
fetched. Oh dear. This tag RAM had better be very fast.

• Each miss requires a tag to be looked up, a
comparison to fail, and then a whole line to be
fetched from main memory.

• The ‘decoding’ of an address into its various parts
is instantaneous.

The zero-effort address decoding is an important feature of all cache schemes.

line address within cache

0x2 3D1 7

byte within line

part to compare with tag
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The Consequences of Compromise

At first glance we have done quite well. Any contiguous
64KB region of memory can be held in cache. (As long as

it starts on a cache line boundary)

E.g. The 64KB region from 0x23840 to 0x3383F would be held in cache lines 0x384 to
0xFFF then 0x000 to 0x383

Even better, widely separated pieces of memory can be
in cache simultaneously. E.g. 0x15674 in line 0x567
and 0xC4288 in line 0x428.

However, consider trying to cache the two bytes
0x03D11 and 0x23D19. This cannot be done: both
map to line 0x3D1 within the cache, but one requires
the memory area from 0x03D10 to be held there, the
other the area from 0x23D10.

Repeated accesses to these two bytes would cause
cache thrashing, as the cache repeatedly caches then
throws out the same two pieces of data.
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Associativity

Rather than each line in memory being storable in just
one location in cache, why not make it two?

0x3D1

line no.

address

0xBD1

cache

memory

0x03D10

0x10000

0x13D10

0x20000

0x30000

0x40000

0x00000

0x23D10

0x33D10

tag data
0x000

0xFFF

Now we have a 2 way (set) associative cache.

An n-way associative cache has n possible places for storing each location in memory, needs
to read n tags to check whether something is in the cache, and needs log2 n extra tag bits
to keep track of things.
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Victim Caches

Victim Caches, or Anti Thrashing Entries, are a cheap
way of increasing the effective associativity of a cache.
One extra cache line, complete with tag, is stored, and
it contains the last line expelled from the cache proper.

This line is checked for a ‘hit’ in parallel with the rest
of the cache, and if a hit occurs, it is moved back into
the main cache, and the line it replaces is moved into
the ATE.

Some caches have several ATEs, rather than just one.

double precision a(2048,2),x
do i=1,2048

x=x+a(i,1)*a(i,2)
enddo

Assume a 16K direct mapped cache with 32 byte lines. a(1,1) comes into cache, pulling
a(2-4,1) with it. Then a(1,2) displaces all these, at it must be stored in the same line, as
its address modulo 16K is the same. So a(2,1) is not found in cache when it is referenced.
With a single ATE, the cache hit rate jumps from 0% to 75%, the same that a 2-way set
associative cache would have for this algorithm.
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Policies: Write Back vs Write Through

Should data written by the CPU modify merely the
cache if those data are currently held in cache, or
modify the memory too? The former, write back, can
be faster, but the latter, write through, is simpler.

With a write through cache, the definitive copy of data
is in the main memory. If something other than the
CPU (e.g. a disk controller or a second CPU) writes
directly to memory, the cache controller must snoop
this traffic, and, if it also has those data in its cache,
update (or invalidate) the cache line too.

Write back caches add two problems. Firstly, anything
else reading directly from main memory must have its
read intercepted if the cached data for that address
differ from the data in main memory.

Secondly, on ejecting an old line from the cache to
make room for a new one, if the old line has been
modified it must first be written back to memory.

Each cache line therefore has an extra bit in its tag,
which records whether the line is modified, or dirty.

123



Policies: Allocate on Write

If a cache is write-back, and a write occurs which is
a cache miss, should the cache line be filled? For the
corresponding read event, the answer would always be
‘yes’, otherwise the cache would never be used!

If the data just written are read again soon afterwards,
filling is beneficial, as it is if a write to the same line
is about to occur. However, caches which allocate on
writes perform badly on randomly scattered writes.

Each write of one word is converted into reading the
cache line from memory, modifying the word written
in cache and marking the whole line dirty. When the
line needs discarding, the whole line will be written to
memory. Thus writing one word has be turned into
two lines worth of memory traffic.

The PentiumPro allocates on writes, and the Pentium did not. Certain codes therefore ran
slower on the otherwise-faster PentiumPro.

A partial solution to this problem is to break a line into equal sub-blocks, each with its own
dirty bit. If only one sub-block has been modified, just that sub-block is written back to
memory when the line is discarded. This is useful even for caches which do not allocate on
writes.
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Not All Data are Equal

If the cache controller is closely associated with the
CPU, it can distinguish memory requests from the
instruction fetcher from those from the load/store
units. Thus instructions and data can be cached
separately.

This almost universal Harvard Architecture prevents
poor data access patterns leaving both data and
program uncached.

The term ‘Harvard architecture’ comes from an early American computer which used physically
separate areas of main memory for storing data and instructions. No modern computer does
this.
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A Hierarchy

The speed gap between main memory and the CPU
core is so great that there are usually multiple levels of
cache.

The first level, or primary cache, is small (typically
16KB to 128KB), physically attached to the CPU, and
runs as fast as possible.

The next level, or secondary cache, is larger (typically
256KB to 8MB), and usually placed separately on
the motherboard. In some systems it is completely
independent of the CPU.

Typical times in clock-cycles to serve a memory request
would be:

primary cache 1-3
secondary cache 5-25
main memory 30-300

Cf. functional unit speeds on page 49.

Intel tends to make small, fast caches, compared to RISC workstations which tend to have
larger, slower caches. Some machines have tertiary caches too.
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Alignment

To keep circuitary simple, a 64 bit bus cannot transfer
an arbitary 8 bytes, but eight bytes to/from an address
which is a multiple of eight. Similarly a 64 byte cache
line will start at an address which is a multiple of 64,
and a 4KB page will start on a 4KB boundary.

If data in memory are also naturally aligned, then
a single load/store will involve no more than one
cache line per cache, and will not require multiple
bus transfers in the same direction. It will be faster
than a misaligned load/store.

Some processors permit the use of misaligned data,
at a performance cost. Others do not have hardware
support for misalignment, and will either be rescued by
software (at an enormous speed penalty), or will stop
the process with SIGBUS.

The IA32 range permits all alignments. The Alpha range does not, requiring 4 byte objects
to be aligned on 4 byte boundaries (i.e. addresses which are a multiple of four), and 8 byte
objects on 8 byte boundaries.
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Explicit Prefetching

One spin-off from caching is the possibility of
prefetching.

Many processors have an instruction which requests
that data be moved from main memory to primary
cache when it is next convenient.

If such an instruction is issued ahead of some data
being required by the CPU core, then the data may
have been moved to the primary cache by the time
the CPU core actually want them. If so, much faster
access results. If not, it doesn’t matter.

If the latency to main memory is 100 clock cycles, the
prefetch instruction ideally needs issuing 100 cycles in
advance, and many tens of prefetches might be busily
fetching simultaneously. Most current processors can
handle a couple of simultaneous prefetches. . .
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Implicit Prefetching

Some memory controllers are capable of spotting
certain access patterns as a program runs, and
prefetching data automatically. Such prefetching is
often called streaming.

The degree to which patterns can be spotted varies.
Unit stride is easy, as is unit stride backwards. Spotting
different simultaneous streams is also essential, as a
simple dot product:

do i=1,n
d=d+a(i)*b(i)

enddo

leads to alternate unit-stride accesses for a and b.

IBM’s Power3 processor, and Intel’s Pentium 4, both
spot simple patterns in this way. Unlike software
prefetching, no support from the compiler is required,
and no instructions exist to make the code larger and
occupy the instuction decoder. However, streaming is
less flexible.
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The Relevance of Theory

integer a(*),i,j

j=1
do i=1,n
j=a(j)

enddo

This code is mad. Every iteration depends on the
previous one, and significant optimisation is impossible.

However, the memory access pattern can be changed
dramatically by changing the contents of a. Setting
a(i)=i+1 and a(k)=1 will give consecutive accesses
repeating over the first k elements, whereas a(i)=i+2,
a(k-1)=2 and a(k)=1 will access alternate elements,
etc.
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Classic caches
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With a 16 element (64 bytes) stride, we see access times of

8.7ns for primary cache, 33ns for secondary, and 202ns for main

memory. The cache sizes are clearly 64KB and 2MB.

With a 1 element (4 bytes) stride, the secondary cache and main

memory appear to be faster. This is because once a cache line has

been fetched from memory, the next 15 accesses will be primary

cache hits on the next elements of that line. The average should

be (15 ∗ 8.7 + 202)/16 = 20.7ns, and 21.6ns is observed.

The computer used for this was a 463MHz XP900. It has 64 byte cache lines.
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Performance Enhancement
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This is a 2.4GHz Pentium4. A very fast 8KB primary cache is

clearly seen, and a 512KB secondary less clearly so. The surprise

is the speed of the main memory, and the factor of four difference

between its latency at a 64 byte and 128 byte stride.

The explaination is automatic hardware prefetching into the

secondary cache. For strides of up to 64 bytes inclusive, the

hardware notices the memory access pattern, even though it is

hidden at the software level, and starts fetching data in advance

automatically.

The actual main memory latency is disappointing: a 2.4GHz core and 400MHz RDRAM has
yielded 145ns, compared to 202ns with a 463MHz core and 77MHz SDRAM on the XP900.
The slowest Alpha currently in TCM (175MHz EV4) manages 292ns, the fastest computer
(for this) 100ns (a 933MHz Pentium III), the slowest 850ns (a 195MHz R10K).
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Common CPU Families
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i386

The first member of the IA32 family was the 80386,
released in 1985. It consisted of a significant set of
extensions to the previous 80286, and had 32 bit integer
registers, and supported virtual addressing, pre-emptive
multi-tasking, and the isolation of the hardware from
user code. It was certainly capable of running UNIX,
and did run Linux and Solaris. It contained about
375,000 transistors, and ran at 5V at speeds of 20 to
33MHz.

Its maths co-processor was a separate chip, the 80387,
and the interface between them was bizarre and slow,
taking about 15 clock cycles to transfer an instruction
from the 386 to the 387.

Memory accesses took at least two clock cycles: one to
send out the address required, and one to receive the
data (up to four bytes). The fastest integer instructions
also took two clock cycles.
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Going faster

This modest speed was still much faster than
contemporary DRAM, which had an access time of
around 80ns, compared to the CPU clock of 30 to 50ns.
So an external cache controller and cache memory were
normally placed on the motherboard to provide 32 to
64K of faster SRAM memory.

There was little point in the core going faster, as the
average instruction required more than one memory
reference, so was bound to take at over two clock
cycles anyway.

The instruction itself needs to be fetched from memory, and it may involve none, one, or
two futher memory references if it needs to fetch or store data from/to memory rather than
registers.
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The i486

The next processor in the IA32 line, the i486, contained
all the functionality of the i386, the i387, the cache
controller, and an 8KB 4-way associative write-through
cache on the one chip. It could fetch data from its
internal cache in one clock cycle, not two, and read a
16 byte cache line into itself in just five clock cycles.
The time to interface to the internal maths coprocessor
was about three clock cycles, and the integer unit was
redesigned to complete the simplest instructions in just
one clock cycle.

The result contained almost three times as many
transistors as the 386, but still ran at 20 to 50MHz,
and 5V.

An external, second level of cache was usually present.

8KB of cache is 64,000 bits, and, at 6 transistors per SRAM cell, 384,000 transistors before
one counts tag lines and control logic. Until it was possible to put around 1m transistors on a
chip, one could not have a significant amount of cache on the chip.
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Decoupling

Whereas the core of the 386 could compute as fast as
one could get data into it, with 8KB of on-chip cache,
the 486 can execute many instructions without making
any reference to external memory. Thus, for certain
small loops involving mainly reading from small areas
of memory, the 486 was not constrained by the speed
of its external interface, or bus.

Suddenly it is sensible to increase the speed of the chip
without changing the speed of the external bus. Thus
the 486DX2, with a core speed of 50 to 66MHz, twice
the bus speed of 25 to 33MHz.

Cache
Controller

F.P.
Unit

Integer
Unit

Cache
66MHz

33MHz
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Speed limits

The first speed limit is provided by cache misses.
The 486DX2 was typically just 70% faster than the
corresponding 486, not 100% faster – the core was
being idle whilst waiting for the external memory.

Cache improvements are the obvious answer, and the
486DX4, which ran its core at three times the external
bus speed, had a internal 16KB cache, with some
models having a write-back cache rather than write
through.
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Melt down

Just as important are thermal problems. A CPU can
be modelled roughly as a capacitor in parallel with a
resistor (representing leakage currents).

CR

The power dissipated is simply

V 2

R
+ CV 2ν

where ν is the frequency.
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Keeping Cool

Technological advances keep on reducing the smallest
feature size it is possible to place on a chip, from about
0.8µm for the 486 to 90nm today. This reduces C (in a
slightly non-obvious fashion as C is proportional to area
but inversely proportional to separation) decreases R,
and permits one to decrease V whilst keeping electric
fields unchanged.

In the days of the 486, leakage was negligible, and
reducing V from 5V to 3.3V was the first big gain,
which occured at 0.6µm, and enabled the 100MHz
486DX4 to exist.
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The Pentium

The Pentium represented another major redesign of
the core, but again almost no added instructions. The
importance of improving the memory system to cope
was understood, so the cache was split in two, 8KB
for instructions, and 8KB write-back for data, ensuring
that streaming large arrays into the processor would
not disturb the instruction cache.

The speed of the external bus was increased to 60MHz
and 66MHz (depending on model), and the width of
that bus doubled to 64 bits. The Pentium had no
64 bit instructions, but it could fetch 8 bytes of data
at once from memory.

The Pentium was also the first IA32 processor which
could issue two instructions in a single clock-cycle, and
which attempted branch prediction.

The original 60 and 66MHz Pentiums ran at 5V, and contained just over 3 million transistors.
The later versions ran at 3.5V or less. Unlike the 486DX2 and DX4, the Pentiums could run
at half-integer multiples of their bus speed, e.g. a 100MHz core with a 66MHz bus.
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MMX

Intel’s MultiMedia eXtensions were aimed at 2D bitmap
image processing. The eight under-used floating point
registers were re-used to hold ‘vector’ integer data:
eight 8-bit values each, or four 16-bit values, or two
32-bit values, or one 64-bit value.

A range of operations was available for these data:
add, subtract, shift, and, or, xor, compare and add
with saturate. Mixing MMX instructions and normal
floating-point instructions was not possible.

These improvements are irrelevant unless one
recompiles one’s code to use these extra instructions,
and thus prevents it from running on IA32 processors
which do not support MMX. However, the Pentium
MMX also doubled the cache sizes to 16KB each,
returned their associativity to 4-way from 2-way, and
improved the branch predictor.

Add with saturate: using bytes, normally 200+200=144 (wrap-around). For add with
saturate, 200+200=255 (largest possible value). This is very useful for certain photographic
filters, and otherwise messy to code.

The Pentium MMX was manufactured at 0.35µm, so there was room for the extra transistors
needed – about 1.2 million more. The voltage dropped again to just 2.8V.
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The Pentium Pro, II and III

These processors, whose core is often refered to as the
‘P6 core’, are very similar, although the P II has MMX
and the P III SSE extensions.

There are two major changes from the Pentium. Firstly
the secondary cache and its controller move from the
motherboard onto the CPU, further decoupling the
CPU from the rest of the motherboard. Although
the speed of the external bus increased modestly to
133MHz by the end of the P III line, the core speed
reached over 1GHz.

Secondly, Intel gives up on CISC. Not quite, but these
processors have a RISC core and an instruction decoder
which takes the IA32 CISC instructions, and, for each
one, issues one or more RISC ‘µ-ops’ to the core.

These processors had around 9 million transistors, excluding the secondary cache. Later
versions ran at core voltages of under 2V.
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SSE

When MMX was introduced, home computer users
barely touched floating point. The rise of 3D animated
graphics changed things dramatically.

However, 3D graphics do not need double precision
arithmetic, but only single. So Intel decided to store
two 32 bit floating point numbers in each of eight
new floating point registers, and provide the basic FP
operations operating on this ‘vector’ of two elements.

All useless for scientific work, and again requiring
recompilation with a compiler capable of generating
SSE code.

Real vector computers have typical vector lengths of 32 to 128 elements, not two or four.

When Intel’s FP registers are used by MMX or SSE, the registers are addressed as eight
conventional ‘flat’ registers, not as a stack.
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The Pentium 4

The Pentium 4 was a radical design change, though
still using a RISC core fed with (different) ‘µ-ops’.
Unlike every previous generation change, where the
new generation had run code faster than the old even
at the same clock speed, the Pentium 4 ran code slower
than a Pentium III at the same clock speed, but relied
on being designed for very high clock-speeds.

Although the Pentium 4 has a clock speed about 50%
higher than any of its rivals, its benchmark performance
is similar. The 3.4GHz versions dissipate over 100W
at 90nm, and it is rumoured that the power lost to
leakage is approaching 50% of the total power. If true,
this will make it hard to reduce power by shrinking the
CPU further.

It introduced SSE2 – two double-precision floating
point values held in each of eight 128 bit registers. At
last scientfically useful!

Later versions included Hyperthreading.
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IA32 Registers

sse7

eax

ebx

ecx

edx

edi

esi

ebp

esp

st0

st1

st2

st3

st4

st5

st6

st7

eip

ds es

gs

ss cs

fs

eflags

statuscontrol

sse0

sse1

sse2

sse3

sse4

sse5

sse6

This shows most of the registers present on a Pentium 4 or Pentium M: eight 32 bit ‘general
purpose’ integer registers, six 16 bit segment registers, eight 80 bit floating-point registers
arranged as a stack and also used by MMX integer instructions, and eight 128 bit SSE2
registers capable of holding two 64 bit doubles each. Also separate flags registers for integer
and FP use, which have bits set by the results of comparisons.
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x86-64

AMD’s extension of the IA32 architecture to 64 bits,
copied by Intel under the name EM64T, extends
the existing integer registers to 64 bits, adds eight
new integer registers, doubles the number of SSE2
floating-point registers, and adds a ‘no execute’ bit for
memory management. It also removes many of the
restrictions concerning which combinations of registers
are permitted with certain instructions.

This extension is found in the Athlon64 and Opteron
CPUs.

EM64T: Extended Memory 64 bit Technology
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Alpha

The Alpha line started from a cleanish slate, and
was designed as a simple RISC processor: 32 integer
registers, all 64-bit, 32 fp registers, fixed length 32 bit
instructions. and no support at all for 8 bit and
16 bit data types. The first version, the EV4 or
21064, appeared in 1992, with integral FPU and
primary caches (8KB data, 8KB instruction, both
direct mapped write through), and able to issue two
instructions per clock-cycle (100MHz), at most one of
them floating point.

In 1995, the next version (EV5 or 21164) added a 96KB
3-way associative write-back cache, and the ability
to issue four instructions per clock-cycle, including
simultaneous issue of FP add and multiply. The
motherboard usually provided an additional external
cache of 2 or 4MB.
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Later Alphas

The next minor revision, the 21264A (EV5.6) added
the ‘BWX’ extension, providing instructions for loading
and storing single bytes and 16 bit values.

The final major revision of the core, the 21264 (EV6)
supported out-of-order execution, as well as adding
instructions for software prefetching of data, floating
point square root, and bytewise minimum, maximum,
and absolute difference of packed integer data (cf.
Intel’s MMX).

The cache architecture was improved to 64KB 2-
way associative primary caches and secondary cache
controller on the die, and a secondary cache of between
2MB and 16MB off-die but on the physical CPU
module.

BWX: Byte Word eXtension

Clock speeds ranged from 460MHz to 1.25GHz for the EV6 series. The EV7 was little more
than an EV6 with a smaller (1.75MB), faster, on-die secondary cache, an on-die memory
controller interfacing directly to RAMBUS, and extra logic to make multiple-CPU machines
readily.
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The Others

Other CPUs follow the same sort of story. Sun’s
SPARC line has moved from being 32 bit RISC to
64 bit RISC (from the UltraSPARC III), and gained
its multimedia extensions, which Sun calls ‘VIS’. The
PowerPC line of IBM, Motorola and Apple has followed
a similar route, but calls its multimedia extensions
‘Altivec’, and they certainly include floating-point
instructions. It became 64 bit with the PPC 970.

Alpha is unusual in not having made the transition
from 32 bits to 64 bits: it has always been 64 bits.
However, unfortunately it is also dead.

Most CPUs in the early 1980s had no cache on die,
and any FPU was probably a separate chip. As feature
sizes shrunk, and transistor counts increased, FPUs
and small (16K) on-die caches were common by the
early 1990s, and then larger, multi-level caches and
even integrated memory controllers by the early 21st
century.
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The Future

Most CPU lines are now moving towards having
multiple cores on a single die, sharing secondary cache.
IBM’s Power4 CPU was the first to do this, Sun’s
UltraSPARC IV is similar, and both AMD and Intel are
expected to release ‘multi-core’ processors in 2005.

The argument for this is that the CPU core (even with
primary cache) is much smaller the on-die secondary
cache, so this is easily done. The argument against is
that unless the CPU wishes to execute two programs
at once, the second core is going to be idle.

However, more and more code is being written
with parallelism in mind, and there is always that
background MPEG decoder. . .
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Permanent Storage
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Disk Drives

Are remarkably boring, but worthy of mention because
people do rely on them rather a lot. . .

Remarkably standard, with just three interfaces
dominating the market for hard disks and CD ROMs:
SCSI at the expensive end, EIDE (aka UDMA and
ATA) at the cheap end, and SATA emerging in the
middle.

SCSI: Small Computer Systems Interface, a general-purpose interface which can support
scanners and tape-drives, and, depending on the flavour of SCSI, several metres of external
cable. Each SCSI interface (or channel) can support seven devices.
EIDE: Enhanced Integrated Drive Electronics. Designed for internal disk drives only, with
short cable lengths and just two devices per channel.
SATA: Serial ATA. Serial data bus supporting up to 127 devices using an IDE-like protocol.
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Physical considerations

A single hard disk contains a spindle with multiple
platters. Each platter has two magnetic surfaces,
and at least one head ‘flying’ over each surface.
The heads do fly, using aerodynamic effects in a
dust-free atmosphere to maintain a very low altitude.
Head crashes (head touching surface) are catastrophic.
There is a special ‘landing zone’ at the edge of the
disk where the heads must settle when the disk stops
spinning.

The size of a drive is such that it fits into a standard
31

2” drive bay, which is just 10cm wide and 1” tall for
the whole assembly.

Spin speeds were 3,600 rpm in the mid 1980s, and now
7,200 to 15,000 rpm. Capacity has grown over the
same period from typically 20MB to typically 120GB.

Drive bays are 1” tall, or 13
4” tall (half height), or 31

2” tall (full height). Their width is 10cm

(called ‘31
2 inch’) or 15cm (‘51

4 inch’), though the imperial width measurements refer to the
size of floppy disk taken by a drive which fits in given width. Laptops use yet smaller drives.

Although the heads move only radially, the air is dragged into tangential motion by the
spinning platters, and in this air stream the heads fly.
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Data Storage and Access Times

Data are written in concentric tracks on each platter.
Each track is subdivided into sectors. An individual
sector typically records just 512 bytes.

For data to be read, the disk heads have to move into
position, and then wait for the correct piece of disk to
rotate past. The head seek time is typically around
7 ms, and the rotational latency is 3 ms at 10,000 rpm.

In other words, the bandwidth is about 20 times lower than main memory, but the latency is
over 30,000 times higher.

sector

track

platter

head

This disk has three platters and six heads. In reality the heads are much smaller than shown
above.

A modern (IBM) 36GB disk has 5 glass platters with a total of 10 heads. It records at 13,500
tracks per inch, and 260,000 bits per inch along the track. The raw error rate is about 1 in

1012 bits, reducing to 1 in 1014 after automatic correction. The sustained data transfer rate
from the physical disk is 15 to 30MB/s.
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Floppy drives

The original floppy drives (8 inch and 51
4 inch) were

genuinely floppy. The current 31
2 inch variety are rigid,

and have the following specification:

Two sides, with one head per side
Eighty tracks per side, 135 tracks per inch
18 sectors per track
512 bytes per sector

Total unformatted capacity: 2×80×18×512 = 1440K.

The disk is spun at 360 rpm, and the heads are in
contact with the disk surface.

This specification has been static since the late 1980s, as has the bizarre, pre-EIDE interface
that most floppy drives use.
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CD drives

There are many obvious differences between a CD
drive and a hard disk drive. A CD is physically 12cm
in diameter, and single-sided. The drive therefore fits
into the older 15cm wide bays.

The single head is optical, and is physically much larger
than the tiny magnetic sensors used for hard drives.
Thus seek times are around ten times higher at 80ms.

The data are written onto a single spiral track, starting
at the centre. The capacity is around 700MB, or
65 minutes of uncompressed 16 bit stereo audio.

The transfer rate for an audio CD player is a constant
150KB/s, so audio CD players spin the disks at
a constant linear velocity, 1.3m/s, corresponding to
200rpm when the head is at the edge of the disk, and
500rpm close to the centre.
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Physical considerations

CD drives use an infra-red laser (780nm) with a spot
size of 2.1µm. The tracks have a pitch of 1.6µm,
and the pits a length of 0.8µm. For Al disks, the
pit depth is λ/4, so that light reflected from the pit
and the surrounding ‘land’ interferes destructively, and
the pit appears dark. For recordable disks, dyes which
permanently change their reflectivity on heating are
used.

For synchronisation purposes, each ‘pit’ or ‘land’ region
must be at least three bits long, and no more than
eleven bits long. The eight-bit bytes are encoded into
17-bit objects which guarantee these properties.

Data are written in 2,353 byte sectors, each containing
2K of data, 276 bytes of error correction information,
and a small amount of header information.
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Physical limits

When used for data, there is no reason to spin the
disk at a constant linear speed, so constant angular
speed is used. However, above about 10,000 rpm
the disk becomes unstable to cracks propagating from
the centre, thus shattering the disk. This limits the
rotation speed to about 52× the original audio CD
speed of 200rpm.

When spun at constant angular velocity, faster data
transfer rates are achieved near the outer edge of the
disk than near the inner edge.

The laser spot size is governed by the wavelength used,
and the lens size, as an Airy diffraction disk will form.

So drives will not get any faster than 52×, and will only achieve that speed when the head is
at the edge.
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DVD drives

A DVD disk is physically the same size as a CD, but it
uses a higher recording density giving 4.7GB per side
of a disk. Some DVDs are double-sided, leaving almost
no-where to write the label. . .

The laser used is red, 650nm, and the lens is wider,
reducing the spot size to 1.3µm. When used for video
the data transfer rate is 1.38MB/s, and the disk spins
at 500 to 1500rpm.

The restriction on pit and land lengths is now 3 ≤ l ≤ 14, and a byte is encoded to 16 bits.
The data are still written in 2048 byte sectors, but the ECC data is placed in a full sector of
its own, which occurs after every 16 data sectors.

The track pitch is 0.74µm and the pit length 0.4µm per bit.
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Wot no files?

Disk drives do no more than store blocks of data.
The blocks are typically 512 bytes, and the commands
between the computer and disk drive look like:
Give me block number 43578
Write these 512 bytes to block 1473

A disk drive has no concept of a ‘file’.

Different operating systems conjure files out of disk
drives in different ways.

Thus the disk stores both the real data of the files, and
data describing the structure of the files themselves.
The latter is called metadata.
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The metadata

A filesystem needs

• a concept of a ‘file’ as an ordered set of disk blocks.

• a way of refering to a file by a textual name.

• a way of keeping track of free space on the disk.

• a concept of subdirectories.

• a concept of file ownership.

• a concept of access permissions.

The last two are only really necessary for multiuser
operating systems.

162



Consistency

There are various consistency rules that the metadata
must obey. The number of blocks assigned to a file
must be consistent with the length of the file. Each
block must be free, or associated with a single file, or
part of the metadata. Each subdirectory must have
precisely one parent directory.

Consistency is often impossible to maintain during
operations such as file deletion, and expensive (in
terms of performance) at other times. Thus one
should warn a computer than one intends to turn it off
by shutting it down properly: it will then ensure that
all metadata changes are sent to the disk so that one
has a consistent filesystem.

If this is not done, it will wish to run some
consistency checking program, which will automatically
‘correct’ errors using some highly artificial intelligence.
Sometimes this works. . .

Windows uses scandisk for this, UNIX fsck.
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Journals

Some filesystems keep journals: they write a log of
operations they are about to do, then do them, and
then remove those items from the log. If such a system
loses power, when it next boots it can read the journal
and complete any outstanding operations.

This slows down disk writes, as there is extra activity
to the journal involved. For this reason usually only
metadata are journalled, and the actual file data are
not.

The FAT, ext2 and ufs filesystems do not journal,
whereas NTFS, ext3, AdvFS, and Sun’s logging
extensions to ufs do.

As journalled filesystems are rarely checked, they can become amusingly corrupt.
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Mirrors

A way of increasing reliability is for the OS or the disk
controller to maintain identical data on two separate
disks. The combination is treated as a single virtual
disk, with any attempt to write to a block modifying
the relevant block on both disks. If one physical disk
fails, there is no data loss.

The filing system accesses only the virtual disk, the
mirroring occuring one level lower than the filing
system. The filing system thus needs no modification.

Drawbacks include costing twice as much, being
slightly slower for writing, and, whereas shutting the
machine down properly will mark the mirrors as being
synchronised, not doing so will potentially leave the
mirrors different. This then needs to be checked and
corrected by reading every block from both disks: much
slower than a file system consistency check.
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RAID

RAID introduces more ways of building virtual disks
out of physical disks. Three levels are commonly used.

Level 0 is simple concatenation: take n 72GB disks,
and treat as a single n× 72GB disk.

Level 1 is mirroring.

Level 5, which requires at least three physical disks, is
a mixture of mirroring and concatenation, where the
capacity for n disks is (n − 1)× that of one, and a
single disk failure produces no data loss.

RAID: Redundant Array of Inexpensive/Independent Disks.

Level 0 is very sensitive to failure: one disk fails, and all the data are lost. Level 5, which
uses parity blocks, can be quite slow for writing, as parity blocks will need updating, possibly
requiring additional reads. Rebuilding a level 5 RAID set after a power cut is also very slow.
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Tapes

No discussion of filing systems would be complete
without a word about tape drives.

A tape drive is not a disk drive.

That should be obvious: a disk drive might have a
head seek time of 8 ms, a tape drive is likely to have
one of over 30 s. It is simply not reasonable to treat a
tape drive as though it were a disk drive.

Tapes ideally store a single file each. Just data are
stored, with no metadata (name, length, owner etc).
The only metadata that a tape drive really understands
are the ‘end of file’ mark and ‘end of tape’ mark. Thus
it is possible to put several files on one tape, and then
index the result by hand with a pen.

There are schemes for using the first sector of a tape
to store a brief index, but unfortunately these schemes
appear to be far from completely universal.
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Tape Technologies

There are two competing technologies used in tapes.
Linear and sepentine recording use tracks parallel to the
length of the tape, often laid down in multiple passes.
An example is DLT 8000, where the head records four
tracks at once across part of the width of a 1

2” tape,
and then moves down slightly and reverses direction
for the next pass, finally building up 208 tracks.

The other method is helical scan, used by DAT tapes
and VHS video recorders. The tracks are oblique to
the length of the tape, and created by a spinning
cylindrical head. The requirement to wind the tape
partially around the head stretches the tape slightly,
and reduces reliability. Problems also arise if the angle
of the head changes, either over time or between drives.

Serpentine Helical
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Current tapes

Currently (2003) all tape drives offer automatic data
compression as they record. They then ‘cheat’, by
quoting capacities and transfer rates assuming a 2:1
compression ratio. As data are often uncompressible,
the ‘raw’ uncompressed sizes are given here.

DAT: 4mm tape, helical scan. DDS4 gives 20GB per
tape and 3MB/s.

DLT: 1
2” tape, serpentine. DLT 8000 is 40GB per tape

and 6MB/s.

LTO / S-DLT: Two competing 1
2” serpentine

standards giving around 100GB per tape and 15MB/s.

AIT: 8mm helical scan, 100GB per tape 12MB/s.

DAT: Digital Audio Tape (DDS: Digital Data Storage)
DLT: Digital Linear Tape
LTO: Linear Tape Open, consortium of IBM, HP and Seagate.
S-DLT: Super DLT. Quantum.
AIT: Advanced Intelligent Tape. Sony.

Note it takes over 2 hours to read any of the above tapes in full.
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Operating Systems
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Operating Systems

Resource allocation (CPU time, memory)

Fair allocation between competing processes is good.

File system

Disks store raw data. File names and directories are
an invention of the OS.

Hardware abstraction

A program wants to see a generic graphics device or
keyboard, without needing to know the precise details
of the model attached.

Security

Program A should be kept from program B’s memory,
and user A from user B’s files.
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A Process

A process is a single copy of a program which is running
or, in some sense, active.

A process has resources, such as memory and open
files, it is given time, scheduling slots, executing on
a CPU with a certain priority, it has resource limits
(maximum amounts of memory, CPU time, etc. it can
claim), and it has an environment. Lastly, it has a
parent. Each process is associated with a single user.

These resources are exclusive to each process, and no
process can change another’s resources. Processes are
mostly independent.

Each process has a unique PID, its Process ID.

There are one or two simplifications above, some of which will be untangled later.
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Process Trees

As each process has a sole parent, and may have
no, one, or multiple children, on can draw a ‘tree’ of
processes showing their relationships.

> ps -e --forest
PID TTY TIME CMD
725 ? 00:00:00 xdm
736 ? 00:00:02 \_ X
737 ? 00:00:00 \_ xdm
768 ? 00:00:00 \_ fvwm2
819 ? 00:00:00 \_ FvwmButtons
821 ? 00:00:00 \_ FvwmIconMan
822 ? 00:00:00 \_ FvwmPager
823 ? 00:00:00 \_ xclock
824 ? 00:00:00 \_ xload
825 ? 00:00:00 \_ xterm
827 pts/0 00:00:00 \_ bash
836 pts/0 00:00:01 \_ emacs
854 pts/0 00:00:00 \_ ps

The forest option is found only on Gnu ps commands.
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Address spaces

Each process has its own independent virtual address
space for accessing memory. The dynamic mechanism
for mapping this to real, physical memory will be
considered later.

The result is that one process has no mechanism
for accessing another process’s memory, for a unique
virtual address includes both the address and the PID,
and identical virtual addresses with different PIDs will
map to completely different physical addresses.

Thus with 32 bit Linux, the standard memory map
leaves the code of a program starting at address
0x08000000 and the stack at 0xC000000, and this
is what each and every program sees each and every
time it is executed, regardless of what else is going on
in physical memory.

DOS uses only physical addressing. MacOS Classic and 16 bit versions of Windows use a
single virtual address space for all processes. UNIX and WindowsNT use a separate VAS for
each process as described here.
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Kernels

The OS kernel is very different from a process. There
can only be one of it, and it can address physical
memory directly, address any hardware directly, and do
anything to any process. Indeed, one part of the kernel,
the scheduler, is responsible for giving the processes
any CPU time at all.

A process wishing to access some hardware device must
do so via the kernel, and cannot do so directly. The
kernel is able to ensure that when the CPU is not
executing kernel code it is unable to execute certain
privileged instructions which might allow a process
direct access to the hardware.

This clearly requires some support from the CPU. CPUs of the early 1980s (8086 in the
IBM PC, Z80 in the Sinclair Spectrum, 6502 in the BBC B, and others) simply did not
have sufficient functionality. The i386 was the first PC processor really capable of running a
modern OS.
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Isolation

The kernel should form an inpenetrable layer between
a process and the physical hardwaer of the machine,
and thus ensure that the hardware resources are not
abused and are fairly shared.

Impossible

Program

Libraries

O/S

Hardware
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Kernel Functions

The Linux 2.6 kernel offers 273 different functions.
Many of these are familiar:

Numeric Name C Shell
1 exit exit exit
3 read read
4 write write
5 open open
6 close close
9 link link ln
10 unlink unlink rm
12 chdir chdir cd
15 chmod chmod chmod
21 mount mount mount
22 umount umount umount
34 nice nice nice
39 mkdir mkdir mkdir
40 rmdir rmdir rmdir
48 kill kill kill
52 umount2 umount2 umount -f
83 symlink symlink ln -s
88 reboot reboot reboot
95 fchown fchown chown

Whilst the Linux kernel maintains the ability to run binaries compiled for previous versions,
this list can only grow. A binary program may call function 22 directly, expecting to find
umount, and the fact that umount2 has been added and would also do the job (and more) is
irrelevant to it.

Some OSes discourage one from calling the kernel directly, supporting only calls via a supplied
dynamically-linked library. Then it is the library interface which can only grow.
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Disk Access

A process will usually access a disk drive in terms of
files. The kernel will oblige, imposing any restrictions
indicated by the filesystem as it does so.

The kernel also presents disk drives as device files.
These can be used by a process to read and write raw
data blocks directly from and to the disk without going
via the filesystem. Any process which can do this can
therefore bypass any access restrictions imposed by the
filesystem.

This is still not the real, physical hardware. The process
is still shielded from having to worry about whether it
should be sending IDE, SCSI or floppy commands to
the disk, about which PCI bus the controller is on, and
which ID it has on that bus, etc. It is also prevented
from sending commands other than reads and writes:
not the harmless ‘identify yourself’ command, nor the
harmful ‘update your firmware from me’ command.
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Root Processes

A process run by root is little different from any other
process. It still needs to call the kernel to access any
hardware, and the access will still be indirect. The
difference is that the kernel is more likely to say ‘yes.’
A root process can trivially read from, or write to, any
regular file or device file, send a signal to any process,
change any processes scheduling priority up or down,
etc.

However, it still operates in its own virtual address
space, and it will still die with a segmentation fault if
it tries to access memory not allocated to it. It will
also die if it tries to execute a CPU instruction reserved
for kernel mode.
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Accidents and Design

If a non-root process hits a bug and starts behaving
randomly, it is extremely unlikely to have any adverse
affect on anything, beyond perhaps wasting CPU time
in an infinite loop, or filling a disk with an infinite file.

A root process is much more likely to cause trouble
if it is buggy, but the expected outcome is still an
uneventful death.

Triggering a bug in the kernel is very much more likely
to cause trouble. A crash of the whole operating
system is the expected outcome, and data loss is not
unlikely.

Keeping the kernel small is therefore a good idea.

180



Malign Design

If a user process has malign intent and intelligence,
it can probably crash the system, or at least make
it unusable. Merely creating several dozen copies of
itself, and then having each add zeros until they reach
infinity should do the trick.

A malign root process can trivially do enormous
damage: read and modify any files, intercept any
data passing through the machine, install a new or
modified OS, reboot the machine, etc.
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Other Privilege Models

The UNIX privilege model is somewhere between
simple and simplistic. There are pretty much three
levels: unprivileged user, root, kernel, and the last two
effectively have full control.

The world of VMS (and Windows NT) is different.
It contains a long list of extra privileges a process
might wish to have, such as read all files on local disks
(a backup process), send ‘interesting’ network packets
(see later), change user id, listen on privileged network
ports, send signals to any process, etc.

This model is begining to creep into UNIX, particularly
IRIX and Linux, in the form of ‘capabilities.’

It may seem more sophisticated, and therefore superior, but it does have significant pitfalls.
The capabilities overlap considerably, so it is much harder to work out how much privilege
one really has given a user or a process. E.g. the privilege of writing to any file allows one to
change any part of the OS, and thus gives one full control. So would giving full access to the
raw disk device, or to the disk controller, or to the bus the controller is on. Writing to any
file not owned by the system would probably be sufficient if one is cunning, sending signals
and listening on privileged ports would surely be enough, etc.

The traditional UNIX model is so simple that the Board can almost understand it, so mistakes
are less likely.
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Multitasking

A single CPU can run only one program at once.
Multitasking is an illusion for the confusion of gullible
humans.

The processor runs one program for a timeslice,
typically 1 to 100ms, then switches to another. The
shorter the timeslice, the less humans will notice.

When the CPU performs a process switch, it must save
to memory all its registers and reload the set relevant
to the new process. This will take hundreds of clock
cycles. The restarted process will also find the caches
mostly, or entirely, storing data relevant to the previous
process.

The more registers a CPU has, the more expensive a process switch is, although the flushing
of caches, TLBs and branch prediction history is a significant hidden cost too. The longer the
timeslice, the less time is wasted switching.

When extra registers are added to a CPU architecture (e.g. SSE2), the OS must be aware of
the need to save them, and the structure which stores register values for inactive processes
must grow appropriately.
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Inequality

If the operating system knows a process is waiting
for input (disk, network, human), it will not give that
process any timeslices until input is ready for it. Such a
process will be marked as waiting rather than running.
The arrival of input might cause an immediate process
switch to be triggered, with the timeslice of whatever
process was running being interrupted. Thus fast
response to I/O events is achieved.

The part of the operating system responsible for
assigning priorities to processes is called the scheduler.
The priorities need not be equal.

The UNIX ps command shows processes waiting for input in a state of ‘wait’ or ‘sleep’. Only
those in a state of ‘run’ are actively competing for CPU cycles.

The load or load average is UNIX’s term for the number of proceses is the ‘run’ state averaged
over a short period. The uptime command reports three averages, over 1, 5 and 15 minutes
on most UNIXes, and 5s, 30s, and 1 minute on Tru64.

Under UNIX the nice and renice commands can be used to decrease the scheduling priority
of any process you own. The priority cannot be increased again, unless one is root. (If you
use tcsh or csh as your shell, nice is a shell built-in and is documented in the shell man
page. Otherwise, it is /usr/bin/nice and documented by man nice in the usual way.)
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Co-operate or be Pre-empted

Early forms of MacOS and Windows used co-operative
multitasking. Each process was responsible for giving
back control to the scheduler, and would retain the
CPU until that point. Naughty or buggy programs
could thus prevent multitasking.

With pre-emptive multitasking, the process need know
nothing of multitasking, for it will be automatically
and unavoidably suspended at the end of its allotted
time. Thus UNIX, Win9x, WinNT, and most modern
OSes.

Pre-emptive multitasking needs support from the CPU. The 80386 was the first Intel processor
to support this, although all the 68000 range have been capable.
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Memory Management

An operating system ought to have a mechanism for
assigning memory to different processes on request.

It ought also have a mechanism for enforcing its
decisions: that is, for preventing processes using
memory which they have not been allocated.

We shall start by considering a simple and bad memory
management strategy: that used by MS DOS. It was
vaguely appropriate for the sort of personal computers
in use in the 1980’s, but has many deficiencies.
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Memory, the DOS way

DOS’s use of memory typically looks as follows:

640K

0K

Free

Program 1

System

command.com

DOS provides functions for requesting a new block of
memory, or freeing or resizing an existing one.

In the above picture command.com cannot grow its
memory block: it is firmly surrounded.
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Fragmentation

Suppose Program 1 loads another program, and exits
itself. This will leave a memory map looking as follows:

0K

640K

System

command.com

Free

Program 2

Free

Now the largest single free block of memory is much
smaller than the total free memory.

The 640K limit is really a 1088K limit, but as the video memory for graphics modes always
starts at 640K, the largest free block is always less than 640K. Sometimes some of the
memory between 640K and 1088K can be usefully reclaimed.
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Anarchy

Under DOS, what happens if a program tries to access
memory marked as ‘free’, or owned by the system,
without attempting to reserve it for itself?

Nothing special: the access happens just as if the
memory had been correctly reserved.

Any program can overwrite any other program or the
operating system.

Intentionally or accidentally.

MacOS used to have a memory manager with just these properties too.
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What went wrong?

Actually, very little. The memory management of DOS
or early versions of MacOS was about as good as one
could achieve on the processors then available (8086
and 68000 respectively).

To improve on the above, a little help from the
processor is required.

Clearly a program wishes to see a contiguous area of
memory: if a programmer requests a 1MB array, he
gets upset if the OS says “No, but you can have a 384K
array, two 256K arrays, and one 128K array instead.”
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Virtual addressing

All memory references made by a program are
intercepted and have their addresses translated by the
CPU before they reach the real physical memory.

Real Memory

Program A

Program B

Program A

Program A

Program B

Program A

Virtual Memory

Fragmentation occurs in the real, physical memory, and
not in the virtual address space seen by the program.

The same virtual address in two different processes can refer to two different physical
addresses. The converse is also possible.

When OS/2, Windows9x or Linux runs two DOS applications simultaneously, each DOS
application sees an address range from 0K to 640K inhabited by just itself and a copy of DOS.
The corresponding physical addresses will be very different.
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Address translation in more detail

Various shortcuts occur to make the above scheme
reasonable.

Firstly, a complete table of the mapping from every
virtual byte to every real byte would be rather big. For
a 32 bit machine, one would need four bytes to store
the real address corresponding to every virtual byte. . .

So the mapping is done on the granularity of pages
not bytes. A page is typically about 4KB and is
the smallest unit of memory the operating system can
allocate to a process.

The OS keeps a page table telling it for every virtual
page given to every process, where the real page
resides. Entries say things like ‘the page from 260K
to 264K in process 5’s address space is to be found
from 2040K to 2044K in physical memory, reading and
writing permitted.’
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Not quite there

For a 32 bit machine with 4KB pages, the bottom
12 bits of an address are simply an offset into a page,
whilst the top 20 bits give the page number. These
20 bits are used as an index into the page table, which
will return the physical address of the page.

Each page table entry needs 20 bits for the physical
address, and maybe a few spare bits to mark such
things as invalid pages, and whether the page can be
read, written, or have code executed from it. So say
32 bits, or four bytes.

So for every 32 bit process one needs a 4MB page
table, so that every virtual address can be looked up
therein. Not quite: we need to do a little better, and
much better for 64 bit machines.
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A Two Tier System

Each process has one page table directory, and at least
one page table. Each is one page long, and contains
1024 entries.

The first ten bits of an address are used as an index
into the page table directory. If no virtual address
with that starting sequence is valid, the directory will
indicate this, and a page fault will occur. Otherwise,
twenty bits indicating the position in physical memory
of the page table for the 1024 pages in that address
range will be found.

The next ten bits index this second page table. Again,
either an invalid address will be indicated, or twenty
bits corresponding to the physical address of the page
containing the virtual address being translated.

The final twelve bits are an index into that page.

UNIX tends to announce page faults with SIGSEGV, and terminates the process. This will
also happen on attempts to modify read-only pages. SEGV refers to SEGment Violation, as
historically pages have been grouped into segments. Windows has called them ‘Unrecoverable
Application Errors’ and a ‘General Protection Faults.’
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A Two-Level Page Table

Physical Address

Directory
Table
Page

10 10 12

1220

Virtual Address

Tables
Page

A 32 bit virtual address with the top ten bits indexing a single page table directory, and thus
giving the address of a page containing the page table entries relevant for the next ten bits of
the virtual address. This then contains a twenty bit page number to give a 32 bit physical
address when combined with the final twelve bits of the virtual address. The page table will
also contain protection information.

Each process has its own virtual address space, and hence its own page tables, but half a
dozen pages of page table is sufficient for most small programs.
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Beyond 32 Bits

This system does not scale well. For a 64 bit virtual
address, not only do the page table entries need around
64 bits, not 32, but one would need 226 entries in each
of the directory and page tables. Thus with a minimum
of two tables of 226 8 byte entries, each process would
have 1GB of page table.

One solution to this is that used by the Alpha processor
when running Tru64 UNIX. The page size is 8KB, so
can contain 1024 64 bit entries. The bottom 13 bits
are now the index with the page, and there are three
levels of page table, not two, each indexed by 10 bits
from the virtual address. This accounts for 43 bits of
virtual address, and that is all that there are. An Alpha
running Tru64 UNIX does not provide a 64 bit virtual
address space, but 43 bits (8TB) is enough for most
people.

IBM’s AIX uses an inverted page table, which is a completely different solution to this
problem.
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Efficiency

This is still quite a disaster. Every memory reference
now requires two or three additional accesses to
perform the virtual to physical address translation.

Fortunately, the CPU understands pages sufficiently
well that it remembers where to find frequently-
referenced pages using a special cache called a TLB.
This means that it does not have to keep asking the
operating system where a page has been placed.

Just like any other cache, TLBs vary in size and
associativity, and separate instruction and data TLBs
may be used. A TLB rarely contains more than 1024
entries, often far fewer.

Even when a TLB miss occurs, it is rarely necessary to fetch a page table from main memory,
as the relevant tables are usually still in secondary cache, left there by a previous miss.

TLB = translation lookaside buffer
ITLB = instruction TLB, DTLB = data TLB if these are separate
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TLBs at work

1
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Stride 1
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Stride 4

Stride 16
Stride 8K

This is a repeat of the graph on page 131, but with an
8KB stride added. The XP900 uses 8KB pages, and
has a 128 entry DTLB. Once the data set is over 1MB,
the TLB is too small to hold its pages, and, with an
8KB stride, a TLB miss occurs on every access, taking
92ns in this case.

Given that three levels of page table must be accessed, it is clear that the relevant parts of
the page table were in cache: indeed, at least one part must have been in primary cache. A
mere 92ns is a best case TLB miss recovery time, and still represents 43 clock cycles, or 172
instruction issue opportunities.
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More paging

Having suffering one level of translation from virtual
to physical addresses, it is conceptually easy to extend
the scheme slightly further. Suppose that the OS,
when asked to find a page, can go away, read it in
from disk to physical memory, and then tell the CPU
where it has put it. This is what all modern OSes do
(UNIX, OS/2, Win9x / NT, MacOS), and it merely
involves putting a little extra information in the page
table entry for that page.

If a piece of real memory has not been accessed
recently, and memory is in demand, that piece will
be paged out to disk, and reclaimed automatically (if
slowly) if it is needed again. Such a reclaiming is also
called a page fault, although in this case it is not fatal
to the program.

Rescuing a page from disk will take around 20ms, compared with under 200ns for hitting

main memory. If just one in 105 memory accesses involve a page-in, the code will run at half
speed, and the disk will be audibly ‘thrashing’.

The ps command reports not only how much virtual address space a program is using, but
how many of those pages are resident in physical memory.

The union of physical memory and the page area on disk is called virtual memory. Virtual
addressing is a prerequisite for virtual memory, but the terms are not identical.
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Less paging

Certain pages should not be paged to disk. The page
tables themselves are an obvious example, as is much
of the kernel and parts of the disk cache.

Most OSes (including UNIX) have a concept of a
locked, that is, unpageable, page. Clearly all the
locked pages must fit into physical memory, so they
are considered to be a scarce resource. On UNIX only
the kernel or a process running with root privilege can
cause its pages to be locked.

Much I/O requires locked pages too. If a network card
or disk drive wishes to write some data into memory,
it is too dumb to care about virtual addressing, and
will write straight to a physical address. With locked
pages such pages are easily reserved.

Certain ’real time’ programs which do not want the long delays associated with recovering
pages from disk request that their pages are locked. Examples include CD writing software.
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Swapping

The terms ‘swapping’ and ‘paging’ are often used
interchangably. More correctly paging refers to
discarding individual pages to the swap device, whereas
swapping refers to removing all the pages associated
with a single process to the swap device in one
operation. Once swapped in this fashion, a process
must necessarily be suspended.

Swapping is the older and simpler mechanism, and
works well on, a PC running several interactive
applications. Clearly just one application can interact
with the PC’s one user at once, so wholly removing
the other processes from memory is fine. It may take
several seconds to restart a swapped-out process.

Paging permits a single process to use more memory
than physically present. Swapping does not.

Whether paging or swapping, the area of disk used is
called the swap space.
The total amount of memory usable might be the size of the swap space, the size of
physical memory plus swap space, or greater than this, depending on the OS. The last case
is ‘impossible’: the OS claims to have more memory available than it does, overcommitting
swap space, and will behave badly if all programs try to use all the memory they have been
allocated. 201



Page sizes

A page is the smallest unit of memory allocation from
OS to process, and the smallest unit which can be
paged to disk. Large page sizes result in wasted
memory from allocations being rounded up, longer
disk page in and out times, and a coarser granularity
on which unused areas of memory can be detected and
paged out to disk.

Small page sizes result in more TLB misses, as the area
of virtual address space ‘covered’ by the TLB is simply
the number of TLB entries multiplied by the page size.

Scientific codes which allocate hundreds of MB of
memory benefit from much larger page sizes than a
mere 8KB, but a typical UNIX system has several
dozen small processes running on it which would not
benefit from a page size of a few MB.

Many CPUs support multiple page sizes, such as the Pentium which supports 4KB or 4MB, the
UltraSPARC III which supports 8K, 64K, 512K and 4MB, and the EV6 Alpha allows a single
TLB entry to refer to 1, 8, 64 or 512 consecutive pages. This reintroduces fragmentation
problems: to allocate a 4MB page there must be 4MB of contiguous free physical memory.
This problem cannot occur if all pages are the same size.

Thus operating system support for large pages is rarer than hardware support. Solaris 9
(introduced 2002) is one of the few OSes which supports different page sizes for different
processes.
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‘Free’ memory

Memory is not free, indeed, in most computers it costs
more than the CPU or disk drives. . .

Memory which is idle is therefore a waste, and most
OSes use idle memory to increase the size of their disk
cache: just as a small amount of fast SRAM acts as a
cache for slower DRAM, so a small amount of DRAM
can act as a cache for a yet slower disk drive.

A small amount of memory (c. 100 pages) is typically
kept genuinely free for emergencies, whereas other
unused memory is available to the disk cache.

The UNIX command ‘vmstat’ shows how many pages are completely unused, as well as
information on paging activity.
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The Digital UNIX Way

The scheme is used by Digital UNIX 4.0 to 5.1A is:

• at least 128 pages are ‘always’ kept free. Paging
will not occur whilst more memory than this is free.

• swapping will not occur whilst there are more than
74 pages free.

• if the disk cache is bigger than 20% of total memory,
it will be shrunk rather than paging a process.

• if the disk cache is using between 10% and 20% of
memory, it will fight processes on equal terms.

• if the disk cache is under 10%, it has priority over
other processes for memory.

A reasonable estimate of ‘free’ memory is thus those
pages actually unused, plus the amount by which the
disk cache is above 20% of total memory.

The 10% and 20% ‘watermarks’ are configurable. They have been changed to 5% and 10%
on TCM’s larger-memory Alphas. DEC offers no explicit guidance on reasonable values.

Digital UNIX becomes very unhappy if the disk cache is forced below the lower watermark.

The command ‘free’ (Linux, Digital UNIX (TCM only)) shows the current disk cache size.

204



Segments

A program uses memory for many different things. For
instance:

• The code itself

• Shared libraries

• Statically allocated uninitialised data

• Statically allocated initialised data

• Dynamically allocated data

• Temporary storage of arguments to function calls
and of local variables

These areas have different requirements.
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What We Want

Code
Read only, executable, fixed size

Shared libraries
Read only, shared, executable, fixed size

Static data
Read-write, non-executable, fixed size

Dynamic data
Read-write, non-executable, variable size

Temporary data
Read-write, non-executable, frequently varying size
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Stacks of Text?

These regions are given distinct address ranges and are
called segments. Each segment is managed differently
to give it the required properties. The common UNIX
names for the segments are:

Code text
Initialised static data data
Uninitialised static data bss
Dynamic data heap
Temporary data stack
Shared libraries shared text

An executable file must contain the first two, plus a
record of the size of the third. These three sizes are
reported by the ‘size’ command.

Often read-only data (constants) are placed in the text section, for this section will be
read-only.
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What Went Where?

Determining which of the above data segments a piece
of data has been assigned to can be difficult. One
would strongly expect C’s malloc and F90’s allocate
to reserve space on the heap. Likewise small local
variables tend to end up on the stack.

Large local variables really ought not go on the stack:
it is optimised for the low-overhead allocation and
deletion needed for dealing with lots of small things,
but performs badly when a large object lands on it.
However compilers sometimes get it wrong.

UNIX limits the size of the stack segment and the
heap, which it ‘helpfully’ calls ‘data’ at this point. See
the ‘limit’ command (csh) or ‘ulimit’ (sh).

Because limit and ulimit are internal shell commands, they are documented in the shell
man pages (tcsh and bash in TCM), and do not have their own man pages.
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Sharing

If multiple copies of the same program or library are
required in memory, it would be wasteful to store
multiple identical copies of their unmodifiable read-only
pages. Hence many OSes, including UNIX, keep just
one copy in memory, and have many virtual addresses
refering to the same physical address. A count is kept,
to avoid freeing the physical memory until no process
is using it any more!

UNIX does this for shared libraries and for executables.
Thus the memory required to run three copies of
Netscape is less than three times the memory required
to run one, even if the three are being run by different
users.

Two programs are considered identical by UNIX if they are on the same device and have the
same inode. See a deleted section on filesystems for a definition of an inode.
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Enforcement

Most OSes can enforce the above restriction, denying
attempts to modify read-only segments, or to execute
code from data segments. This needs assistance from
the CPU.

Regrettably Intel’s IA32 line cannot distinguish between
‘read’ and ‘execute’ permissions.

Some compilers sensibly put constants into the text
segment. As this segment does not have write
permission, illicit attempts to modify such constants
then fail with a segmentation fault.
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A UNIX Memory Map

reserved

shared text

kernel

reserved

stack
text

data
bss

heap

0xffff ffff ffff ffff

0xffff fc00 0000 0000

0x0000 0400 0000 0000

0x0000 03ff 8000 0000

0x0000 0001 4000 0000

0x0000 0001 2000 0000

0x0000 0000 0001 0000

0x0000 0000 0000 0000

N.B. This view is per process, not for the whole
machine.

This particular bizarre layout is based on that used by Digital UNIX 4.0. Note that this layout
imposes artificial limits, such as approx 4GB for the stack, and 512MB for the text segment.
Such limits tend to be much more severe when one is squeezing into a 32 bit address space,
rather than the 64 bit (43 bit usable) space here.

Shared data and mmap region omitted for simplicity.
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Another UNIX Memory Map

kernel
0xffff ffff

0xc000 0000

0x4000 0000

stack

0x0000 0000

mmap

reserved

text

data
bss

heap

0x0804 8000

This is roughly the layout used by Linux 2.4 on 32 bit machines. Note the shorter addresses
than for Digital UNIX.

The mmap region deals with shared libraries and large objects allocated via malloc, whereas
smaller malloced objects are placed on the heap in the usual fashion. Note too that if one
uses mmap or shared libraries at all, the largest contiguous region is under 2GB.

Note in both cases the area around zero is reserved. This is so that null pointer dereferencing
will fail: ask a C programmer why this is important.
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Memory Maps in Action

Under Linux, one simply needs to examine
/proc/[pid]/maps using less to see a snapshot of
the memory map for any process one owns. It also
clearly lists shared libraries in use, and some of the
open files.

Under Solaris one must use a program called pmap in
order to interpret the data in /proc.

With Digital UNIX less information is available, and
it is harder to extract. In TCM a utility called pmap
exists which will display some information in a similar
fashion to the Solaris program.

Files in /proc are not real files, in that they are not physically present on any disk
drive. Rather attempts to read from these ‘files’ are interpretted by the OS as requests for
information about processes or other aspects of the system.
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Parallel Computers
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Parallel Computers: the Concepts

Modern supercomputers are generally parallel
computers. That is, they have more than one CPU.
Usually 50-500 CPUs. The CPUs themselves are usually standard workstation processors,

hence ‘cheap.’

Some tasks are clearly suited to being done by a ‘farm’
of ‘workers’ working simultaneously, whilst others are
not. As two examples:

Integration of differential equation over very many
timesteps. Clearly one cannot start the 5,000th
timestep until the 4,999th has been finished. The
process is fundamentally serial.

Factorisation of a large number. The independent
trial factors from 2 to

√
n are readily distributed

amongst multiple processors.

A simple example of parallelisation has alrady been seen in the various ‘multimedia’
instructions. This is known as SIMD parallelism: Single Instruction Multiple Data. The
parallism discussed in this section is MIMD (Multiple. . . ).
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Scaling

How much faster does a code run when spread over
more CPUs?

no. of CPUs

Sp
ee

d

From top to bottom:
Linear scaling (rare!)
Amdahl’s Law (see below)
The Real World

Notice that the speed is not monotonic in the number of CPUs
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Amdahl’s Law

Amdahl was a pioneer of supercomputing and an employee of IBM.

This law assume that a program splits neatly into an
unparallelisable part, and a completely parallelisable
part. It claims:

tn = ts + tp/n

The total run time on n processors is the time for the
serial part of the code, plus the time the parallel part
would take on a single processor divided by the number
of processors.

Consider ts = 0.2 and tp = 0.8. Then t1 = 1.0,
t32 = 0.225 and t∞ = 0.2.

On 32 processors the speedup is 4.5× and the efficiency
is just 14%.
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Bigger is better

Suppose ts and tp scale differently with problem size.

Assume ts scales as N and tp as N3 and consider a
problem 4× as large as before. Now

ts = 0.8 and tp = 51.2 giving t1 = 52 and t32 = 2.4.

Now the speedup on 32 processors is 21×, and the
efficiency is now over 67%.

Supercomputers like big problems.

Conversely, workstations hate big problems, as their various caches become less effective and
their overall efficiency falls.
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SMP: Bused Based

SMP (Symmetric Multi Processor, Shared Memory
Processor) describes a particular class of multi-CPU
computer.

The original, bus-based, SMP computer simply has
multiple CPUs attached to a single system bus.

CPU CPU CPU CPU

memory

The architecture is symmetric (all CPUs are
equivalent), and the memory is shared between them.
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Two Heads are Better than One?

As in a conventional, single-CPU computer, the single
processor typically spends between 75 and 95% of its
time waiting for memory, trying to ‘feed’ two or more
CPUs from one memory bank is clearly crazy. The
memory was, and is, the bottleneck. The CPU was
not.

However the design is cheap, simple, still common, and
therefore worth exploring further.

SGI’s PowerChallenge, DEC’s TurboLaser and many dual processor machines (including
Intel’s) have this architecture. DEC’s DS20 and DS25, and Sun’s SunBlade 2000, do not.
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Shared memory

As all processors access the same main memory, it
is easy for different parts of a program executing on
different processors to exchange data. One CPU can
write an array into memory, possibly from disk, possibly
as the result of a calculation, then all other CPUs can
read it with no further effort.

Programming is thus simple: all the data are in one
place, and there is merely the little matter of dividing
up the millions of instructions to be executed in a long
loop between the multiple eager processors – a job so
simple that the compiler can do it automatically.

Except it is not quite that simple.
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Cache coherency

cachecache

memory

CPU CPU

Processor A reads a variable from memory. Later, it
reads the same variable, which it can now get directly
from its cache, without troubling the system bus.

Only it can’t. For what if processor B has modified
that variable, and processor A needs the new value?

If processor B has a write back cache, the new value
may not even have reached the main memory, with the
current value being held in processor B’s cache only.
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Snoopy caches

The trivial solution is to abandon all caches.

An easy solution is to ban write-back caches, and
to ensure that each cache ‘snoops’ the traffic on the
system bus, and, if it sees a write to a line it is currently
caching, it must either update itself automatically, or
mark its copy as being invalid.

These solutions severely compromise one’s cache
architecture, and often lead to a SMP machine
generating more traffic to the main memory than a
uniprocessor machine would running the same code.
Thus a SMP machine can fail to reach the performance
of a single-processor workstation based on the same
CPU.

With either of these solutions, the definitive data are always those in the main memory.

Even single CPU workstations have a lesser version of this problem, as it is common for
the CPU and the disk controller to be able to read and write directly to the main memory.
However, with just two combatants, the problem is fairly easily resolved.
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MESI solutions

A typical SMP has extra bits associated with each
cache line, which mark it as being on one of four
states:

• Modified (i.e. dirty)
• Exclusive (in no other cache)
• Shared (possibly in other caches too)
• Invalid

Modified implies exclusive, and a line must be exclusive
before it can be modified.

A line fill for a read starts by ensuring that no other
cache has the line modified, then loading the line
marked as ‘shared.’ A fill for a write must ensure than
any other cache with that line shared marks it invalid.
In either case any cache with it ‘modified’ (there can
be only one) writes it back to memory.

Thus a line can be:
In no caches
In one cache and marked as modified
In one or more caches and modified in none
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Directory Entries vs Broadcasting

Two techniques are used for communicating with the
other cache controllers. One is simply that details of
all line fills are broadcast to all cache controllers, and
the fill does not progress until the other controllers
have had an opportunity to reveal that they held the
line.

This is a simple technique, but the broadcast coherency
traffic scales as the square of the number of caches,
so it does not perform well beyond about eight CPUs.

Alternatively, each line in main memory can have a
directory entry associated with it, which records which
caches have copies of the line. Then a fill need simply
check the directory, contact only those caches listed
(probably none), and proceed, updating the directory
as it does so.
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MPP: Breaking the Memory Bottleneck

Rather than multiple processors sharing the same,
‘global’, memory area, each processor could have its
own private memory, and no global memory. Adding
processors adds more pools of private memory with
their separate buses, and the total memory bandwidth
increases in step with the number of processors. Such
a computer is called a distributed memory computer
or massively parallel processor

cache

I/Omemory

CPU cache

I/Omemory

CPU

Interconnect

memory I/O

cacheCPU

memory

CPU

I/O

cache
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Breaking the Code

This arrangement is so far removed from the traditional
model of a computer, that traditional code does not
run on it. The programmer must be prepared to
think in terms of multiple processors working on his
program at once, each with its own private memory,
and any interprocessor communication being explicitly
requested.

Fortunately this is not nearly as hard as it might sound,
and there are standard programming models to assist.
Thus one can write code for a Cray T3E, using C or
FORTRAN with MPI, and be confident that it will run,
unmodified, on an IBM SP, a Beowulf cluster, or on a
machine not yet developed. One merely has to follow
the relevant standards and not be lured down the road
of vendor-specific extensions. . .

MPI (1994) and PVM (1991, now obsolete) standardised the programming model for MPPs.
Before PVM, each vendor had its own way of doing things.
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Topologies

There are many different ways of connecting nodes
together, as ever governed by cost and practicality.

Two useful ways of characterising a network are the
‘diameter’, the maximum number of hops from one
node to another, and the bisectional bandwidth, the
bandwidth between two halves of the machine.

Bandwidth Diameter
Ring 2 N/2
2D Grid

√
N 2

√
N

2D Torus 2
√

N
√

N
Hypercube N/2 log2 N
Tree 2 2 log2 N
Fat tree N/2 2 log2 N
X-bar N/2 1
3D X-bar N/2 3

The Cray T3D is a 2D torus, the IBM SP2 a fat tree, the SGI Origin2000 a form of hypercube,

and the Hitachi SR2201 a 3D X-bar.

Ideally the network topology should not be apparent
to the user.
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16 Nodes. . .

Hypercube

2D mesh

2D torus

Ring (1D torus)

Tree (log 2) Fat Tree (log 4)

229



Performance

Another important characteristic of the interconnect
is its raw performance, both bandwidth and latency.
These are most usefully measured using a standard
interface such as MPI, and not using the hardware
directly.

Ideally the time to transmit a packet is simply

latency + size / bandwidth

If size < latency × bandwidth, then the latency will
dominate.

Also ideally communication between a pair of nodes
is unaffected by any other communications happening
simultaneously between other nodes. Such a network
is called non-blocking.

Typical figures are 200 to 350 MB/s bandwidth and 10 to 30 µs latency. Clusters using
100MBit/s ethernet typically run at around 10 MB/s and 120 µs.
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Parallelisation Overheads

Amdahl’s law assume that there are no overheads
associated with parallelisation. This is certainly a
gross approximation.

Consider the case where each node must exchange data
with every other node at some point in the program:
some sort of rearranging of an array spread over all the
nodes. E.g. an FFT

Each node must send n−1 messages of size a/n where
a is the size of the distributed array. Even assuming
that the nodes can do this simultaneously, the time
taken will be

(n− 1)×
(
λ +

a

nσ

)
≈ nλ +

a

σ

where λ is the latency and σ the bandwidth.
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Amdahl revisited

A better form of Amdahl’s law might be

tn = t′s + tp/n + cλn

where t′s > ts.

Now tn is no longer a monotonically decreasing
function, and its minimum value is governed by λ.

This form stresses that the quality of the interconnect
can be more important than the quality of the
processors.

Hence ‘cheap’ PC clusters work well up to about 16 nodes, and then their high latency
compared to ‘real’ MPPs starts to be significant.
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Programming Example

Consider doing an enormous dot product between two
arrays previously set up. The SMP code might look as
follows:

! Let’s hope the compiler optimises
! this loop properly

t=0.0
do i=1,100000000
t=t+a(i)*b(i)

enddo

Easy to write, but little control over whether it is
effective!

To be fair, HPF (High Performance Fortran) and OpenMP (a set of directives to Fortran and
C) permit the programmer to tell an SMP compiler which sections of code to parallelise, and
how to break up arrays and loops. One day I might meet someone using such a language for
real research.
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Programming, MPP

! Arrays already explicitly distributed
! Do the dot product for our bit

t_local=0.0
do i=1,nmax ! nmax approx 100000000/ncpus
t_local=t_local+a(i)*b(i)

enddo

! Condense results

call MPI_AllReduce(t_local,t,1, &
MPI_DOUBLE_PRECISION, MPI_SUM, &
MPI_COMM_WORLD)

(Those MPI calls are not half as bad as they look once one is used to them!)

All the variables are local to each node, and only the MPI call causes one (t) to contain the
sum of all the t local’s and to be set to the same value on all nodes. The programmer must
think in terms of multiple copies of the code running, one per node.
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The Programming Differences

With MPP programming, the programmer explicitly
distributes the data across the nodes and divides up
the processing amongst the nodes. The programmer
can readily access the total number of CPUs and adjust
the distribution appropriately.

Data are moved between nodes by explicitly calling a
library such as MPI.

With SMP, the compiler tries to guess how best to split
the task up amongst its CPUs. It must do this without
a knowledge of the physical problem being modeled. It
cannot know which loops are long, and which short.

Artificial intelligence vs human intelligence usually
produces a clear victory for the latter!
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SMP: The Return

Most modern SMP machines are not bus based.
Internally they are configured like MPPs, with the
memory physically distributed amongst the processors.
Much magic makes this distributed memory appear to
be global.

This (partially) addresses the poor memory bandwidth
of the bus based SMP machines.

However, there are problems. . .

And magic costs money, and, in this case tends to degrade performance over an MPP,
providing instead increased flexibility.
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NUMA / cc-NUMA

memory I/O memory

CPU

I/O

I/Omemory

CPU

I/Omemory

CPU

CPU

Four nodes in a tree configuration giving three different
memory access times: on node, nearest neighbour and
next-nearest neighbour.

If caches are to be added, the lack of a single common
bus to snoop requires that a broadcast or directory
coherency protocol be used.

NUMA = Non Uniform Memory Access
cc-NUMA = Cache Coherent NUMA
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The Consequences of NUMA

If a processor is mangling an array, it now matters
crucially that that array is stored in the memory on
that processor’s node, and not on memory the other
side of the machine. Getting this wrong can drop the
performance by a factor of three or more instantly.

Whereas with MPP all memory accesses are guaranteed
to be local, as one cannot access remote memory
except by explicit requests at the program level, with
SMP the compiler has many ways of getting things
wrong.

for(i=0;i<10000000;i++)
t+=x[i]*y[i];

Consider this on a two node NUMA machine. If the
code is split so that node A stores the first 5000000
elements of each array, and does the first half of the
loop, then optimal performance is obtained. If node A
stores the whole of x and node B the whole of y, then
much reduced performance will result.
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X-bar Switches

Some modern, small SMP machines, such as Compaq’s
DS25 or ES45, IBM’s Sphinx, SGI’s Octane or Sun’s
SunFire V480, use a rather different architecture.

X bar
switch

memorymemory

CPU CPU

In this two CPU example, there are two distinct memory
‘banks’ and two CPUs joined by a switch which will
let either CPU talk to either memory bank whilst the
other pair also talk simultaneously. This fails when
both CPUs wish to access data in the same memory
bank.

This sort of design works for up to 4 or maybe 8 CPUs. After that point the crossbar switch
becomes very expensive, and the chance that the CPUs are not fighting for the same memory
bank rather low.
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Modern, large MPPs

The latest MPP designs (Hitachi SR8000, IBM SP,
Compaq SC45) join SMP nodes like the above.

mem. mem. mem. mem.

Interconnect

mem. mem.

switch I/O

CPUCPU CPU CPU

I/Oswitch

mem. mem.

CPU

I/Oswitch

CPU CPU

I/Oswitch

CPU

Such a machine is awkward to program, as one has
both internode and intranode parallelism to address.

Modern, large SMPs are just the same. The Origin2000 has two CPUs per node, the
Origin3000, Compaq GS320 and SunFire15K have four.
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Practical Parallelism

Any parallel algorithm will involve passing messages
from one process to another. If both processes are
executing simultaneously on separate processors, this
can be very rapid. A process waiting for a message
should spin wait: constantly checking to see if the
message has arrived, and not yield its scheduling slot,
for the expected latency for a message is a few µs,
whereas a scheduling slot will be a few thousand µs.

If two processes are run on a single CPU, a process
waiting for a message should immediately yield its
scheduling slot, so that the process sending the
message gets some CPU time and can send it.

In either case, large messages will have to be broken
into smaller fragments as they are sent, the processes
effectively sharing a buffer, the first filling it, then
waiting until it has been emptied before it is able to
refill it.
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The slowdown
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Message size, bytes

No other process
One other process

Two other processes

Transfer rate for various sized packets using two MPI
processes on a dual processor machine.

With no other processes, the latency is about 3µs and the bandwidth 250MB/s. With one
other process, the latency is 24µs and the bandwidth 120MB/s. The point at which multiple
packets are needed for a single transfer (32KB) is clearly seen. With two other processes,
the latency is 5000µs and the bandwidth 40MB/s. The details depend greatly on how the
scheduler distributes processes amongst processors.

No-one who cares about latencies runs MPI with more than one process per processor!

Note that when running four serial processes on a dual processor machine, each will run twice
as slowly as they would if just two had been run. With parallel code, the slowdown could be a
factor of one thousand.
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Multithreading

Whether in a uni- or multi-processor computer, the
CPU is often used very inefficiently, with most of its
functional units idle waiting for memory to respond
or data dependencies to be resolved. It is rare for
a four-way superscalar CPU to be able to issue four
instructions simultaneously.

Conventional multitasking is not the answer. This
software-driven process-switching takes thousands of
clock cycles, so is useful for latencies caused by disk
drives, networks and humans.

However, there are rarely data dependencies between
processes, so in some sense multitasking is the answer.

A multithreading processor gains multiple banks of
registers, one per ‘thread’ (process) which will be run
simultaneously. These processes share access to the
functional units, caches, instruction decoding logic,
etc.
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SMT

There are different ways of achieving multithreading.
Some change thread every clock-cycle, whereas
the more advanced Simultaneous MultiThreading
architecture allows instructions from different threads
to be issued in the same clock-cycle.

The extra logic on the CPU need to keep track of a
modest number of threads is very small, increasing the
CPU size by less than 10%. The gain is zero if the
computer is only ever running a single thread, but the
throughput can increase by over half when two threads
are run.

Two MultiThreading Architectures (MTAs) currently exist. One, developed by Tera
(now Cray), supports 128 threads per processor (prototype delivered 1998). The other,
Intel’s ‘Pentium4 with Hyperthreading’ (2002), supports two threads per processor. The
now-cancelled EV8 Alpha was to support four-way SMT, but other MTAs are in development.

SMT tends to reduce reproducibility in run-times: a head-ache for code tuning.

It also works poorly if the bottle-neck was throughput, either in terms of memory bandwidth,
or for a single functional unit.
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Dual Cores

The other approach to increasing the throughput of a
single physical CPU is to place two (or more) complete
CPUs on a single chip. This produces, instantly,
the deprecated arrangement of two CPUs with shared
memory bus discussed above.

There are many approaches to this, usually involving
separate level 1 caches for each core, but possibly
shared caches for level 2 (or level 3).

IBM’s Power4 and Sun’s UltraSPARC IV are already
dual core, and many CPUs are expected to follow
during 2005/6 (Opteron, Itanium, Pentium 4, PPC).
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Dual Xeon

8K L1 D

12K L1 Icore

512K L2
8K L1 D

12K L1 Icore

512K L2

PCI

DDR−SDRAM4.2 GB/s

E7505

Hub
Memory Controller

266MHz, 128 bit

1GB/s

533MHz, 16 bit266MHz, 8 bit

AGP x8

533MHz, 64 bit, 4.2GB/s

Controller
I/O

ICH4

Controller

USB

100MBit/s ethernet

ATA100

ATA100

0.25GB/s

2.1 GB/s

533MHz, 32 bit

PCI−X 64/100

1GBit/s ethernet

PCI 64/66

PCI 32/33 Integrated video

P64H2

This shows the approximate architecture of a dual Pentium4 machine using Intel’s 7505
chipset. The two processors, with their shared bus, are at the top.

For much of the life of this chipset, the corresponding uniprocessor chipset, the 875, used an
800MHz CPU bus, and a 400MHz, 128 bit bus to its DDR memory. Thus the single CPU
board had greater memory bandwidth than both CPUs together on the dual board.
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Dual Opteron

1MB L2
64K L1 D

64K L1 Icore

1MB L2
64K L1 D

64K L1 Icore

AMD 8111

DDR−SDRAM DDR−SDRAM

Controller

AMD 8131
PCI−X

Controller

PCI−X 64/66

PCI−X 64/133

1GBit/s Ethernet

1GBit/s Ethernet

SCSI U320

Integrated video

EIDE DVD

USB

0.2GB/s

1.6GHz, 16 bit

3.2GB/s

333MHz 128 bit

5.3GB/s

3.2GB/s

5.3GB/s

333MHz 128 bit

1.6GHz, 16 bit

200MHz, 8 bit

I/O

This diagram reflects the architecture of a dual Opteron machine, such as Sun’s V20z. Notice
that this is now a NUMA architecture, and that the total memory bandwidth is proportional
to the number of CPUs.

Some dual Opteron machines, and most recent Althlon64 machines, run their memory at
400MHz.
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Dual UltraSPARC III

Controller
I/O

FC/AL

2.4GB/s

64K L1 D

64K L1 Icore

64K L1 D

64K L1 Icore

8MB L2 8MB L2

Fireplane X−Bar

SDRAM

150MHz, 128 bit 150MHz, 128 bit

2.4GB/s

2.4GB/s

75MHz, 256 bit

SDRAM

75MHz, 256 bit

2.4GB/s

150MHz, 64 bit

1.2GB/s

PCI 64/66

PCI 64/33 USCSI

100MBit/s Ethernet

This diagram reflects the architecture of a dual UltraSPARC III machine, such as Sun’s 280R.
This is a more expensive design than the preceeding two, but it avoids the problems of NUMA
whilst keeping up the memory bandwidth. The (more expensive) DS25 from HP/Compaq is
similar but faster, running its two 256 bit memory banks at 125MHz, and its CPU buses,
whilst just 64 bits wide, run at 500MHz.
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Programming
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Programs, Libraries and OSes

The operating system has full control of all aspects
of the hardware. Anything which requires action from
the hardware – reading a file, writing to the screen,
allocating memory – must be handled by the OS.

The OS is both fair and friendly. It prevents other
people reading your files, and other processes writing
over your memory. It will also create the concept of a
file from the blocks on a disk, and a network connection
from the packets arriving at its network card.

Libraries are only friendly. They consist of simple,
unprivileged code which one can use in an identical
fashion to a subroutine of one’s own creation. They
exist to save reinventing the wheel too often.

Impossible

Program

Libraries

O/S

Hardware
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Libraries (1)

Whereas programming languages provide standard
maths functions, CPUs do not. Very few CPUs can deal
with any transcendental functions, yet most languages
have some. A library provides for the shortfall, different
libraries for C, F77 and F90.

Similarly programming languages provide standard
ways of doing input and output, e.g. printf in C and
write in Fortran. The OS does not provide precisely
these functions, but a library exists to convert them into
whatever operation(s) are necessary to provide that
functionality from the OS. Indeed, most programming
languages provide no mechanism for calling the OS
directly.

Thus the same piece of Fortran or C can be compiled
and then run on different operating systems and CPU
with libraries providing the translation between the
features of the CPU and OS, and the features required
by the programming language.
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Libraries (2)

The other common use for libraries is to solve the
more difficult maths problems: numerical integration,
matrix manipulation, FFTs, etc. Various collections of
routines exist: BLAS, LAPACK, NAG, etc. Using one
of these is usually simpler, quicker, and more reliable
than trying to code a similar algorithm oneself.

BLAS just deals with elementary vector and matrix
operations, with a matrix-matrix multiply being about
the most complicated. LAPACK contains algorithms
for eigen problems, and uses BLAS to do the
fundamental operations required. NAG includes much
more: PDEs, integration, pseudorandom numbers,
FFTs, minimisation, root finding. It also uses BLAS
for the fundamental operations.

Most vendors offer versions of BLAS and LAPACK, and maybe FFTs, optimised for their own
hardware. Alphas have cxml, Intel has mkl etc. A well-optimised BLAS library helps LAPACK
and NAG run faster.

BLAS: Basic Linear Algebra System
LAPACK: Linear Algebra PACKage
NAG: Numerical Algorithms Group (commercial, available for most platforms)
cxml: Compaq eXtended Maths Library (originally dxml (Digital))
mkl: Maths Kernel Library (Intel)

252



Calling Conventions

When calling any function the arguments must be
made available to the function, the CPU must branch
to the start of the function’s code, and, at the end,
the function must return its result(s), and execution
continue at the next instruction in the calling code.

The stack is the area of memory usually used for this.
One of the CPU’s registers, the stack pointer, always
points to the top of the stack, and on this stack
are placed, in order, the arguments to the subroutine,
followed by the address to return to when finished,
and then a branch to the routine occurs. The routine
reads its arguments from the stack, places its results
on the stack, reads the return address and jumps back,
having adjusted the stack pointer approriately. The
routine will also use the stack for storing any small
local variables it may wish to use.

There are obvious optimisations to this scheme: if only
one or two arguments are expected, why not leave
them in registers? Similarly for the return address.
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Vagueness

The previous slide is deliberately vague. There is no
one way of transferring data to and from subroutines.
However, the caller and the callee must agree on what
to do!

UNIX is mostly written in C, and every UNIX comes
with a C library and has an associated compiler
(not always free though!). This defines the calling
convention for C for that flavour of UNIX.

It does not define it for C++ or Fortran, which need
calling features which C does not have. If the vendor
supplies C++ and Fortran compilers and libraries,
others will usually follow those conventions. If not,
chaos.

Hence Linux, which has many Fortran compilers which
cannot use each other’s libraries as the various compiler
writers have done things differently.
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Name mangling

double modulus(double x){return(fabs(x));}

double modulus(double *x, int n){
int i;
double m;
for(i=0,m=0;i<n;i++) m+=x[i]*x[i];
return(sqrt(m));

}

Two functions with the same name, distinguishable
by argument type and number. Legal in C++, but
the compiler must generate unique names for these
functions so that the linker sees them as distinct. No
standard exists for this name mangling.

F90 achieves this function overloading in a subtly different fashion which avoids this issue.

Even plain F77 must do some name mangling: the UNIX linker is case-sensitive, and F77 is
not, so all names must be converted to a consistent case. They usually gain underscores too,
to avoid unexpected name clashes with functions in the system libraries.
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Hello, World

The idea of a first example program being one to print
the text “hello, world” is mainly due to Kernighan and
Ritchie’s book “The C Programming Language.”

This section considers many ways of writing such
a program, and, so that it is as clear as possible
what is really happening, most of the examples are in
assembler. The first does not even make use of the
operating system to do more than act as a program
loader.

!!WARNING!! Some of the examples in this section
work only on very specific OS versions, although the
concepts are much more general.
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Direct Hardware Access

On an IBM PC, the default text video mode is 80
columns by 25 lines. The video memory is mapped
starting at address 0xB8000 (top left of screen), with
alternate bytes being the ASCII(-ish) representation of
the character, and an attribute byte which specifies the
colour.

MS DOS will execute a program with the extension
.COM by loading it at an offset of 0x100 in a segment,
setting all the segment registers to point to that
segment, and starting to execute from address 0x100.
Such a program may exit with the instruction ret.

As the screen usually scrolls by one line immediately
after a command finishes, we shall print the string on
the second line.

Thus .COM files give a simple, flat, 64K address space which contains all the text, data and
stack. The stack is set up to grow down from the highest possible address in the segment,
0xffff.
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Hello, World (1)

section .text
org 0x100

mov ax,0xB800
mov es,ax
mov di,160

lea si,[string]
mov cx,12

next_ch: movsb
inc di
loop next_ch

ret

string db "Hello, World"
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Hello, World (1)

Tell the assember that this is the text segment, and it starts at

0x100.

The address we wish to write the string to is 0xB800:160 – set

this up in es:di. N.B. horrible mix of hex and decimal in that address!

Point si at the start of our string, and put the number of

characters in cx.

The movsb instruction is a horrible CISCy thing. It reads a byte

from ds:si, writes it to es:di, and adds one to both si and di.

We need to skip the attribute bytes in the video memory, so di is

incremented again.

Finally loop is another CISCy thing. It decrements cx, and jumps

to the label given if cx is not zero.

No instruction of the form mov es,0xB800 exists.
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Hello, World(1)

The above can be assembled (the syntax is NASM’s)
to give a remarkably short .COM file: just 32 bytes.

A disassembler interprets the resulting file as follows

D:\MJR\ASM\NASM>debug hello1.com
-u
0C80:0100 B800B8 MOV AX,B800
0C80:0103 8EC0 MOV ES,AX
0C80:0105 BFA000 MOV DI,00A0
0C80:0108 8D361401 LEA SI,[0114]
0C80:010C B90C00 MOV CX,000C
0C80:010F A4 MOVSB
0C80:0110 47 INC DI
0C80:0111 E2FC LOOP 010F
0C80:0113 C3 RET

The second column is the binary representation of each
instruction.

Note the variable instruction lengths, one to four bytes here, and the backward (little-endian)
nature of the storage of immediate data: A000 for 00A0, 1401 for 0114, 0C00 for 000C, etc.
In the loop instruction, the jump is −4 bytes, as the next instruction will be 10F (again) not
113. Converting −4 to two’s complement, one gets FC. Label names have been lost – there
is no occurance of ‘next ch’ or ‘string’ in the .COM file.
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Calling DOS

The above code has several disadvantages. It works
in just one video mode. It always writes at the same
location on the screen, regardless of what was there. It
requires precise knowledge of the hardware. Its output
does not obey the normal redirections (’>’ and ’|’).

DOS provides a function for writing a string to the
terminal, which works in whichever video mode is in
use, which writes at the current cursor position, and
which does obey redirections. DOS is called via a
set of interrupt functions, normally interrupt number
0x21. The arguments to the function are passed in
the CPU’s registers. Most importantly, the ah register
specifies which function one requires.

Function 9 prints a string from the address in dx. The
string must be terminated by a ‘$’.

Function 0x4C exits, returning the contents of al as
the exit code.
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Hello, World (2)

section .text
org 0x100

lea dx,[string]
mov ah,9
int 0x21

mov ax,0x4C00
int 0x21

string db "Hello, World$"

Now a mere 26 bytes!

Assembers often disagree about syntax. Some will insist that register names are prefixed by a
%, and there are many conventions for labels.
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Real Operating Systems

A real operating system would not allow direct
hardware access as used in the first example above
(indeed, in the presence of virtual addressing, the first
example is nonsensical). It would insist on a coding
style like the second.

However, like DOS it is called via an interrupt
instruction, and again the required function and its
arguments are placed in the CPU registers. Unlike
DOS, the interrupt is always number 0x80.

Being C-based, UNIX tends to have functions similar
to some of the C functions. Two of interest here are
write() and exit(). In Linux these are function
numbers four and one respectively.

Linux uses a more structured form for its binary files,
called ELF.
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Hello, Linux World

section .text
global _start
_start
mov eax,4 ; NR_write is 4
mov ebx,1 ; unit 1 is stdout
lea ecx,[msg] ; pointer to message
mov edx,13 ; length of message
int 0x80
mov eax,1 ; NR_exit is 1
mov ebx,0 ; exit code of zero
int 0x80

msg db "Hello, World",10

This can be assembled with

> nasm -f elf hello.asm
> ld hello.o
> ./a.out
Hello, World

Here ld is not linking, merely adding ELF magic to the object file. It likes the global symbol
start to specify where execution should commence.
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Unportable

Those used to Gnu’s assembler will be looking at the
above code in disbelief. It would like:

.section .text

.global _start
_start:

movl $4,%eax # NR_write is 4
movl $1,%ebx # unit 1 is stdout
lea msg,%ecx # pointer to message
movl $12,%edx # length of message
int $0x80
movl $1,%eax # NR_exit is 1
movl $0,%ebx # exit code of zero
int $0x80

msg:
.ascii "Hello World\n"

Note the dollars before constants, %s before register names, the

reversal of the order of the operands, and the change of the

comment character.

The syntax used by NASM is that defined by Intel. That used by Gnu’s assembler (gas) is
defined by AT&T.

265



It’s big!

The resulting executable is huge, about 770 bytes!

After using strip to remove the symbol table (for the
label ‘msg’ does now appear in the final executable) it
is still 440 bytes.

Unlike DOS’s .COM files, which contain just the raw
code, Linux’s ELF files (and even DOS’s .EXE files)
contain some degree of structure. The actual text
segment is just 48 bytes, but the executable contains
lengthy section headers and an overall header.

The overhead of the ELF format is not significant for
a normal-sized program, and it does allow the file to
be more precisely identified. This one firmly claims to
be an i386 UNIX executable, for instance.

The text segment has grown slightly as all those constants which were 16 bits (two bytes) in
DOS are now 32 bits.

The inclusion of an empty .bss section adds 44 bytes to the file size, and a .comment section
giving the version of the assembler 80 bytes. The ELF header is 52 bytes, each section header
a further 32 bytes. . .
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For those suspicious of what ld is doing.

BITS 32
org 0x08048000

db 0x7F,"ELF",1,1,1,0 ; magic
dd 0,0 ; magic cont
dw 2 ; executable
dw 3 ; i386
dd 1 ; version
dd _start ; entry point
dd 52 ; program header offset
dd 0 ; section header offset
dd 0 ; flags
dw 52 ; elf header size
dw 32 ; program header size
dw 1 ; number of program headers
dw 0 ; section header size
dw 0 ; number of section headers
dw 0 ; index of string table

dd 1 ; loadable data
dd 0 ; offset from start of file
dd $$ ; virtual address to load at
dd $$ ; ignored
dd filesize ; size on disk
dd filesize ; size in memory
dd 5 ; memory segment perms (r-x)
dd 0x1000 ; ignored

_start:
mov eax,4 ; NR_write is 4
mov ebx,1 ; unit 1 is stdout
lea ecx,[msg] ; pointer to message
mov edx,13 ; length of message
int 0x80
mov eax,1 ; NR_exit is 1
mov ebx,0
int 0x80

msg db "Hello, World",10

filesize equ $ - $$

This will assemble with
> nasm -f bin -o a.out hello.elf.asm; chmod +x a.out
and the resulting 132 byte executable can be run directly. 267



The int in detail

In the DOS example, we chose to call DOS via the conventional

int 0x21 call. However, the DOS ‘kernel’ ran with the same

privileges as our own code, and we could have jumped into it by

any route. Executing int 0x21 merely places a return address

on the stack, and jumps to the address given by entry number

0x21 in the interrupt vector table, which, for the 8086, starts at

address zero, occupies the first 1K of memory, and is easily read

or modified.

In Linux, int 0x80 is rather different. The address it refers to

is not modifiable by the user code, and when it is executed, a

flag in the CPU is immediately set to indicate that the CPU is

executing kernel code. When this flag is set, direct hardware

access is possible. The flag gets reset as the execution returns

to the original program. Any attempt to execute the privileged

instructions which the kernel uses without this flag set will be

denied by the CPU itself. There is a very clear distinction between

‘kernel space’ and ‘user space’.

The 8086 interrupt table has 256 four-byte (segment then offset) entries.

The IA32 processors have several modes of operation. The default, used by DOS, has no
concept of privileged instructions – everything is always acceptable. The mode which Linux
(and WinNT and OS/2) use does enforce different privilege levels.
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Using libraries

As a first example of using a library, we shall convert
the above Linux code to call the write() and exit()
functions from libc, rather than using the kernel
interface directly.

The most important UNIX library, libc, contains all
the (non-maths) functions required by ANSI C and
any extensions supported by the platform, as well as C
wrapper to all kernel calls. Thus some of its fucntions,
such as strlen(), do not call the kernel at all, some,
such as printf() do considerable work before calling
a more basic kernel function and others, such as
write(), are trivial wrappers for kernel functions.

The last category is traditionally documented in
section 2 of the manual pages, whereas the others
are in section 3.

Some C functions call kernel functions occasionally, such as malloc(), which needs to provide
any amount of memory that the program requests, but can only request memory from the
kernel in multiples of the page size (typically 4K or 8K).
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Using libraries: 2

Several changes are necessary to our code. The
symbols write and exit need to be declared to
the assembler as external – they are not defined in the
code given, and the linker will insert the relevant code.

The routines in libc can be invoked using the call
instruction, but they do not expect their arguments to
be in registers, but rather on the stack. The stack is
a downwards-growing area of scratch memory whose
next free address is given by the register sp. An
instruction such as push eax puts a copy of the value
in eax on the stack, and subtracts four from esp (as
four bytes are needed to store the value in eax).

The call instruction also uses the stack for storing
the return address – the address to return to after the
function exits.
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Hello, libc World

section .text
extern write
extern _exit
global _start
_start:
mov eax,13 ; length of message
push eax
lea eax,[msg] ; pointer to message
push eax
mov eax,1 ; unit 1 is stdout
push eax
call write ; write(fd,*buff,count)
mov eax,0
push eax
call _exit ; _exit(status)

msg db "Hello, World",10

which will need to be linked with a line such as

> ld -static hello.libc.o -lc
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The Linker

The linker searched for a file called ‘libc.a’, and
looked in it for the symbols write and exit. It has
extracted the associated code and data, and any other
parts of libc which those routines require, from the
16MB lump which is libc on the machine used, and
added them to the code in the object file provided. The
text sections are joined together, and likewise the data
sections and comment sections. The final executable
is still just 920 bytes long, of which 356 bytes is text.

ELF Headers

.text from object file

.text from library

.bss from object file

.bss from library

.comment from library

.comment from object
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Relocation

It should be clear that none of the sections taken from
the library will end up at any particular address. Their
destination will depend on the size of the user-supplied
program, and which other library functions have been
included.

The linker performs the task of relocating the code,
‘fixing’ any absolute addresses within the library code
(text and data) as required.

The virtual addresses at which the text, initialised data
and uninitialised data (the fixed-szed segments) will be
loaded is fixed at link time.
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Moving to C

A C programmer would probably use the function
printf() rather than write() in a ‘Hello World’
program.

section .text
extern printf
extern _exit
global _start
_start
lea eax,[msg] ; pointer to message
push eax
call printf ; printf(*buff)
mov eax,0
push eax
call _exit ; _exit(status)

msg db "Hello, World",10,0

Note that our string is now null-terminated, as a C library function would expect.
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It’s HUGE

The resulting executable, even when stripped, is now
over 370K.

The printf() function can do rather a lot. It can
print integers of varying length in base 8, 10 and 16,
and single or double precision floating point numbers
in decimal or exponential notation with a specified
precision, as well as strings. It can pad in various
fashions, and returns the number of characters printed.
It can parse widths and precisions from a format string
or from its arguments. It can do all that Fortran’s
write and format statements can, and more.

All this, just to print a short string. The price we
have paid is about 370K of code in our executable
which will not be used, but would have been used if
the parameters passed to printf had been different.
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Dynamic linking

Rather than store such large amounts of code in the
executable, and needing to place the same in memory
at run time, Linux, like most other OSes, can use
dynamic libraries which are linked at run-time, and
which need only be resident in memory once each.
Linking dynamically reduces the executable size back
to 1.4K.

When linking dynamically, the linker checks that all
symbols can be resolved using the specified libraries,
and it specifies the loader to be used at run-time to
relink.

The run-time linking need not link against precisely
the same libraries that were used at compile time – it
may not even occur on the same computer. One hopes
that the libraries found at run-time are compatible with
those used at link time.

The dynamic link line is
> ld --dynamic-linker=/lib/ld-linux.so.2 hello.o -lc
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Dynamic Advantages

Dynamic linking has many advantages. If one
dynamically links against a maths library, one might use
different versions at run-time depending on the precise
processor in the computer – a Pentium 4 optimised
library, or a Pentium M optimised library, for instance.
One could also upgrade the maths library, and all
applications dynamically linked against it immediately
benefit from the upgrade with no need to recompile or
relink.

A statically linked program interfaces directly with the
kernel. In UNIX, usually the only library to do so
is libc. If libc is dynamically linked, then the kernel
interfaces can change and applications will still work if
the libc interface is unchanged.
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Dynamic Disadvantages

Sometimes it is not an advantage for programs to
behave differently on different computers because they
are picking up different libraries: it can make debugging
much more interesting.

There is also a slight overhead on every function call
to a dynamic library compared to a statically linked
library. For trivial functions, this can result in a few
percent performance loss. At link time, the address at
which the dynamic library will be loaded at run time
is not known. Any references to variables or functions
in it are made via a look-up table. The run-time
dynamic linker populates this look-up table, and places
its address in a register. The code is compiled to
perform lookups into this Global Offset Table relative
to the pointer it is passed.

So referencing a dynamic symbol involves an extra indirection via the GOT, and the presence
of the GOT wastes one of our few integer registers, (ebx).

However, many OSes are moving away from permitting wholly statically linked binaries.
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Yet closer to C

A C program consists of a function called main. In
order to make our assembler code the equivalent of the
following C

#include<stdio.h>

int main(){
printf("Hello, World\n");
return(0);

}

we must define a function called main() and return
a value from it. As the return value is simply passed
back in the eax register, and the return instruction is
ret, this is easily done.
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The C version

section .text
extern printf
global main
main
lea eax,[msg] ; pointer to message
push eax
call printf ; printf(*buff)
pop eax
mov eax,0
ret

msg db "Hello, World",10,0

This is best converted to an executable with

> nasm -f elf hello.c.asm
> gcc hello.c.o
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The gcc effect

The innocent line
> gcc hello.c.o
is equivalent to something like

> ld --dynamic-linker=/lib/ld-linux.so.2 \
crt1.o crti.o crtbegin.o \
hello.c.o \
-lc crtend.o crtn.o

The five extra object files contain the magic start
symbol and the code required for then calling main()
with any command-line arguments as C expects, then
calling exit() with the return code from main().
The C library (libc) is linked implicitly, and the
dynamic linker added too.

The five extra object files should have full paths specified. Try
> gcc -v hello.c.o
to see the full detail.

If you think this is bad, look at what a Fortran compiler does!
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The Stack

Because the ret instruction takes the return address
from the stack, it is important that we keep careful
track of what has been placed on the stack.

One value was placed their in order to call printf(),
and that function will leave the stack unchanged when
it exits. The calling program must clear up the stack,
either with an instruction like
pop eax
which then gets discarded, or with something like
add esp,4
which is more efficient if there are many arguments /
values to remove.

This program does not attempt to maintain the frame
pointer (ebp) correctly. Usually the frame pointer
should point to the top of the current stack frame, and
the stack pointer to the bottom.
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The Stack Frame

Address Contents Frame Owner

. . . calling
2nd argument function

ebp+8 1st argument
ebp+4 return address
ebp previous ebp

local current
variables function

etc.

esp end of stack

The Alpha uses register $30 as the stack pointer, $26 for the return address, and $15 for the
frame pointer only if the frame is of variable size.

This use of the stack and frame pointers makes it easy for debuggers etc. to ‘unwind’ their
way backwards up a call tree.
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Using the Frame Pointer

At the start of the function, the value of the frame
pointer, ebp, should be saved using

push ebp
mov ebp,esp

If room is required for local variables on the stack, one
can simply subtract the required amount from esp.

At the end of the function, esp and ebp can be restored
with

mov esp,ebp
pop ebp

assuming that ebp has not been modified by the
function. This exit sequence can be done in a single,
one-byte instruction, leave.
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The C compiler

The C compiler operates in several distinct phases
when executed as

> cc hello.c

First it preprocesses the source to a file in /tmp.
Second, it converts the C to assembler: the compilation
stage. This will probably involve an intermediate
language internally, and produces another file in /tmp.
Third, it assembles the result to an object file (in
/tmp).
Finally, it links the object file.

The four stages are often done by four completely
separate programs: cpp, cc, as and ld.

Fortran is similar, except it is usually not preprocessed.

Optimisation is performed both when converting to the intermediate language (front-end),
and when converting that to assembler (back-end).

Why use an intermediate language? Consider maintaining a collection of compilers to convert
three languages (e.g. C, C++, Fortran) for four different CPU families (IA32, x86-64, SPARC,
PPC). Without an intermediate language that is twelve different compilers, with it is just
three front-ends, and four back-ends.
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C again

The compilation sequence can be stopped at any stage.
If we stop at the assembler stage:

> cc -S hello.c
> less hello.s

.section .rodata
.LC0:

.string "Hello, World"

.text
.globl main

.type main, @function
main:

pushl %ebp
movl %esp, %ebp
pushl $.LC0
call printf
xorl %eax,%eax
leave
ret

One may need to add ‘-Os -fno-builtin’ to get the above result. . .

xorl %eax,%eax sets %eax to zero.
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Nasty C

The statement

#include<stdio.h>

causes the file /usr/include/stdio.h to be inserted
at that point by the preprocessor. Its purpose is to
give a prototype for the printf function.

The resulting source file is increased from six lines to
over 770 lines, as the header files define many other
functions and constants. Those who would prefer to
understand what is happening might prefer the code
as

int printf (const char *fmt, ...);

int main(){
printf("Hello, World\n");
return(0);

}
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Watching the action

Most versions of UNIX have a program which allows
one to display system calls as they happen:

> strace ./a.out
execve("./a.out", ["./a.out"], [/* 22 vars */]) = 0
write(1, "Hello, World\n", 13Hello, World
) = 13
_exit(0) = ?

Note the system call was displayed, with arguments,
followed by its return code after the ‘=’ (13 for
write()). The strace utility has intercepted both
the entry to and exit from the kernel.

Unfortunately its output gets mixed with the program’s
own output.
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More action

The above was the statically linked program from
page 271. Considering the code from page 274 after
dynamic linking, one can check which libraries it will
load at run-time:

> ldd a.out
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/tls/libc.so.6 (0x4001f000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Here ld-linux.so is the helper program which
actually performs the dynamic linking, and libc.so is
the expected shared library. The linux-gate object is
a consequence of version 2.6 of the Linux kernel which
we shall ignore.

The ldd command is also found in Tru64 version 5 (and later, not version 4), and Solaris,
amongst others.

289



All action

> strace ./a.out
execve("./a.out", ["./a.out"], [/* 21 vars */]) = 0
uname({sys="Linux", node="tcmpc34.phy.cam.ac.uk", ...}) = 0
brk(0) = 0x804a000
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40017000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=26693, ...}) = 0
old_mmap(NULL, 26693, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40018000
close(3) = 0
open("/lib/tls/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0"..., 512) = 512
fstat64(3, {st_mode=S_IFREG|0755, st_size=1348627, ...}) = 0
old_mmap(NULL, 1132940, PROT_READ|PROT_EXEC,

MAP_PRIVATE, 3, 0) = 0x4001f000
madvise(0x4001f000, 1132940, MADV_SEQUENTIAL|0x1) = 0
old_mmap(0x40129000, 32768, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED, 3, 0x10a000) = 0x40129000
old_mmap(0x40131000, 10636, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40131000
close(3) = 0
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40018000
write(1, "Hello, World\n", 13Hello, World
) = 13
exit_group(0) = ?
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We don’t see ld-linux itself loading, but we do see its actions in detail. It tries to open
/etc/ld.so.preload, fails, then successfully opens /etc/ld.so.cache, which it then reads
using mmap. It opens libc.so.6 and reads the first 512 bytes. This includes enough header
information that it then knows to mmap the first 1132940 bytes as readable and executable, so
this must be libc’s text segment, and then 32K from libc as read/write but not executable
– the data segment. Finally just over 10K is mmaped as uninitialised data.

Then the code really starts, with printf() appearing to require an fstat() and the
reservation of an extra 4K of memory, as well as the expected write().
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Useful strace

One of the greatest uses of strace is in working out
what configuration files a program is reading, or which
one is causing it to die. The above output is rather
verbose, but one can request that a subset of calls be
traced, e.g.

> strace -e trace=file ./a.out

is often sufficient.

Output from strace can be redirected to a file using -o.

On TCM’s Tru64 machines, strace is spelt with a capital ‘S’. The other name is already
taken by a less useful Tru64 utility.

There is no firm standard on what an strace-like utility should be called. The equivalent
program on Solaris is called ‘truss’ and on ‘par’ on Irix. All have subtly different options.
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Debugging

Two optional parts of an executable greatly assist
debugging. The first gives the names of functions
and variables. The second gives information about the
mapping between line numbers in the source file and
instructions in the text segment.

Neither is required for the program to run. Neither
will be mapped into memory when the program is run.
Both can be removed by using the ‘strip’ command.

A debugger also usually requires that the frame pointer
is maintained in the conventional fashion. It is possible
to omit the frame pointer (-fomit-frame-pointer
for gcc) but this tends to upset debuggers.

Debugging information is usually turned on by
compiling with the -g flag, and it traditionally turns off
all optimisation. Full optimisation with full debugging
can be hard, as instructions may be reordered so
that their correspondance to lines in the source code
becomes hard to interpret.
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Optimisation

Optimisation is the process of producing a machine
code representation of a program which will run as fast
as possible. It is a job shared by the compiler and
programmer.

The compiler uses the sort of highly artificial
intelligence that programs have. This involves following
simple rules without getting bored halfway through.

The human will be bored before he starts to program,
and will never have followed a rule in his life. However,
it is he who has the Creative Spirit.

This section discussed some of the techniques and
terminology used.
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Loops

Loops are the only things worth optimising. A code
sequence which is executed just once will not take as
long to run as it took to write. A loop, which may
be executed many, many millions of times, is rather
different.

do i=1,n
x(i)=2*pi*i/k1
y(i)=2*pi*i/k2

enddo

Is the simple example we will consider first, and Fortran
will be used to demonstrate the sort of transforms the
compiler will make during the translation to machine
code.
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Simple and automatic

CSE

do i=1,n
t1=2*pi*i
x(i)=t1/k1
y(i)=t1/k2

enddo

Common Subexpression Elimination. Rely on the
compiler to do this.

Invariant removal

t2=2*pi
do i=1,n
t1=t2*i
x(i)=t1/k1
y(i)=t1/k2

enddo

Rely on the compiler to do this.
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Division to multiplication

t2=2*pi
t3=1/k1
t4=1/k2
do i=1,n
t1=t2*i
x(i)=t1*t3
y(i)=t1*t4

enddo

after which

t1=2*pi/k1
t2=2*pi/k2
do i=1,n
x(i)=i*t1
y(i)=i*t2

enddo

The compiler won’t do this by default, as it breaks
the IEEE standard subtly. However, there will be a
compiler flag to make this happen: find it and use it!

Conversion of x**2 to x*x will be automatic.

Remember multiplication is many times faster than division, and many many times faster than
logs and exponentiation.
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Another example

y=0
do i=1,n
y=y+x(i)*x(i)

enddo

As machine code has no real concept of a loop, this
will need converting to a form such as

y=0
i=1

1 y=y+x(i)*x(i)
i=i+1
if (i<n) goto 1

At first glance the loop had one fp add, one fp multiply,
and one fp load. It also had one integer add, one
integer comparison and one conditional branch. Unless
the processor supports speculative loads, the loading of
x(i+1) cannot start until the comparison completes.
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Unrolling

y=0
do i=1,n-mod(n,2),2
y=y+x(i)*x(i)+x(i+1)*x(i+1)

enddo
if (mod(n,2)==1) y=y+x(n)*x(n)

This now looks like

y=0
i=1
n2=n-mod(n,2)

1 y=y+x(i)*x(i)+x(i+1)*x(i+1)
i=i+2
if (i<n2) goto 1

if (mod(n,2)==1) y=y+x(n)*x(n)

The same ‘loop overhead’ of integer control
instructions now deals with two iterations, and a small
coda has been added to deal with odd loop counts.

Rely on the compiler to do this.

The compiler will happily unroll to greater depths (2 here, often 4 or 8 in practice), and may
be able to predict the optimum depth better than a human, because it is processor-specific.
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Reduction

This dot-product loop has a nasty data dependency
on y: no add may start until the preceeding add has
completed. However, this can be improved:

t1=0 ; t2=0
do i=1,n-mod(n,2),2
t1=t1+x(i)*x(i)
t2=t2+x(i+1)*x(i+1)

enddo
y=t1+t2
if (mod(n,2)==1) y=y+x(n)*x(n)

There are no data dependencies between t1 and t2.
Again, rely on the compiler to do this.

This class of operations are called reduction operations for a 1-D object (a vector) is reduced
to a scalar. The same sort of transform works for the sum or product of the elements, and
finding the maximum or minimum element.
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Prefetching

y=0
do i=1,n
prefetch_to_cache x(i+8)
y=y+x(i)*x(i)

enddo

As neither C nor Fortran has a prefetch instruction in
its standard, and not all CPUs support prefetching,
one must rely on the compiler for this.

This works better after unrolling too, as only one prefetch per cache line is required.
Determining how far ahead one should prefetch is awkward and processor-dependent.

It is possible to add directives to one’s code to assist a particular compiler to get prefetching
right: something for the desperate only.
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Loop Elimination

do i=1,3
a(i)=0

endo

will be transformed to

a(1)=0
a(2)=0
a(3)=0

Note this can only happen if the iteration count is
small and known at compile time. Replacing ‘3’ by
‘n’ will cause the compiler to unroll the loop about 8
times, and will produce dire performance if n is always
3.
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Loop Fusion

do i=1,n
x(i)=i

enddo
do i=1,n
y(i)=i

enddo

transforms trivially to

do i=1,n
x(i)=i
y(i)=i

enddo

eliminating loop overheads, and increasing scope for
CSE. Good compilers can cope with this, a few cannot.

Assuming x and y are real, the implicit conversion of i from integer to real is a common
operation which can be eliminated.
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Strength reduction

double a(2000,2000)

do j=1,n
do i=1,n
a(i,j)=x(i)*y(j)

enddo
enddo

The problem here is finding where the element a(i,j)
is in memory. The answer is 8(i−1)+16000(j−1) bytes
beyond the first element of a: a hideously complicated
expression.

Just adding eight to a pointer every time i increments
in the inner loop is much faster, and called strength
reduction. Rely on the compiler again.
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Inlining

function norm(x)
double precision norm,x(3)

norm=x(1)**2+x(2)**2+x(3)**2
end function
...
a=norm(b)

transforms to

a=b(1)**2+b(2)**2+b(3)**2

eliminating the overhead of the function call.

Often only possible if the function and caller are compiled simultaneously.
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Instruction scheduling and loop
pipelining

A compiler ought to move instructions around, taking
care not to change the resulting effect, in order to
make best use of the CPU. It needs to ensure that
latencies are ‘hidden’ by moving instructions with data
dependencies on each other apart, and that as many
instructions as possible can be done at once. This
analysis is most simply applied to a single pass through
a piece of code, and is called code scheduling.

With a loop, it is unnecessary to produce a set of
instructions which do not do any processing of iteration
n+1 until all instructions relating to iteration n have
finished. It may be better to start iteration n+1 before
iteration n has fully completed. Such an optimisation
is called loop pipelining for obvious reasons..

Sun calls ‘loop pipelining’ ‘modulo scheduling’.

Consider a piece of code containing three integer adds and three fp adds, all independent.
Offered in that order to a CPU capable of one integer and one fp instruction per cycle, this
would probably take five cycles to issue. If reordered as 3×(integer add, fp add), it would
take just three cycles.
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Debugging

The above optimisations should really never be done
manually. A decade ago it might have been necessary.
Now it has no beneficial effect, and makes code longer,
less readable, and harder for the compiler to optimise!

However, one should be aware of the above
optimisations, for they help to explain why line-
numbers and variables reported by debuggers may not
correspond closely to the original code. Compiling
with all optimisation off is occassionally useful when
debugging so that the above transformations do not
occur.
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Loop interchange

The conversion of

do i=1,n
do j=1,n
a(i,j)=0

enddo
enddo

to

do j=1,n
do i=1,n
a(i,j)=0

enddo
enddo

is one loop transformation most compilers do get right.
There is still no excuse for writing the first version
though.
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Matrix Multiplication

cij = aikbkj

do i=1,n
do j=1,n
t=0.
do k=1,n
t=t+a(i,k)*b(k,j)

enddo
c(i,j)=t

enddo
enddo

The number of FP operations is clearly 2n3.

Some timings, for a 463MHz (926MFLOPS peak) XP900:
n=2032 933s 18MFLOPS

n=2048 1348s 13MFLOPS
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The problem

The inner loop contains one fp add, one fp multiply, one fp load

with unit stride (b), and one fp load with stride n (a). The arrays

are around 32MB each.

The 2MB secondary cache on the XP900 is direct mapped, with

32,768 lines of 64 bytes. Thus the lowest 8 bits of an address are

an offset within a line, and the next 15 bits are a tag index. The

DTLB has 128 entries each covering an 8K page.

For n=2032, every load for a is a cache and TLB miss for i=j=1.
For j=2, every load for a is a cache hit and a TLB miss: over

2000 TLB entries would be needed to cover the first column just

read. A cache hit because 2032 cache lines are sufficient, and the

cache has 32,768 lines.

For n=2048, the same analysis applies for the TLB. For the cache,

because the stride is 214 bytes, the bottom 14 bits of the address,

and hence the bottom 6 of the tag index, are the same for all k.

Thus only 512 different cache lines are being used, and one pass

of the loop would need 2048 if all are to remain in cache, so all

are cache misses.
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Blocking

do i=1,n,2
do j=1,n
t1=0.
t2=0.
do k=1,n
t1=t1+a(i,k)*b(k,j)
t2=t2+a(i+1,k)*b(k,j)

enddo
c(i,j)=t1
c(i+1,j)=t2

enddo
enddo

Now two elements of a are used every time a cache line
of a is fetched. The number of cache misses is halved,
and the speed doubles. The obvious extension to use
eight elements (all of the 64 byte cache line) achieves
73MFLOPS for n=2048 and 98MFLOPS for n=2032.

Note that t1 to t8 will be stored in registers, not memory.
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Loop transformations

The compiler used claims to be able to do some of
the above automatically. Specifying -O5 achieves this
(-fast is insufficient), and manages 164MFLOPS on
the original code.

However, specifying -O5 on the code after blocking by
hand by a factor of eight produces something which
runs about three times slower than not using -O5.

So with current compilers automatic loop
transformations are slightly dangerous: sometimes they
make code much faster, sometimes much slower. They
work best on very simple structures, but even then
they can make debugging awkward.
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Laziness

call dgemm(’n’,’n’,n,n,n,1d0,a,n,b,n,0d0,c,n)

The dgemm routine is part of the BLAS library and can
evaluate

cij = αaikbkj + βcij

Although this is much more general than we require, it
achieves 800MFLOPS using the same operation count
as before.

The library may have special cases for α = 1 and β = 0. Even if not, there are only n2 of
these operations.

Compaq’s own cxml library gave 800MFLOPS. NAG’s BLAS gave just 120MFLOPS.

c=matmul(a,b) is tempting, and achieves just 13MFLOPS (Compaq Fortran V5.5-1877),
and used 32MB of stack, so one can guess how that is implimented. With -O5 too it achieves
385MFLOPS, so the optimisation flags affect intrinsics. Compaq’s compiler is quite bad in
this regard.

What was wrong with our 100MFLOPS code? The TLB miss on every cache line load of a
prevents any form of prefetching working for this array.
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The Compilers

f90 -fast -o myprog myprog.f90 func.o -lnag

That is options, source file for main program, other
source files, other objects, libraries. Order does matter
(to different extents with different compilers), and
should not be done randomly.

Yet worse, random options whose function one cannot
explain and which were dropped from the compiler’s
documentation two major releases ago should not occur
at all!

The compile line is read from left to right. Trying

f90 -o myprog myprog.f90 func.o -lnag -fast

may well apply optimisation to nothing (i.e. the source files following -fast). Similarly

f90 -o myprog myprog.f90 func.o -lnag -lcxml

will probably use routines from NAG rather than cxml if both contain the same routine.
However,

f90 -o myprog -lcxml myprog.f90 func.o -lnag

may also favour NAG over cxml with some compilers.
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Calling Compilers

Almost all UNIX commands never care about file names
or extensions.

Compilers are very different. They do care greatly
about file names, and they often use a strict left to
right ordering of options.

Extension File type
.a static library
.c C
.cc C++
.cxx C++
.C C++
.f Fixed format Fortran
.F ditto, preprocess with cpp
.f90 Free format Fortran
.F90 ditto, preprocess with cpp
.i C, do not preprocess
.o object file
.s assembler file
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Consistency

It is usual to compile large programs by first compiling
each separate source file to an object file, and then
linking them together.

One must ensure that one’s compilation options are
consistent. In particular, one cannot compile some files
in 32 bit mode, and others in 64 bit mode. It may
not be possible to mix compilers either: certainly on
our Linux machines one cannot link together things
compiled with NAG’s f95 compiler and Intel’s ifc
compiler.
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Common compiler options

-lfoo and -L

-lfoo will look first for a shared library called libfoo.so, then a

static library called libfoo.a, using a particular search path. One

can add to the search path (-L${HOME}/lib or -L.) or specify a

library explicitly like an object file, e.g. /temp/libfoo.a.

-O, -On and -fast

Specify optimisation level, -O0 being no optimisation. What

happens at each level is compiler-dependent, and which level is

achieved by not specifying -O at all, or just -O with no explicit

level, is also compiler dependent. -fast requests fairly aggressive

optimisation, including some unsafe but probably safe options,

and probably tunes for specific processor used for the compile.

-c and -S

Compile to object file (-c) or assembler listing (-S): do not link.

-g

Include information about line numbers and variable names in .o
file. Allows a debugger to be more friendly, and may turn off

optimisation.
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More compiler options

-C

Attempt to check array bounds on every array reference. Makes

code much slower, but can catch some bugs. Fortran only.

-r8

The -r8 option is entertaining: it promotes all single precision

variables, constants and functions to double precision. Its use is

unnecessary: code should not contain single precision arithmetic

unless it was written for a certain Cray compiler which has been

dead for years. So your code should give identical results whether

compiled with this flag or not.

Does it? If not, you have a lurking reference to single precision

arithmetic.

The rest

Options will exist for tuning for specific processors, warning about

unused variables, reducing (slightly) the accuracy of maths to

increase speed, aligning variables, etc. There is no standard for

these.

IBM’s equivalent of -r8 is -qautodbl=dbl4.
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Fortran 90

Fortran 90 is the langauge for numerical computation.
However, it is not perfect. In the next few slides are
described some of its many imperfections.

Lest those using C, C++ and Mathematica feel they
can laugh at this point, nearly everything that follows
applies equally to C++ and Mathematica. The only
(almost completely) safe language is F77, but that has
other problems.

Most of F90’s problems stem from its friendly high-level
way of handling arrays and similar objects.

So that I am not accused of bias,

http://www.tcm.phy.cam.ac.uk/~mjr/C/

discusses why C is even worse. . .
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Slow arrays

a=b+c

Humans do not give such a simple statement a second
glace, quite forgetting that depending what those
variables are, that could be an element-wise addition
of arrays of several million elements. If so

do i=1,n
a(i)=b(i)+c(i)

enddo

would confuse humans less, even though the first form
is neater. Will both be treated equally by the compiler?
They should be, but many early F90 compilers produce
faster code for the second form.

320



Big surprises

a=b+c+d

really ought to be treated equivalently to

do i=1,n
a(i)=b(i)+c(i)+d(i)

enddo

if all are vectors. Many early compilers would instead
treat this as

temp_allocate(t(n))
do i=1,n
t(i)=b(i)+c(i)

enddo
do i=1,n
a(i)=t(i)+d(i)

enddo

This uses much more memory than the F77 form, and
is much slower.

321



Sure surprises

a=matmul(b,matmul(c,d))

will be treated as

temp_allocate(t(n,n))
t=matmul(c,d)
a=matmul(b,t)

which uses more memory than one may first expect.
And is the matmul the compiler uses as good as the
matmul in the BLAS library? Not if it is Compaq’s
compiler.

I don’t think Compaq is alone in being guilty of this stupidity. See IBM’s -qessl=yes
option. . .

Note that even a=matmul(a,b) needs a temporary array. The special case which does not is
a=matmul(b,c).
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More sure surprises

allocate(a(n,n))
...
call wibble(a(1:m,1:m))

must be translated to

temp_allocate(t(m,m))
do i=1,m
do j=1,m
t(j,i)=a(j,i)

enddo
enddo
call wibble(t)
do i=1,m
do j=1,m
a(j,i)=t(j,i)

enddo
enddo

Array slicing and reshaping may be automatic, but it takes a lot
of time and memory.

The temporary array is unnecessary if m=n, or if the call is a(:,1:m), but early compilers will
use it anyway, being the simple approach which always works.

323



Type trouble

type electron
integer :: spin
real (kind(1d0)), dimension(3) :: x

end type electron

type(electron), allocatable :: e(:)
allocate (e(10000))

Good if one always wants the spin and position of the electron

together. However, counting the net spin of this array

s=0
do i=1,n
s=s+e(i)%spin

enddo

is now slow, as an electron will contain 4 bytes of spin, 4 bytes of

padding, and three 8 byte doubles, so using a separate spin array

so that memory access was unit stride again could be eight times

faster.
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What is temp allocate?

Ideally, an allocate and deallocate if the object
is ‘large’, and placed on the stack otherwise, as stack
allocation is faster, but stacks are small and never
shrink. Ideally reused as well.

a=matmul(a,b)
c=matmul(c,d)

should look like

temp_allocate(t(n,n))
t=matmul(a,b)
a=t
temp_deallocate(t)
temp_allocate(t(m,m))
t=matmul(c,d)
c=t
temp_deallocate(t)

with further optimisation if m=n. Some early
F90 compilers would allocate all temporaries at the
beginning of a subroutine, use each once only, and
deallocate them at the end.
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Precision

complex (kind(1d0)) :: c
real (kind(1d0)) :: a,b,pi
...
pi=3.1415926536
c=cmplx(a,b)

This should read

pi=3.1415926536d0
c=cmplx(a,b,kind(1d0))

for both a constant and the cmplx function default to
single precision.

Some compilers automatically correct the above errors.

Note also that π expressed to full double precision is not the above value: either use

real (kind(1d0)) :: pi
pi=4*atan(1d0)

or

real (kind(1d0)), parameter :: pi=3.141592653589793d0

(The latter has the advantage that one cannot accidently change the value of π in the
program, the former that it is less likely to be mistyped.)

c=(0.2d0,0.4d0) is sensible, as (,) produces a complex constant of the same precision as
the real constants in the brackets.
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Precision again

real*8 x
real(8) :: y

The first is a ubiquitous F77 extension. The second is
a foolish misunderstanding: some compilers may use a
kind value of 8 to represent an 8 byte double precision
number, but nothing in the standard says they should
use eight rather than three (as a few do), or anything
else.

double precision x
real (kind(1d0)) :: y

is the correct F77 and F90 respectively.

integer, parameter :: dp=kind(1d0)
real (dp) :: y

is a common (and correct) F90 construction.
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Mind your language

There are many, many computer languages, and one
must often choose an appropriate one, and use it in an
appropriate fashion.

Of course one needs to balance one’s own time against
computer time, and everyone else’s too. There is no
need to spend as long worrying about something which
is likely to take 5s of CPU as something which may
take 5 years. Nor should one worry as much about a
twenty line program for one’s own use, as a thousand
lines which you intend to pass on to other people.

Java: excellent for GUI interfaces, but slow and poor numerics.

Perl: excellent for string handling, but very slow for anything else.

C: general purpose language with poor optimisation potention.

C++: it will take you years to learn it.

FORTRAN: excellent numerical language, readily optimised if one ignores most of F90.
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Timeo Danaos et Dona Ferentes

Beware of Geeks bearing gifts.

It would be nice to assume that all code you are
given represents bug-free, robust, well documented,
exemplary specimens of best practice. However, this is
unlikely. Passing on trash is not helpful though: don’t
do it.

If you end up writing and passing on a thousand lines
of code in the course of your work, then, whether
you wanted to be or not, you are a professional
programmer, and you need to show some sort of
professional standards. Otherwise people may conclude
that the sloppiness in your code infects your science
too.
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Comments, Indentation, Structure

Comments

Use them: they will help you if you need to read the
code in a couple of years time!

Indentation

Again, should be used, in a consistent style.

Large code?

Consider the use of make for compilation, and CVS for
version control. Try to keep individual source files and
routines short.

Take care with make, for there are many implimentations and few standards. Either try a very
basic subset of the syntax understood by all, or, perhaps, Gnu’s make.
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Numerics

What does your language do to the following two
examples?

Example One

double x
integer i

x=10e20
i=x

Example Two

double x

x=-1
x=sqrt(x)

if (x<10) error "x too small"
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Answers

Out of range conversion to integer

C: undefined. Java: max int. Fortran: undefined

Square root of -1

C: implimentation defined, errno set. Java: NaN,
comparison will be false. Fortran: undefined

Where the result is undefined above, the program may halt. Where it is defined, the program
may not. . .

332



Standards

integer i,c

c=77
do 10, i=1,0
c=66

10 continue
c=90

write(*,*)’ Fortran version might be ’,c
end

Make sure that you, your compiler, and your co-
workers, agree on what standard you are following.
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In translation

#include<stdio.h>

int main(){
float x=1./131072.;
int i;
unsigned j;
long l;

x=(1+x)*(1+x)-1-2*x;
if (x>1e-12) printf("K&R style arithmetic\n");

i=2//**/
-2;

if (i==-1) printf("K&R or C89 style comments\n");
else printf("C++ or C99 style comments\n");

if (sizeof(’x’)==1) printf("C++ compiler\n");
else printf("C compiler\n");

l=-1; j=1;
if (j<l) printf("long is no longer than int\n");
else printf("long is longer than int\n");

return(0);
}

Yes, these are contrived examples in order to fit in a few lines. There are other surprises
lurking though.
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Know your language

When one starts using a computer language, one
merely copies or modifies existing code, mostly
following one’s intuition, and relying on the compiler
to point out where intuition failed. This is all perfectly
fine.

When one needs to program more professionally, either
because one is passing one’s code on to other people,
or because one is relying on substantial amounts of
one’s own code for one’s work, it becomes necessary
to have a more formal understanding of the language.
It may be tedious to read a book on Fortran (or,
worse, C), but it will stop people laughing at your code
(and you), or cursing your code (and you) as much as
otherwise would be the case.
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Four Mistakes in ANSI89 C

#include<stdio.h>
#include<string.h>

int main(void){
char message[13]="hello, world\n";
char *hello="hello, world\n";
int i=0,j,offset=0;

/* Print message in zig-zag */

for(;++i<50;){
offset=(++offset)%16;
for(j=0;j<offset;j++) printf(" ");
printf(message);

}

printf(hello);
strcpy(hello,"Bonjour\n");
printf(hello);

}
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Four errors in F90

program integrate
! Integrate Gaussian from -inf to +inf
use nag_f77_d_chapter
implicit none
integer, parameter :: lw=1000, liw=lw/4
integer :: inf, ifail, iwrk(liw),i
real(8) :: b,result,err, &

epsabs,epsrel,wrk(lw)
inf=2 ; b=0 ; ifail=1
epsabs=1d-4 ; epsrel=1d-8

call d01amf(gaussian,b,inf,epsabs, &
epsrel,result,err,wrk,lw, &
iwrk,liw,ifail)

write(6,*)’Integral is ’,result
write(6,*)’sqrt(pi) is ’,sqrt(2*asin(1.0))

contains
function gaussian(x)
real(8) :: gaussian, x
gaussian=exp(-x**2)

end function
end
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Answers

Corrections to the following gratefully received.

C

Declarations are correct.
offset=(++offset)%16; – offset modified twice with no intervening sequence

point.
printf(message); – message is not null terminated (although it would have been

if the declaration had beenchar message[14]=. . . , andmessage[12] would
have been an error (initialiser longer than array being initialised)).

strcpy(hello,"Bonjour\n"); – attempts to modify read-only string.
} – no return value forint function.

F90

real(8) – compiler-specific. Should bereal (kind(1.0d0)
call d01amf – passes name of internal functiongaussian.
write(6,*) – unit 6 being stdout is compiler-specific.
sqrt(2*asin(1.0)) – this is all default (i.e. single) precision
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Appendix: ASCII codes

00 0x00 ^@
01 0x01 ^A
02 0x02 ^B
03 0x03 ^C
04 0x04 ^D
05 0x05 ^E
06 0x06 ^F
07 0x07 ^G
08 0x08 ^H
09 0x09 ^I
10 0x0A ^J
11 0x0B ^K
12 0x0C ^L
13 0x0D ^M
14 0x0E ^N
15 0x0F ^O
16 0x10 ^P
17 0x11 ^Q
18 0x12 ^R
19 0x13 ^S
20 0x14 ^T
21 0x15 ^U
22 0x16 ^V
23 0x17 ^W
24 0x18 ^X
25 0x19 ^Y
26 0x1A ^Z
27 0x1B ^[
28 0x1C ^\
29 0x1D ^]
30 0x1E ^^
31 0x1F ^_

32 0x20  
33 0x21 !
34 0x22 "
35 0x23 #
36 0x24 $
37 0x25 %
38 0x26 &
39 0x27 ’
40 0x28 (
41 0x29 )
42 0x2A *
43 0x2B +
44 0x2C ,
45 0x2D -
46 0x2E .
47 0x2F /
48 0x30 0
49 0x31 1
50 0x32 2
51 0x33 3
52 0x34 4
53 0x35 5
54 0x36 6
55 0x37 7
56 0x38 8
57 0x39 9
58 0x3A :
59 0x3B ;
60 0x3C <
61 0x3D =
62 0x3E >
63 0x3F ?

64 0x40 @
65 0x41 A
66 0x42 B
67 0x43 C
68 0x44 D
69 0x45 E
70 0x46 F
71 0x47 G
72 0x48 H
73 0x49 I
74 0x4A J
75 0x4B K
76 0x4C L
77 0x4D M
78 0x4E N
79 0x4F O
80 0x50 P
81 0x51 Q
82 0x52 R
83 0x53 S
84 0x54 T
85 0x55 U
86 0x56 V
87 0x57 W
88 0x58 X
89 0x59 Y
90 0x5A Z
91 0x5B [
92 0x5C \
93 0x5D ]
94 0x5E ^
95 0x5F _

 96 0x60 ‘
 97 0x61 a
 98 0x62 b
 99 0x63 c
100 0x64 d
101 0x65 e
102 0x66 f
103 0x67 g
104 0x68 h
105 0x69 i
106 0x6A j
107 0x6B k
108 0x6C l
109 0x6D m
110 0x6E n
111 0x6F o
112 0x70 p
113 0x71 q
114 0x72 r
115 0x73 s
116 0x74 t
117 0x75 u
118 0x76 v
119 0x77 w
120 0x78 x
121 0x79 y
122 0x7A z
123 0x7B {
124 0x7C |
125 0x7D }
126 0x7E ~
127 0x7F �

For reference, the ‘standard’ 7-bit ASCII map. Codes 0 to 31 are unprintable control codes,
and code 127 is delete.
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-r8, 318
.COM, 257, 266
.EXE, 266
/proc, 213
0x, 113

8087, 26

address lines, 93, 94
alignment, 127
allocate, 208
allocate on write, 124
Alpha, 23, 25, 148–150
Altivec, 150
Amdahl’s law, 217, 232
and, 48
ANSI C, 65
ASCII, 45, 339
assembler, 85
ATE, 122

bandwidth, 97
bandwidth, hard disk, 155
bandwidth, interconnect, 230
big endian, 40
binary, 37
binary fractions, 54
BIOS, 103
bit flip, 104
BLAS, 252, 313
branch, 84, 88
branch prediction, 86
bss, 207
burst, 96, 97
bus, 18
byte, 29, 36

C, 319
cache

associative, 121

direct mapped, 118
disk, 203, 204
memory, 111
primary, 126
secondary, 126
write back, 123, 124
write through, 123

cache coherency
broadcast, 225, 237
directory, 225, 237
snoopy, 123, 223, 237

cache controller, 112
cache hierarchy, 126
cache line, 115, 116
cache thrashing, 120
call, 270
cc-NUMA, 237
CD, 157–159
CISC, 81, 143
clock, 18, 98, 101
compiler, 20, 314–318
complex arithmetic, 63, 64
cpp, 285
crossbar, 228, 239
CSE, 296

DAT, 168, 169
data dependency, 79
data segment, 207
debugging, 293, 307, 317, 318
denormals, 57, 62
device file, 178
dirty bit, 123
disk thrashing, 199
distributed memory computer, 226
division

integer, 46
DLT, 168, 169
DOS, 186–189, 257, 261
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DRAM, 91, 92
DTLB, 197
DVD, 160

EBDIC, 45
ECC, 106
EDO, 95–97
EEPROM, 91
EIDE, 153
ELF, 263, 264, 266, 267
EM64T, 147
endian, 40, 41
EPROM, 91
exponent, 50
ext2, 164
ext3, 164

F90, 319–327
Flash RAM, 103
floppy disk, 156
FPM, 95–97
fragmentation, memory, 188
frame pointer, 282–284, 293
fsck, 163
function overloading, 255
functional unit, 17, 82

gas, 265
gcc, 281
GL, see OpenGL

Hamming Code, 106
hard disk, 153–155
Harvard architecture, 125
heap, 207, 208
helical scan, 168
hex, 37, 113
hit rate, 111, 122
HPF, 233
hypercube, 228

Hyperthreading, 145
hyperthreading, 244

IA32, 23, 26–28, 134–147
IBM 370, 60
IEEE 754, 55, 56, 58
in flight instructions, 86
infinity, 58
inlining, 305
instruction, 19
instruction decoder, 17, 80
instruction fetcher, 17
instruction pointer, 24
integers

negative, 38
positive, 37

issue rate, 82
ITLB, 197

journalling, 164
jump, see branch

K&R C, 65
kernel, 175, 178, 180, 268

language, 20
LAPACK, 252
latency, functional unit, 82
latency, hard disk, 155
latency, interconnect, 230
latency, memory, 97
ld, 264, 267, 271–273, 285
ldd, 289
libc, 269, 270, 281
libraries, 250–254
libraries, shared, 209
limit, 208
linking, 255, 317

dynamic, 276–278
static, 272, 273, 277
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Linpack, 32
little endian, 40
load, 184
locked pages, 200
logistic map, 67
loop

blocking, 311
coda, 299
elimination, 302
fusion, 303
interchange, 308
invariant removal, 296
pipelining, 306
reduction, 300
strength reduction, 304
transformations, 312
unrolling, 299

machine code, 20, 29
MacOS, 189
main(), 279
make, 330
malloc, 208, 212, 269
mantissa, 50
memory map

Digital UNIX, 211
DOS, 187, 188
Linux, 212

memory refresh, 92
MESI, 224
metadata, 161–164
MFLOPS, 30
microcode, 61
MIPS, 30
mirror, 165
MLC, 103
MMX, 142
modulo scheduling, see loop pipelining
MPI, 227, 234, 235, 241, 242

MPP, 226
MTA, 244
multitasking, 183

co-operative, 185
pre-emptive, 185

multithreading, 243, 244

NAG, 252
name mangling, 255
NaN, 58, 59
nasm, 260, 265
nice, 184
non-blocking, 230
null pointer dereferencing, 212
NUMA, 237, 238
nybble, 36

offset, 38
OpenMP, 233
operating system, 184, 199, 250
Opteron, 147, 247
optimisation, 294–313
or, 48
out-of-order execution, 89
overflow, 43, 58, 59

page, 192
page fault, 194, 199
page table, 192–196
paging, 199
parallel computers, 215
parity, 105
PC ratings, 102
Pentium 4, 246
physical address, 191
PID, 172
pipeline, 78, 82
pipeline depth, 77
platter, 154, 155
pmap, 213
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predication, 88
prefetching, 128, 129, 301
priority, 184
process, 172
process switch, 183
program counter, see instruction pointer
ps, 173, 184

quadratic formula, 65

RAID, 166
RAM, 91
RAMBUS, 101
random numbers, 72–75
ranges, IEEE 754, 60
ranges, integer, 44
RDRAM, 101
register, 17, 29
registers, 24–28
renice, 184
RISC, 81, 143
ROM, 91
rotate, 47

SATA, 153
scaling, 217, 218, 232
scandisk, 163
scheduler, 175, 184
SCSI, 153
SDRAM, 98
SECDED, 106
sector, 155
seek time, 155
segment, 207
segment register, 27
shared memory processor, 219
shift, 47
SIGBUS, 127
SIGFPE, 59
SIGILL, 29

sign-magnitude, 38
SIGSEGV, 194
SIMD, 215
size, 207
SMP, 219
SMT, 244
SPARC, 150
SPEC, 33
speculative execution, 87
spin wait, 241
SRAM, 91, 92, 111
SSE, 144
SSE2, 145
stack, 207, 208, 270, 282–284
stack frame, 283
stalls, 86
strace, 288, 290–292
streaming, 129
Streams, 31
strip, 293
sub-block, cache line, 116, 124
Sun 280R, 248
Sun V20z, 247
superscalar, 80
swap space, 201
swapping, 201

tag, 114, 115, 117–119, 121
tapes, 167, 168
text segment, 207
timeslice, 183
TLB, 197
topology, 228
track, 155
tree, 228
two’s complement, 38

ufs, 164
ulimit, 208
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UltraSPARC III, 248
underflow, 57
uptime, 184

vector computers, 109
victim cache, 122
virtual address, 191
virtual address space, 174
virtual disk, 165
virtual memory, 199
VIS, 150
vmstat, 203

word, 29

X-bar, see crossbar
x86-64, 147
xor, 48

zero, 39, 57, 58
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