
Computer Hardware

MJ Rutter

mjr19@cam.ac.uk

Michaelmas 2013

©2013 MJ Rutter

Computer Hardware

MJ Rutter

mjr19@cam

Michaelmas 2013

Bibliography

Computer Architecture, A Qualitative Approach, 5th Ed., Hennessy, JL and Patterson, DA,

pub. Morgan Kaufmann, c.£40.

Usually considered the standard textbook on computer architecture, and kept reasonably up-

to-date. The fifth edition was published in 2011, although much material in earlier editions

is still relevant, and early editions have more on paper, and less on CD / online, though with

850 pages, there is quite a lot on paper. . .

Typeset by FoilTEX c©2013 MJ Rutter

1

Contents

History 4

The CPU 10

instructions . 17

pipelines . 18

vector computers . 36

performance measures . 39

Memory 44

DRAM . 45

caches . 57

Memory Access Patterns in Practice 84

matrix multiplication . 84

matrix transposition . 109

Memory Management 120

virtual addressing . 121

paging to disk . 130

memory segments . 139

Hello: My First Program 160

direct hardware access . 161

using the OS . 169

using libraries . 176

Compilers & Optimisation 196

2

optimisation . 197

the pitfalls of F90 . 221

Disks, Filesystem & Fileservers 234

disks . 235

RAID . 244

filesystems . 247

fileservers . 265

Parallel Computers 274

multitasking . 274

parallel computers . 278

MPP . 282

SMP . 289

NUMA . 294

Index 315

3

History

4

History: to 1970

1951 Ferranti Mk I: first commercial computer

UNIVAC I: memory with parity

1953 EDSAC I ‘heavily used’ for science (Cambridge)

1954 Fortran I (IBM)

1955 Floating point in hardware (IBM 704)

1956 Hard disk drive prototype. 24′′ platters (IBM)

1961 Fortran IV

Pipelined CPU (IBM 7030)

1962 Hard disk drive with flying heads (IBM)

1963 CTSS: Timesharing (multitasking) OS

Virtual memory & paging (Ferranti Atlas)

1964 First BASIC

1967 ASCII character encoding (current version)

GE635 / Multics: SMP (General Elect)

1968 Cache in commercial computer (IBM 360/85)

Mouse demonstrated

Reduce: computer algebra package

1969 ARPAnet: wide area network

Fully pipelined functional units (CDC 7600)

Out of order execution (IBM 360/91)

5

1970 First DRAM chip. 1Kbit. (Intel)

First floppy disk. 8′′ (IBM)

1971 UNIX appears within AT&T

Pascal

First email

1972 Fortran 66 standard published

First vector computer (CDC)

First TLB (IBM 370)

ASC: computer with ‘ECC’ memory (TI)

1973 First ‘Winchester’ (hard) disk (IBM)

1974 First DRAM with one transistor per bit

1975 UNIX appears outside AT&T

Ethernet appears (Xerox)

1976 Apple I launched. $666.66

Cray I, ILLIAC IV

Z80 CPU (used in Sinclair ZX series) (Zilog)

51
4

′′
floppy disk

1978 K&R C appears (AT&T)

TCP/IP

Intel 8086 processor

Laser printer (Xerox)

WordStar (early wordprocessor)

First VAX (11/780) and VMS (DEC)

1979 TEX

6

1980 Sinclair ZX80 £100 (105 sold eventually)

Fortran 77 standard published

1981 Sinclair ZX81 £70 (106 sold eventually)

31
2

′′
floppy disk (Sony)

IBM PC & MS DOS version 1 $3,285

SMTP (current email standard) proposed

1982 Sinclair ZX Spectrum £175 48KB colour

Acorn BBC model B £400 32KB colour

Commodore64 $600 (107 sold eventually)

Cray X-MP (first multiprocessor Cray)

Motorola 68000 (commodity 32 bit CPU)

1983 Internet defined to be TCP/IP only

Apple IIe $1,400

IBM XT, $7,545

Caltech Cosmic Cube: 64 node 8086/7 MPP

1984 Apple Macintosh $2,500. 128KB, 9” B&W screen

Sinclair QL £400. 128KB

IBM AT, $6,150. 256KB

CD ROM

1985 LATEX2.09

PostScript (Adobe)

Ethernet formally standardised

IEEE 748 formally standardised

Intel i386 (Intel’s first 32 bit CPU)

X10R1 (forerunner of X11) (MIT)

C++ 7

History: the RISCs

1986 MIPS R2000, RISC CPU (used by SGI and DEC)

SCSI formally standardised

1987 Intel i860 (Intel’s first RISC CPU)

Acorn Archimedes (ARM RISC) £800

SPARC I, RISC CPU (Sun)

Macintosh II $4,000. FPU and colour.

Multiflow Trace/200: VLIW CPU

X11R1 (MIT)

1989 ANSI C

1990 PostScript Level 2

Power I: superscalar RISC (IBM)

MS Windows 3.0

1991 World Wide Web / HTTP

PVM (later superceded by MPI)

Fortran 90

1992 PCI

OpenGL

OS/2 2.0 (32 bit a year before Windows NT) (IBM)

Alpha 21064: 64 bit superscalar RISC CPU (DEC)

8

A Summary of History

The above timeline stops about two decades before a precursor to this talk was

first given. Computing is not a fast-moving subject, and little of consequence

has happened since. . .

By 1970 the concepts of disk drives, floating point, memory paging, parity

protection, multitasking, caches, pipelining and out of order execution

have all appeared in commercial systems, and high-level languages and

wide area networking have been developed. The 1970s themselves add

vector computers and error correcting memory, and implicit with the vector

computers, RISC.

The rest is just enhanced technology rather than new concepts. The 1980s

see the first serious parallel computers, and much marketing in a home

computer boom. The slight novelty to arrive in the 21st century is the ability

of graphics cards to do floating point arithmetic, and to run (increasingly

complex) programs. ATI’s 9700 (R300) launched in late 2002 supported FP

arithmetic. Nvidia followed a few months later.

9

The CPU

10

Inside the Computer

card

CPU

disks video

VDU

memory
controller

bus
controller

memory USB
ports

11

The Heart of the Computer

The CPU, which for the moment we assume has a single core, is the brains

of the computer. Everything else is subordinate to this source of intellect.

A typical modern CPU understands two main classes of data: integer and

floating point. Within those classes it may understand some additional

subclasses, such as different precisions.

It can perform basic arithmetic operations and comparisons, governed by a

sequence of instructions, or program.

It can also perform comparisons, the result of which can change the execution

path through the program.

Its sole language is machine code, and each family of processors speaks a

completely different variant of machine code.

12

+, −
shift
logical

+, −
shift
logical

store
load/

store
load/

F
lo

a
tin

g
 P

o
in

t

R
e

g
is

te
rs

In
te

g
e

r
R

e
g

is
te

rs

Fetch

+, −

*, /

Memory Controller

Schematic of Typical RISC CPU

Decode
and

Issue

13

What the bits do

• Memory: not part of the CPU. Used to store both program and data.

• Instruction fetcher: fetches next machine code instruction from memory.

• Instruction decoder: decodes instruction, and sends relevant data on to. . .

• Functional unit: dedicated to performing a single operation

• Registers: store the input and output of the functional units There are typically about

32 floating point registers, and 32 integer registers.

Partly for historical reasons, there is a separation between the integer and

floating point parts of the CPU.

On some CPUs the separation is so strong that the only way of transferring data between the integer and floating point registers is via

the memory. On some older CPUs (e.g. the Intel 386), the FPU (floating point unit) is optional and physically distinct.

14

Clock Watching

The best known part of a CPU is probably the clock. The clock is simply

an external signal used for synchronisation. It is a square wave running at a

particular frequency.

Clocks are used within the CPU to keep the various parts synchronised, and

also on the data paths between different components external to the CPU.

Such data paths are called buses, and are characterised by a width (the number

of wires (i.e. bits) in parallel) as well as a clock speed. External buses are

usually narrower and slower than ones internal to the CPU.

Although sychronisation is important – every good orchestra needs a good

conductor – it is a means not an end. A CPU may be designed to do a lot

of work in one clock cycle, or very little, and comparing clock rates between

different CPU designs is meaningless.

The bandwidth of a bus is simple its width × its clock speed × the number of data transfers per clock cycle. For the original IBM

PC bus, 1 byte × 4.77MHz × one quarter (1.2MB/s). For PCIe v2 x16, 2 bytes × 5GHz × four fifths (8GB/s).

15

Work Done per Clock Cycle

Intel’s ‘Sandy Bridge’ and ‘Ivy Bridge’ range of CPUs can theoretically

sustain four floating point adds and four floating point multiplies per core

per clock-cycle.

The previous generations (Nehalem and Core2) just two adds and two

multiplies.

The previous generation (Pentium4) just one add and one multiply.

The previous generations (Pentium to Pentium III) just one add or multiply.

The previous generation (i486), about a dozen clock cycles for one FP add or

multiply. The generation before (i386/i387) about two dozen cycles.

Since the late 1980s clock speeds have improved by a factor of about 100

(c. 30MHz to c. 3GHz). The amount of floating point work a single core can

do in one clock cycle has also increased by a factor of about 100.

16

Typical instructions

Integer:

• arithmetic: +,−,×,/, negate

• logical: and, or, not, xor

• bitwise: shift, rotate

• comparison

• load / store (copy between register and memory)

Floating point:

• arithmetic: +,−,×,/,
√

, negate, modulus

• convert to / from integer

• comparison

• load / store (copy between register and memory)

Control:

• (conditional) branch (i.e. goto)

Most modern processors barely distinguish between integers used to represent numbers, and integers used to track memory addresses

(i.e. pointers).

17

A typical instruction

fadd f4,f5,f6

add the contents of floating point registers 4 and 5, placing the result in

register 6.

Execution sequence:

• fetch instruction from memory

• decode it

• collect required data (f4 and f5) and send to floating point addition unit

• wait for add to complete

• retrieve result and place in f6

Exact details vary from processor to processor.

Always a pipeline of operations which must be performed sequentially.

The number of stages in the pipeline, or pipeline depth, can be between about

5 and 15 depending on the processor.

18

Making it go faster. . .

If each pipeline stage takes a single clock-cycle to complete, the previous

scheme would suggest that it takes five clock cycles to execute a single

instruction.

Clearly one can do better: in the absence of branch instructions, the next

instruction can always be both fetched and decoded whilst the previous

instruction is executing. This shortens our example to three clock cycles per

instruction.

Fetch Decode Execute Return
Result

Fetch
Operands

Fetch Decode Execute Return
Result

Fetch
Operands

Time

second instruction

first instruction

19

. . . and faster. . .

A functional unit may itself be pipelined. Considering again floating-point

addition, even in base 10 there are three distinct stages to perform:

9.67× 105 + 4× 104

First the exponents are adjusted so that they are equal:

9.67× 105 + 0.4× 105

only then can the mantissas be added: 10.07× 105

then one may have to readjust the exponent: 1.007× 106

So floating point addition usually takes at least three clock cycles in the

execution stage. But the adder may be able to start a new addition ever clock

cycle, as these stages use distinct parts of the adder.

Such an adder would have a latency of three clock cycles, but a repeat or

issue rate of one clock cycle.

20

. . . and faster. . .

Further improvements are governed by data dependency. Consider:

fadd f4,f5,f6

fmul f6,f7,f4

(Add f4 and f5 placing the result in f6, then multiply f6 and f7 placing

the result back in f4.)

Clearly the add must finish (f6 must be calculated) before the multiply can

start. There is a data dependency between the multiply and the add.

But consider

fadd f4,f5,f6

fmul f3,f7,f9

Now any degree of overlap between these two instructions is permissible:

they could even execute simultaneously or in the reverse order and still give

the same result.

21

. . . and faster

We have now reached one instruction per cycle, assuming data independency.

If the instructions are short and simple, it is easy for the CPU to dispatch

multiple instructions simultaneously, provided that each functional unit

receives no more than one instruction per clock cycle.

So, in theory, an FP add, an FP multiply, an integer add, an FP load and an

integer store might all be started simultaneously.

RISC instruction sets are carefully designed so that each instruction uses

only one functional unit, and it is easy for the decode/issue logic to spot

dependencies. CISC is a mess, with a single instruction potentially using

several functional units.

CISC (Complex Instruction Set Computer) relies on a single instruction doing a lot of work: maybe incrementing a pointer and

loading data from memory and doing an arithmetic operation.

RISC (Reduced Instruction Set Computer) relies on the instructions being very simple – the above CISC example would certainly be

three RISC instructions – and then letting the CPU overlap them as much as possible.

22

Breaking Dependencies

for(i=0;i<n;i++){ do i=1,n

sum+=a[i]; sum=sum+a(i)

} enddo

This would appear to require three clock cycles per iteration, as the iteration

sum=sum+a[i+1] cannot start until sum=sum+a[i] has completed.

However, consider

for(i=0;i<n;i+=3){ do i=1,n,3

s1+=a[i]; s1=s1+a(i)

s2+=a[i+1]; s2=s2+a(i+1)

s3+=a[i+2]; s3=s3+a(i+2)

} enddo

sum=s1+s2+s3; sum=s1+s2+s3

The three distinct partial sums have no interdependency, so one add can be

issued every cycle.

Do not do this by hand. This is a job for an optimising compiler, as you need to know a lot about the particular processor you are

using before you can tell how many paritial sums to use. And worrying about codas for n not divisible by 3 is tedious.

23

An Aside: Choices and Families

There are many choices to make in CPU design. Fixed length instructions, or

variable? How many integer registers? How big? How many floating point

registers (if any)? Should ‘complicated’ operations be supported? (Division,

square roots, trig. functions, . . .). Should functional units have direct access

to memory? Should instructions overwrite an argument with the result? Etc.

This has led to many different CPU families, with no compatibility existing

between families, but backwards compatibility within families (newer

members can run code compiled for older members).

In the past different families were common in desktop computers. Now

the Intel/AMD family has a near monopoly here, but mobile phones usually

contain ARM-based CPUs, and printers, routers, cameras etc., often contain

MIPS-based CPUs. The Sony PlayStation uses CPUs derived from IBM’s

Power range, as do the Nintendo Wii and Microsoft Xbox.

At the other end of the computing scale, Intel/AMD has only recently begun to dominate. However, the top twenty machines in the

November 2010 Top500 supercomputer list include three using the IBM Power series of processors, and another three using GPUs

to assist performance. Back in June 2000, the Top500 list included a single Intel entry, admittedly top, the very specialised one-off

ASCI Red. By June 2005 Intel’s position had improved to 7 in the top 20.

24

Compilers

CPUs from different families will speak rather different languages, and, even

within a family, new instructions get added from generation to generation to

make use of new features.

Hence intelligent Humans write code in well-defined processor-independent

languages, such as Fortran or C, and let the compiler do the work of producing

the correct instructions for a given CPU. The compiler must also worry quite

a lot about interfacing to a given operating system, so running a Windows

executable on a machine running MacOS or Linux, even if they have the

same CPU, is far from trivial (and generally impossible).

Compilers can, and do, of course, differ in how fast the sequence of

instructions they translate code into runs, and even how accurate the

translation is.

Well-defined processor-independent languages tend to be supported on by a wide variety of platforms over a long period of time.

What I wrote a long time ago in Fortran 77 or ANSI C I can still run easily today. What I wrote in QuickBASIC then rewrote in

TurboBASIC is now useless again, and became useless remarkably quickly.

25

Ignoring Intel

Despite Intel’s desktop dominance, this course is utterly biased towards

discussing RISC machines. It is not fun to explain an instruction such as

faddl (%ecx,%eax,8)

(add to the register at the top of the FP register stack the value found at the

memory address given by the ecx register plus 8× the eax register) which

uses an integer shift (×8), integer add, FP load and FP add in one instruction.

Furthermore, since the days of the Pentium Pro (1995), Intel’s processors

have had RISC cores, and a CISC to RISC translator feeding instructions to

the core. The RISC core is never exposed to the programmer, leaving Intel

free to change it dramatically between processors. A hideous operation like

the above will be broken into three or four “µ-ops” for the core. A simpler

CISC instruction might map to single µ-op (micro-op).

Designing a CISC core to do a decent degree of pipelining and simultaneous

execution, when instructions may use multiple functional units, and memory

operations are not neatly separated, is more painful than doing runtime CISC

to RISC conversion.

26

A Branch in the Pipe

So far we have assumed a linear sequence of instructions. What happens if

there is a branch?

double t=0.0; int i,n; t=0

for (i=0;i<n;i++) t=t+x[i]; do i=1,n

t=t+x(i)

$17 contains n, # $16 contains x enddo

fclr $f0

clr $1

ble $17,L$5

L$6:

ldt $f1, ($16)

addl $1, 1, $1

cmplt $1, $17, $3

lda $16, 8($16)

addt $f0, $f1, $f0

bne $3, L$6

L$5:

There will be a conditional jump or branch at the end of the loop. If the

processor simply fetches and decodes the instructions following the branch,

then when the branch is taken, the pipeline is suddenly empty.
27

Assembler in More Detail

The above is Alpha assembler. The integer registers $1, $3, $16 and $17

are used, and the floating point registers $f0 and $f1. The instructions are

of the form ‘op a,b,c’ meaning ‘c=a op b’.

fclr $f0 Float CLeaR $f0 – place zero in $f0

clr $1 CLeaR $1

ble $17, L$5 Branch if Less than or Equal on comparing $17

to (an implicit) zero and jump to L$5 if less (i.e. skip loop)

L$6:

ldt $f1, ($16) LoaD $f1 with value value from

memory from address $16

addl $1, 1, $1 $1=$1+1

cmplt $1, $17, $3 CoMPare $1 to $17 and place result in $3

lda $16, 8($16) LoaD Address, effectively $16=$16+8

addt $f0, $f1, $f0 $f0=$f0+$f1

bne $3,L$6 Branch Not Equal – if counter 6=n, do another iteration

L$5:

The above is only assembler anyway, readable by Humans. The machine-code instructions that the CPU actually interprets have a

simple mapping from assembler, but will be different again. For the Alpha, each machine code instruction is four bytes long. For

IA32 machines, between one and a dozen or so bytes.

28

Predictions

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

Time

ldt $f1

Iteration i

bne

lda $16

cmplt $1

addl $1

OF D Iteration i+1RX

X RF D

X RF D

O

Oaddt $f0, $f1

Without branch prediction ldt $f1, ($16)

ldt $f1, ($16)
With branch

prediction

With the simplistic pipeline model of page 19, the loop will take 9 clock

cycles per iteration if the CPU predicts the branch and fetches the next

instruction appropriately. With no prediction, it will take 12 cycles.

A ‘real’ CPU has a pipeline depth much greater than the five slots shown here: usually ten to twenty. The penalty for a mispredicted

branch is therefore large.

Note the stalls in the pipeline based on data dependencies (shown with red arrows) or to prevent the execution order changing. If the

instruction fetch unit fetches one instruction per cycle, stalls will cause a build-up in the number of in flight instructions. Eventually

the fetcher will pause to allow things to quieten down.

(This is not the correct timing for any Alpha processor.) 29

Speculation

In the above example, the CPU does not begin to execute the instruction after

the branch until it knows whether the branch was taken: it merely fetches and

decodes it, and collects its operands. A further level of sophistication allows

the CPU to execute the next instruction(s), provided it is able to throw away

all results and side-effects if the branch was mispredicted.

Such execution is called speculative execution. In the above example, it

would enable the ldt to finish one cycle earlier, progressing to the point

of writing to the register before the result of the branch were known.

More advanced forms of speculation would permit the write to the register to

proceed, and would undo the write should the branch have been mispredicted.

Errors caused by speculated instructions must be carefully discarded. It is no use if

if (x>0) x=sqrt(x);

causes a crash when the square root is executed speculatively with x=-1, nor if

if (i<1000) x=a[i];

causes a crash when i=2000 due to trying to access a[2000].

Almost all current processors are capable of some degree of speculation.

30

OOO!

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

F O XD R

F O XD R

ldt $f1

Iteration i

bne

lda $16

cmplt $1

addl $1

Iteration i+1

Time

ldt $f1, ($16)

addt $f0, $f1

Previously the cmplt is delayed due to a dependency on the addl

immediately preceeding it. However, the next instruction has no relevant

dependencies. A processor capable of out-of-order execution could execute

the lda before the cmplt.

The timing above assumes that the ldt of the next iteration can be executed speculatively and OOO before the branch. Different

CPUs are capable of differing amounts of speculation and OOOE.

The EV6 Alpha does OOOE, the EV5 does not, nor does the UltraSPARC III. In this simple case, the compiler erred in not changing

the order itself. However, the compiler was told not to optimise for this example.

31

Typical functional unit speeds

Instruction Latency Issue rate

iadd/isub 1 1

and, or, etc. 1 1

shift, rotate 1 1

load/store 1-2 1

imul 3-15 3-15

fadd 3 1

fmul 2-3 1

fdiv/fsqrt 15-25 15-25

In general, most things 1 to 3 clock cycles and pipelined, except integer ×
and ÷, and floating point ÷ and

√
.

‘Typical’ for simple RISC processors. Some processors tend to have longer fp latencies: 4 for fadd and fmul for the

UltraSPARC III, 5 and 7 respectively for the Pentium 4, 3 and 5 respectively for the Core 2 / Nehalem / Sandy Bridge.

32

Floating Point Rules?

Those slow integer multiplies are more common that it would seem at first.

Consider:

double precision x(1000),y(500,500)

The address of x(i) is the address of x(1) plus 8 × (i − 1). That

multiplication is just a shift. However, y(i,j) is that of y(1,1) plus

8× ((i− 1) + (j − 1)× 500). A lurking integer multiply!

Compilers may do quite a good job of eliminating unnecessary multiplies

from common sequential access patterns.

C does things rather differently, but not necessarily better.

33

Hard or Soft?

The simple operations, such as +, − and ∗ are performed by dedicated

pipelined pieces of hardware which typically produce one result each clock

cycle, and take around four clock cycles to produce a given result.

Slightly more complicated operations, such as / and
√

may be done with

microcode. Microcode is a tiny program on the CPU itself which is executed

when a particular instruction, e.g. /, is received, and which may use the other

hardware units on the CPU multiple times.

Yet more difficult operations, such as trig. functions or logs, are usually done

entirely with software in a library. The library uses a collection of power

series or rational approximations to the function, and the CPU needs evaluate

only the basic arithmetic operations.

The IA32 range is unusual in having microcoded instructions for trig. functions and logs. Even on a Core2 or Core i7, a single trig

instruction can take over 100 clock cycles to execute. RISC CPUs tend to avoid microcode on this scale.

The trig. function instructions date from the old era of the x87 maths coprocessor, and no corresponding instruction exists for data in

the newer SSE2/XMM registers.

34

Division by Multiplication?

There are many ways to perform floating point division. With a fast hardware

multiplier, Newton-Raphson like iterative algorithms can be attractive.

xn+1 = 2xn − bxn
2

will, for reasonable starting guesses, converge to 1/b. E.g., with b = 6.

n xn

0 0.2

1 0.16

2 0.1664

3 0.16666624

4 0.1666666666655744

How does one form an initial guess? Remember that the number is already stored as m × 2e, and 0.5 ≤ m < 1. So a guess of

0.75× 21−e is within a factor of 1.5. In practice the first few bits of m are used to index a lookup table to provide the initial guess

of the mantissa.

A similar scheme enables one to find 1/
√
b, and then

√
b = b × 1/

√
b, using the recurrance x → 0.5x(3 − bx2)

35

Vector Computers

The phrase ‘vector computer’ means different things to different people.

To Cray, it meant having special ‘vector’ registers which store multiple

floating point numbers, ‘multiple’ generally being 64, and on some models

128. These registers could be operated on using single instructions, which

would perform element-wise operations on the whole register. Usually there

would be just a single addition unit, but a vadd instruction would take around

70 clock cycles – one cycle per element, and a small pipeline start overhead.

So the idea was that the vector registers gave a simple mechanism for

presenting a long sequence of independent operations to a highly pipelined

functional unit.

36

Cray’s Other Idea

The other trick with vector Crays was to omit all data caches. Instead they

employed a large number of banks of memory (typically sixteen), and used

no-expense-spared SRAM for their main memory anyway. This gave them

huge memory bandwidth. The Cray Y/MP-8, first sold in 1988, had a peak

theoretical speed of 2.7 GFLOPS, about half that of a 2.8GHz Pentium 4

(introduced 2002). However, its memory bandwidth of around 27GB/s was

considerably better than the P4 at under 4GB/s, and would still beat a single-

socket Ivy Bridge machine (introduced 2012).

Not only was the Cray’s ratio of memory bandwidth to floating point

performance about fifty times higher than a current desktop, but its memory

latency was low – lower than that of a current desktop machine – despite its

clock speed being only 167MHz. The memory controller on the Cray could

handle many outstanding memory requests, which further hid latencies. Of

course, memory requests were likely to be generated 64 words at a time.

The weak spot of this system was dealing with strides which contained a large power of two. A stride of 16 doubles might cause all

requests to go to a single memory bank, reducing performance by at least a factor of ten.

37

Intel and Vectorisation

Intel’s approach to vectorisation is very different from Cray’s. The memory

architecture is unchanged. The vector length is two or four (eight for the

Xeon Phi), not sixty four.

But, Intel provides sufficient functional units, as putting extra transistors on

a chip is now cheap, to operate on a whole vector at once. The vectorisation

is used to keep multiple functional units busy at once, not in order to make

efficient use of the pipeline in a single functional unit.

A Cray will run reasonably fast streaming huge arrays from main memory,

with 10 bytes of memory bandwidth per peak FLOPS. An Intel processor,

with around 0.2 bytes of memory bandwidth, won’t. One needs to worry

about its caches to get decent performance.

38

Meaningless Indicators of Performance

The only relevant performance indicator is how long a computer takes to run

your code. Thus my fastest computer is not necessarily your fastest computer.

Often one buys a computer before one writes the code it has been bought for,

so other ‘real-world’ metrics are useful. Some are not useful:

• MHz: the silliest: some CPUs take 4 clock cycles to perform one

operation, others perform four operations in one clock cycle. Only any

use when comparing otherwise identical CPUs.

• MIPS: Millions of Instructions Per Second. Theoretical peak speed of

decode/issue logic, or maybe the time taken to run a 1970’s benchmark.

Gave rise to the name Meaningless Indicator of Performance.

• FLOPS: Floating Point Operations Per Second. Theoretical peak issue rate

for floating point computational instructions, ignoring loads and stores and

with optimal ratio of + to ∗. Hence MFLOPS, GFLOPS, TFLOPS: 106,

109, 1012 FLOPS.

39

The Guilty Candidates: Linpack

Linpack 100x100

Solve 100x100 set of double precision linear equations using fixed

FORTRAN source. Pity it takes just 0.7 s at 1 MFLOPS and uses under

100KB of memory. Only relevant for pocket calculators.

Linpack 1000x1000 or nxn

Solve 1000x1000 (or nxn) set of double precision linear equations by any

means. Usually coded using a blocking method, often in assembler. Is that

relevant to your style of coding? Achieving less than 50% of a processor’s

theoretical peak performance is unusual.

Linpack is convenient in that it has an equal number of adds and multiplies

uniformly distributed throughout the code. Thus a CPU with an equal number

of FP adders and multipliers, and the ability to issue instructions to all

simultaneously, can keep all busy.

Number of operations: O(n3), memory usage O(n2).

n chosen by manufacturer to maximise performance, which is reported in GFLOPS.

40

SPEC

SPEC is a non-profit benchmarking organisation. It has two CPU

benchmarking suites, one concentrating on integer performance, and one

on floating point. Each consists of around ten programs, and the mean

performance is reported.

Unfortunately, the benchmark suites need constant revision to keep ahead of

CPU developments. The first was released in 1989, the second in 1992, the

third in 1995. None of these use more than 8MB of data, so fit in cache with

many current computers. Hence a fourth suite was released in 2000, and then

another in 2006.

It is not possible to compare results from one suite with those from another,

and the source is not publically available.

Until 2000, the floating point suite was entirely Fortran.

Two scores are reported, ‘base’, which permits two optimisation flags to the compiler, and ‘peak’ which allows any number of

compiler flags. Changing the code is not permitted.

SPEC: Standard Performance Evaluation Corporation (www.spec.org)

41

SPEC rates

SPEC also has a set of throughput benchmarks, which consist of running

multiple copies of their serial benchmarks simultaneously. For multicore

machines, this should work well, only in practice the cores compete for

limited memory bandwidth, and it works less well than one might hope.

For instance, in late 2008 Intel published a result of 155 for a 24 core X7460

system. This essentially has four six-core Core 2 processors running at

2.66GHz. Clearly much faster than a single dual-core Core 2 processor at

the same clock speed. However, the Core 2 E8200 achieved a score of 28.9

on this benchmark over six months earlier, so twelve times the core count has

resulted in less than six times the throughput running serial codes.

At that time, AMD was easily beating Intel with four-socket machines.

With four quad-core Opterons running at just 2.3GHz it could match the

performance of the 24 core Intel machine, and at 2.7GHz it could achieve

just over 200.

Intel has since caught up with AMD, and by early 2011 Intel could manage a score of 1150 using eight 8-core Xeon X7560s at

2.27GHz, whereas AMD scored 1310 with eight 12-core Opterons at 2.5GHz. The biggest machine to run this benchmark was an

IBM with 32 8-core Power7 processors running at 4GHz, which scored 10,500.

42

Your Benchmark or Mine?

Picking the oldest desktop in TCM, a 2.67GHz Pentium 4, and the newest, a

3.1GHz quad core ‘Haswell’ CPU, I ran two benchmarks.

Linpack gave results of 3.88 GFLOPS for the P4, and 135 GFLOPS for the

Haswell, a win for the Haswell by a factor of around 35.

A nasty synthetic integer benchmark I wrote gave run-times of 6.0s on the

P4, and 9.7s on the Haswell, a win for the P4 by a factor of 1.6 in speed.

(Linux’s notoriously meaningless ‘BogoMIPS’ benchmark is slightly kinder

to the Haswell, giving it a score of 6,185 against 5,350 for the P4.)

It is all too easy for a vendor to use the benchmark of his choice to prove that

his computer is faster than a given competitor.

The P4 was a ‘Northwood’ P4 first sold in 2002, the Haswell was first sold in

2013.

43

Memory

• DRAM

• Parity and ECC

• Going faster: wide bursts

• Going faster: caches

44

Memory Design

The first DRAM cell requiring just one transistor and one capacitor to store

one bit was invented and produced by Intel in 1974. It was mostly responsible

for the early importance of Intel as a chip manufacturer.

The design of DRAM has changed little. The speed, as we shall soon see,

has changed little. The price has changed enormously. I can remember when

memory cost around £1 per KB (early 1980s). It now costs around 1p per

MB, a change of a factor of 105, or a little more in real terms. This change

in price has allowed a dramatic change in the amount of memory which a

computer typically has.

Alternatives to DRAM are SRAM – very fast, but needs six transitors per bit,

and flash RAM – unique in retaining data in the absence of power, but writes

are slow and cause significant wear.

RAM: Random Access Memory – i.e. not block access (disk drive), nor sequential access (tape drive).

45

D-RAM

The charge in a DRAM cell slowly leaks away. So each cell is read, and

then written back to, several times a second by refresh circuitary to keep the

contents stable. This is why this type of memory is called Dynamic RAM.

Of course, as anyone in the HEP community can testify, one can charge lots

of small capacitors, monitor their charge, and a sudden change means an

ionisation event has occured in their dielectric – an energetic particle has been

detected. DRAM is worrying similar to a semiconductor particle detector, so

cautious people use extra DRAM cells to store an error correction / detection

code so that stray cosmic rays do not end up in one’s results. Such memory

is called ECC memory. (Error Correcting Code.)

46

DRAM in Detail{

{
1

1

1

1

1

1 1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

0 0 0

0000

00 000

0 0 0 0 0

0000

0 0

0

0

0

000

0

0

00

0

0 0 0 0 01 1 1

0

0

CAS

Buffer

RAS

DRAM cells are arranged in (near-)square arrays. To read, first a row is

selected and copied to a buffer, from which a column is selected, and the

resulting single bit becomes the output. This example is a 64 bit DRAM.

This chip would need 3 address lines (i.e. pins) allowing 3 bits of address data to be presented at once, and a single data line.

Also two pins for power, two for CAS and RAS, and one to indicate whether a read or a write is required.

Of course a ‘real’ DRAM chip would contain several tens of million bits.

47

DRAM Read Timings

To read a single bit from a DRAM chip, the following sequence takes place:

• Row placed on address lines, and Row Access Strobe pin signalled.

• After a suitable delay, column placed on address lines, and Column Access

Strobe pin signalled.

• After another delay the one bit is ready for collection.

• The DRAM chip will automatically write the row back again, and will not

accept a new row address until it has done so.

The same address lines are used for both the row and column access. This

halves the number of addess lines needed, and adds the RAS and CAS pins.

Reading a DRAM cell causes a significant drain in the charge on its capacitor, so it needs to be refreshed before being read again.

48

More Speed!

The above procedure is tediously slow. However, for reading consecutive

addresses, one important improvement can be made.

Having copied a whole row into the buffer (which is usually SRAM (see

later)), if another bit from the same row is required, simply changing the

column address whilst signalling the CAS pin is sufficient. There is no need

to wait for the chip to write the row back, and then to rerequest the same row.

Thus Fast Page Mode (FPM) and Extended Data Out (EDO) DRAM.

Today’s SDRAM (Synchronous DRAM) takes this approach one stage

further. It assumes that the next (several) bits are wanted, and sends them

in sequence without waiting to receive requests for their column addresses.

49

Speed

Old-style memory quoted latencies which were simply the time it would take

an idle chip to respond to a memory request. In the early 1980s this was about

250ns. By the early 1990s it was about 80ns.

Today timings are quoted as clock cycles for column access to data out (TCL

or TCAS) and idle to row select finished (TRCD) These are the first two

numbers of the four usually quoted for memory timings. The clock refered to

is the undoubled data clock, so a DDR3-1333 module with timings of 7-7-7-

24 has a latency of 14 cycles of a 667MHz clock, or 21ns.

So in twenty years memory has got four times faster in terms of latency.

50

Bandwidth

Bandwidth has improved much more over the same period. In the early

1980s memory was usually arranged to deliver 8 bits (one byte) at once, with

eight chips working in parallel. By the early 1990s that had risen to 32 bits

(4 bytes), and today one expects 128 bits (16 bytes) on any desktop.

More dramatic is the change in time taken to access consecutive items. In

the 1980s the next item (whatever it was) took slightly longer to access, for

the DRAM chip needed time to recover from the previous operation. So

late 1980s 32 bit wide 80ns memory was unlikely to deliver as much as

four bytes every 100ns, or 40MB/s. Now sequential access is anticipated,

and arrives at the doubled clock speed, so at 1333MHz for DDR3-1333

memory. Coupled with being arranged with 128 bits in parallel, this leads

to a theoretical bandwidth of 20GB/s.

So in twenty years the bandwidth has improved by a factor of about 500.

51

Parity

In the 1980s, business computers had memory arranged in bytes, with one

extra bit per byte which stored parity information. This is simply the sum of

the other bits, modulo 2. If the parity bit disagreed with the contents of the

other eight bits, then the memory had suffered physical corruption, and the

computer would usually crash, which is considered better than calmly going

on generating wrong answers.

Calculating the parity value is quite cheap in terms of speed and complexity,

and the extra storage needed is only 12.5%. However parity will detect only

an odd number of bit-flips in the data protected by each parity bit. If an even

number change, it does not notice. And it can never correct.

52

ECC

Better than parity is ECC memory (Error Correcting Code), usually SEC-

DED (Single Error Corrected, Double Error Detected).

One code for dealing with n bits requires an extra 2+log2 n check bits. Each

code now usually protects eight bytes, 64 bits, for which 2 + log2 64 = 8
extra check bits are needed. Once more, 12.5% extra, or one extra bit per

byte. The example shows an ECC code operating on 8 bits of data.

XXXXXXXX

XXXX

XXXX

XXXX

Eight data bits Five check bits

X

X

X

X

One check bit is a parity check of the other check bits (green, top right), else errors in the check bits are undetected and cause

erroneous ‘corrections’. The other four check bits (red column) store parity information for the data bits indicated. A failing data bit

causes a unique pattern in these bits. This is not the precise code used, & fails to detect 2-bit errors, but it shows the general principle.

Computers with parity could detect one bit in error per byte. Today’s usual ECC code can correct a one bit error per 8 bytes, and

detect a two bit error per eight bytes. Look up Hamming Codes for more information.

53

Causes and Prevelance of Errors

In the past most DRAM errors have been blamed on cosmic rays, more recent

research suggest that this is not so. A study of Google’s servers over a 30

month period suggests that faulty chips are a greater problem. Cosmic rays

would be uniformly distributed, but the errors were much more clustered.

About 30% of the servers had at least one correctable error per year, but the

average number of correctable errors per machine year was over 22,000. The

probability of a machine which had one error having another within a year

was 93%. The uncorrectable error rate was 1.3% per machine year.

The numbers are skewed by the fact that once insulation fails so as to lock a

bit to one (or zero), then, on average, half the accesses will result in errors.

In practice insulation can partially fail, such that the data are usually correct,

unless neighbouring bits, temperature, . . . , conspire to cause trouble.

Uncorrectable errors were usually preceded by correctable ones: over 60%

of uncorrectable errors had been preceded by a correctable error in the same

DIMM in the same month, whereas a random DIMM has a less than 1%

correctable error rate per month.

‘DRAM Errors in the Wild: a Large-Scale Field Study’, Schroeder et al.

54

ECC: Do We Care?

A typical home PC, run for a few hours each day, with only about half as

much memory as those Google servers, is unlikely to see an error in its five

year life. One has about a one in ten chance of being unlucky. When running

a hundred machines 24/7, the chances of getting through a month, let alone a

year, without a correctable error would seem to be low.

Intel’s desktop i3/i5/i7 processors do not support ECC memory, whereas their

server-class Xeon processors all do. Most major server manufacturers (HP,

Dell, IBM, etc.) simply do not sell any servers without ECC. Indeed, most

also support the more sophisticated ‘Chipkill’ correction which can cope with

one whole chip failing on a bus of 128 data bits and 16 ‘parity’ bits.

I have an ‘ECC only’ policy for servers, both file servers and machines likely to run jobs. In my Group, this means every desktop

machine. The idea of doing financial calculations on a machine without ECC I find amusing and unauditable, but I realise that, in

practice, it is what most Accounts Offices do. But money matters less than science.

Of course an undetected error may cause an immediate crash, it may cause results to be obviously wrong, it may cause results to be

subtly wrong, or it may have no impact on the final result.

‘Chipkill’ is IBM’s trademark for a technology which Intel calls Intel x4 SDDC (single device data correction). It starts by interleaving

the bits to form four 36 bit words, each word having one bit from each chip, so a SEC-DED code is sufficient for each word.

55

Keeping up with the CPU

CPU clock speeds in the past twenty years have increased by a factor of

around 500. (About 60MHz to about 3GHz.) Their performance in terms of

instructions per second has increased by about 10,000, as now one generally

has four cores, each capable of multiple instructions per clock cycle, not a

single core struggling to maintain one instruction per clock cycle.

The partial answer is to use expensive, fast, cache RAM to store frequently

accessed data. Cache is expensive because its SRAM uses multiple transistors

per bit (typically six). It is fast, with sub-ns latency, lacking the output buffer

of DRAM, and not penalising random access patterns.

But it is power-hungry, space-hungry, and needs to be physically very close

to the CPU so that distance does not cause delay. c = 1 in units of feet per ns

in vacuum. So a 3GHz signal which needs to travel just two inches and back

again will lose a complete cycle. In silicon things are worse.

(Experimentalists claim that c = 0.984ft/ns.)

56

Caches: the Theory

The theory of caching is very simple. Put a small amount of fast, expensive

memory in a computer, and arrange automatically for that memory to store

the data which are accessed frequently. One can then define a cache hit rate,

that is, the number of memory accesses which go to the cache divided by the

total number of memory accesses. This is usually expressed as a percentage

& will depend on the code run.

CPU

CPU
cache

controller

memory

memory

cache

The first paper to describe caches was published in 1965 by Maurice Wilkes (Cambridge). The first commercial computer to use a

cache was the IBM 360/85 in 1968.

57

The Cache Controller

Conceptually this has a simple task:

• Intercept every memory request

• Determine whether cache holds requested data

• If so, read data from cache

• If not, read data from memory and place a copy in the cache as it goes

past.

However, the second bullet point must be done very fast, and this leads to the

compromises. A cache controller inevitably makes misses slower than they

would have been in the absence of any cache, so to show a net speed-up hits

have to be plentiful and fast. A badly designed cache controller can be worse

than no cache at all.

58

An aside: Hex

A quick lesson in hexadecimal (base-16) arithmetic is due at this point.

Computers use base-2, but humans tend not to like reading long base-2

numbers.

Humans also object to converting between base-2 and base-10.

However, getting humans to work in base-16 and convert between base-2 and

base-16 is easier.

Hex uses the letters A to F to represent the ‘digits’ 10 to 15. As 24 = 16
conversion to and from binary is done trivially using groups of four digits.

59

Converting to / from Hex

0101 1101 0010 1010 1111 0001 1100 0011

5 C 2 A F 1 B 3

So

0101 1101 0010 1010 1111 0001 1100 00112

= 5C2AF1B316 = 1, 546, 318, 259

As one hex digit is equivalent to four binary digits, two hex digits are exactly

sufficient for one byte.

Hex numbers are often prefixed with ‘0x’ to distinguish them from base ten.

When forced to work in binary, it is usual to group the digits in fours as above, for easy conversion into hex or bytes.

60

Our Computer

For the purposes of considering caches, let us consider a computer with a

1MB address space and a 64KB cache.

An address is therefore 20 bits long, or 5 hex digits, or 212 bytes.

Suppose we try to cache individual bytes. Each entry in the cache must store

not only the data, but also the address in main memory it was taken from,

called the tag. That way, the cache controller can look through all the tags

and determine whether a particular byte is in the cache or not.

So we have 65536 single byte entries, each with a 212 byte tag.

tag data

61

A Disaster

This is bad on two counts.

A waste of space

We have 64KB of cache storing useful data, and 160KB storing tags.

A waste of time

We need to scan 65536 tags before we know whether something is in the

cache or not. This will take far too long.

62

Lines

The solution to the space problem is not to track bytes, but lines. Consider a

cache which deals in units of 16 bytes.

64KB = 65536 * 1 byte

= 4096 * 16 bytes

We now need just 4096 tags.

Furthermore, each tag can be shorter. Consider a random address:

0x23D17

This can be read as byte 7 of line 23D1. The cache will either have all of line

23D1 and be able to return byte number 7, or it will have none of it. Lines

always start at an address which is a multiple of their length.

63

Getting better. . .

A waste of space?

We now have 64KB storing useful data, and 8KB storing tags. Considerably

better.

A waste of time

Scanning 4096 tags may be a 16-fold improvement, but is still a disaster.

Causing trouble

Because the cache can store only full lines, if the processor requests a single

byte which the cache does not hold, the cache then requests the full line from

the memory so that it can keep a copy of the line. Thus the memory might

have to supply 16× as much data as before!

64

A Further Compromise

We have 4096 lines, potentially addressable as line 0 to line 0xFFF.

On seeing an address, e.g. 0x23D17, we discard the last 4 bits, and scan all

4096 tags for the number 0x23D1.

Why not always use line number 0x3D1 within the cache for storing this bit

of memory? The advantage is clear: we need only look at one tag, and see

if it holds the line we want, 0x23D1, or one of the other 15 it could hold:

0x03D1, 0x13D1, etc.

Indeed, the new-style tag need only hold that first hex digit, we know the

other digits! This reduces the amount of tag memory to 2KB.

65

Direct Mapped Caches

We have just developed a direct mapped cache. Each address in memory

maps directly to a single location in cache, and each location in cache maps

to multiple (here 16) locations in memory.

0xFFF

0x3D1

line no.

cache

address

memory

0x03D10

0x10000

0x13D10

0x20000

0x30000

0x40000

0x00000

0x23D10

0x33D10

2

tag data
0x000

66

Success?

• The overhead for storing tags is 3%. Quite acceptable, and much better than 250%!

• Each ‘hit’ requires a tag to be looked up, a comparison to be made, and

then the data to be fetched. Oh dear. This tag RAM had better be very fast.

• Each miss requires a tag to be looked up, a comparison to fail, and then a

whole line to be fetched from main memory.

• The ‘decoding’ of an address into its various parts is instantaneous.

The zero-effort address decoding is an important feature of all cache schemes.

line address within cache

0x2 3D1 7

byte within line

part to compare with tag

67

The Consequences of Compromise

At first glance we have done quite well. Any contiguous 64KB region of

memory can be held in cache. (As long as it starts on a cache line boundary)

E.g. The 64KB region from 0x23840 to 0x3383F would be held in cache lines 0x384 to 0xFFF then 0x000 to 0x383

Even better, widely separated pieces of memory can be in cache

simultaneously. E.g. 0x15674 in line 0x567 and 0xC4288 in line 0x428.

However, consider trying to cache the two bytes 0x03D11 and 0x23D19.

This cannot be done: both map to line 0x3D1 within the cache, but one

requires the memory area from 0x03D10 to be held there, the other the area

from 0x23D10.

Repeated accesses to these two bytes would cause cache thrashing, as the

cache repeatedly caches then throws out the same two pieces of data.

68

Associativity

Rather than each line in memory being storable in just one location in cache,

why not make it two?

cache

0x40000

0x00000

tag data
0x000

0xFFF

line no.

0xBD1

memory

address

0x33D10

0x23D10

0x13D10

0x03D10

0x10000

0x20000

0x30000

0x0BD10

0x1BD10

0x2BD10

0x3BD10

0x3D1

Thus a 2-way associative cache, which requires two tags to be inspected for

every access & an extra bit per tag. Can generalise to 2n-way associativity.

69

Anti Thrashing Entries

Anti Thrashing Entries are a cheap way of increasing the effective

associativity of a cache for simple cases. One extra cache line, complete with

tag, is stored, and it contains the last line expelled from the cache proper.

This line is checked for a ‘hit’ in parallel with the rest of the cache, and if

a hit occurs, it is moved back into the main cache, and the line it replaces is

moved into the ATE.

Some caches have several ATEs, rather than just one.

double precision a(2048,2),x double a[2][2048],x;

do i=1,2048 for(i=0;i<2047;i++){

x=x+a(i,1)*a(i,2) x+=a[0][i]*a[1][i];

enddo }

Assume a 16K direct mapped cache with 32 byte lines. a(1,1) comes into cache, pulling a(2-4,1) with it. Then a(1,2)

displaces all these, at it must be stored in the same line, as its address modulo 16K is the same. So a(2,1) is not found in cache when

it is referenced. With a single ATE, the cache hit rate jumps from 0% to 75%, the same that a 2-way associative cache would have

achieved for this algorithm.

Remember that Fortran and C store arrays in the opposite order in memory. Fortran will have a(1,1), a(2,1), a(3,1). . . ,

whereas C will have a[0][0], a[0][1], a[0][2]. . .

70

A Hierarchy

The speed gap between main memory and the CPU core is so great that there

are usually multiple levels of cache.

The first level, or primary cache, is small (typically 16KB to 128KB),

physically attached to the CPU, and runs as fast as possible.

The next level, or secondary cache, is larger (typically 256KB to 8MB),

slower, and has a higher associativity. There may even be a third level too.

Typical times in clock-cycles to serve a memory request would be:

primary cache 2-4

secondary cache 5-25

main memory 30-300

Cf. functional unit speeds on page 32.

Intel tends to make small, fast caches, compared to RISC workstations which tend to have larger, slower caches.

71

Write Back or Write Through?

Should data written by the CPU modify merely the cache if those data are

currently held in cache, or modify the memory too? The former, write back,

can be faster, but the latter, write through, is simpler.

With a write through cache, the definitive copy of data is in the main memory.

If something other than the CPU (e.g. a disk controller or a second CPU)

writes directly to memory, the cache controller must snoop this traffic, and, if

it also has those data in its cache, update (or invalidate) the cache line too.

Write back caches add two problems. Firstly, anything else reading directly

from main memory must have its read intercepted if the cached data for that

address differ from the data in main memory.

Secondly, on ejecting an old line from the cache to make room for a new one,

if the old line has been modified it must first be written back to memory.

Each cache line therefore has an extra bit in its tag, which records whether

the line is modified, or dirty.

72

Cache Design Decision

If a write is a miss, should the cache line be filled (as it would for a read)?

If the data just written are read again soon afterwards, filling is beneficial,

as it is if a write to the same line is about to occur. However, caches which

allocate on writes perform badly on randomly scattered writes. Each write of

one word is converted into reading the cache line from memory, modifying

the word written in cache and marking the whole line dirty. When the line

needs discarding, the whole line will be written to memory. Thus writing one

word has been turned into two lines worth of memory traffic.

What line size should be used? What associativity?

If a cache is n-way associative, which of the n possible lines should be

discarded to make way for a new line? A random line? The least recently

used? A random line excluding the most recently used?

As should now be clear, not all caches are equal!

The ‘random line excluding the most recently used’ replacement algorithm (also called pseudo-LRU) is easy to implement. One bit

marks the most recently used line of the associative set. True LRU is harder (except for 2-way associative).

73

Not All Data are Equal

If the cache controller is closely associated with the CPU, it can distinguish

memory requests from the instruction fetcher from those from the load/store

units. Thus instructions and data can be cached separately.

This almost universal Harvard Architecture prevents poor data access

patterns leaving both data and program uncached. However, usually only

the first level of cache is split in this fashion.

The instruction cache is usually write-through, whereas the data cache is

usually write-back. Write-through caches never contain the ‘master’ copy

of any data, so they can be protected by simple parity bits, and the master

copy reloaded on error. Write back caches ought to be protected by some

form of ECC, for if they suffer an error, they may have the only copy of the

data now corrupted.

The term ‘Harvard architecture’ comes from an early American computer which used physically separate areas of main memory for

storing data and instructions. No modern computer does this.

74

Explicit Prefetching

One spin-off from caching is the possibility of prefetching.

Many processors have an instruction which requests that data be moved from

main memory to primary cache when it is next convenient.

If such an instruction is issued ahead of some data being required by the CPU

core, then the data may have been moved to the primary cache by the time

the CPU core actually wants them. If so, much faster access results. If not, it

doesn’t matter.

If the latency to main memory is 100 clock cycles, the prefetch instruction

ideally needs issuing 100 cycles in advance, and many tens of prefetches

might be busily fetching simultaneously. Most current processors can handle

a couple of simultaneous prefetches. . .

75

Implicit Prefetching

Some memory controllers are capable of spotting certain access patterns as a

program runs, and prefetching data automatically. Such prefetching is often

called streaming.

The degree to which patterns can be spotted varies. Unit stride is easy, as

is unit stride backwards. Spotting different simultaneous streams is also

essential, as a simple dot product:

do i=1,n

d=d+a(i)*b(i)

enddo

leads to alternate unit-stride accesses for a and b.

IBM’s Power3 processor, and Intel’s Pentium 4 both spotted simple patterns

in this way. Unlike software prefetching, no support from the compiler is

required, and no instructions exist to make the code larger and occupy the

instruction decoder. However, streaming is less flexible.

76

Clock multiplying

Today all of the caches are usually found on the CPU die, rather than on

external chips. Whilst the CPU is achieving hits on its caches, it is unaffected

by the slow speed of the outside world (e.g. main memory).

Thus it makes sense for the CPU internally to use much higher clock-speeds

than its external bus. The gap is actually decreasing currently as CPU speeds

are levelling off at around 3GHz, whereas external bus speeds are continuing

to rise. In former days the gap could be very large, such as the last of the

Pentium IIIs which ran at around 1GHz internally, with a 133MHz external

bus. In the days when caches were external to the CPU on the motherboard

there was very little point in the CPU running faster than its bus. Now it works

well provided that the cache hit rate is high (>90%), which will depend on

both the cache architecture and the program being run.

In order to reduce power usage, not all of the CPU die uses the same clock

frequency. It is common for the last level cache, which is responsible for

around half the area of the die, to use clock speeds which are only around a

half or a third of those of the CPU core and the primary cache.

77

Thermal Limits to Clock Multiplying

The rate at which the transistors which make up a CPU switch is controlled

by the rate at which carriers get driven out of their gate regions. For a given

chip, increasing the electric field, i.e. increasing the voltage, will increase

this speed. Until the voltage is so high that the insulation fails.

The heat generated by a CPU contains both a simple ohmic term, proportional

to the square of the voltage, and a term from the charging of capacitors

through a resistor (modelling the change in state of data lines and transistors).

This is proportional to both frequency and the square of the voltage.

Once the CPU gets too hot, thermally excited carriers begin to swamp the

intrinsic carriers introduced by the n and p doping. With the low band-gap

of silicon, the maximum junction temperature is around 90◦C, or just 50◦C

above the air temperature which most computers can allegedly survive.

Current techniques allow around 120W to be dissipated from a chip with

forced air cooling.

Laptops, and the more modern desktops, have power-saving modes in which the clock speed is first dropped, and then a fraction of a

second later, the supply voltage also dropped.

78

The Relevance of Theory

integer a(*),i,j int i,j,*a;

j=1 j=1;

do i=1,n for (i=0;i<n;i++){

j=a(j) j=a[j];

enddo }

This code is mad. Every iteration depends on the previous one, and significant

optimisation is impossible.

However, the memory access pattern can be changed dramatically by

changing the contents of a. Setting a(i)=i+1 and a(k)=1 will

give consecutive accesses repeating over the first k elements, whereas

a(i)=i+2, a(k-1)=2 and a(k)=1 will access alternate elements, etc.

One can also try pseudorandom access patterns. They tend to be as bad as

large stride access.

79

Classic caches

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16

With a 16 element (64 bytes) stride, we see access times of 8.7ns for primary cache, 33ns for

secondary, and 202ns for main memory. The cache sizes are clearly 64KB and 2MB.

With a 1 element (4 bytes) stride, the secondary cache and main memory appear to be faster.

This is because once a cache line has been fetched from memory, the next 15 accesses will

be primary cache hits on the next elements of that line. The average should be (15 ∗ 8.7 +

202)/16 = 20.7ns, and 21.6ns is observed.

The computer used for this was a 463MHz XP900 (Alpha 21264). It has 64 byte cache lines.

80

Performance Enhancement

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16
Stride 32

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16
Stride 32

On the left a 2.4GHz Pentium 4 (launched 2002, RAMBUS memory), and on the right a

2.4GHz Core 2 quad core (launched 2008, DDR3 memory). Both have 64 byte cache lines.

For the Pentium 4, the fast 8KB primary cache is clearly seen, and a 512KB secondary less

clearly so. The factor of four difference between the main memory’s latency at a 64 byte

and 128 byte stride is caused by automatic hardware prefetching into the secondary cache.

For strides of up to 64 bytes inclusive, the hardware notices the memory access pattern, even

though it is hidden at the software level, and starts fetching data in advance automatically.

For the Core 2 the caches are larger – 32KB and 4MB, and the main memory is a little faster.

But six years and three generations of memory technology have changed remarkably little.

81

Matrix Multiplication: Aij = BikCkj

do i=1,n for(i=0;i<n;i++){

do j=1,n for(j=0;j<n;j++){

t=0 t=0;

do k=1,n for(k=0;k<n;k++){

t=t+b(i,k)*c(k,j) t+=b[i][k]*c[k][j];

enddo }

a(i,j)=t a[i][j]=t;

enddo }

enddo }

The above Fortran has unit stride access on the array c in the inner loop, but

a stride of n doubles on the array b. The C manages unit stride on b and a

stride of n doubles on the array c. Neither manages unit stride on both arrays.

Optimising this is not completely trivial, but is very worthwhile.

82

Very Worthwhile

The above code running on a 2.4GHz Core 2 managed around 500 MFLOPS

at a matrix size of 64, dropping to 115 MFLOPS for a matrix size of 1024.

Using an optimised linear algebra library increased the speed for the

smaller sizes to around 4,000 MFLOPS, and for the larger sizes to around

8,700 MFLOPS, close to the computer’s peak speed of 9,600 MFLOPS.

There are many possibilities to consider for optimising this code. If the matrix size is very small, don’t, for it will all fit in L1 cache

anyway. For large matrices one can consider transposing the matrix which would otherwise be accessed with the large stride. This is

most beneficial if that matrix can then be discarded (or, better, generated in the transposed form). Otherwise one tries to modify the

access pattern with tricks such as

do i=1,nn,2

do j=1,nn

t1=0 ; t2=0

do k=1,nn

t1=t1+b(i,k)*c(k,j) ! Remember that b(i,k) and

t2=t2+b(i+1,k)*c(k,j) ! b(i+1,k) are adjacent in memory

enddo

a(i,j)=t1

a(i+1,j)=t2

enddo

enddo

This halves the number of passes through b with the large stride, and therefore shows an immediate doubling of speed at n=1024

from 115 MFLOPS to 230 MFLOPS. Much more to be done before one reaches 8,000 MFLOPS though, so don’t bother: link with a

good BLAS library and use its matrix multiplication routine! (Or use the F90 intrinsic matmul function in this case.) [If trying this

at home, note that many Fortran compilers spot simple examples of matrix multiplication and re-arrange the loops themselves. This

can cause confusion.]

83

Memory Access Patterns in Practice

84

Matrix Multiplication

We have just seen that very different speeds of execution can be obtained by

different methods of matrix multiplication.

Matrix multiplication is not only quite a common problem, but it is also very

useful as an example, as it is easy to understand and reveals most of the issues.

85

More Matrix Multiplication

Aij =
∑

k=1,N

BikCkj

So to form the product of two N×N square matrices takes N3 multiplications

and N3 additions. There are no clever techniques for reducing this

computational work significantly (save eliminating about N2 additions,

which is of little consequence).

The amount of memory occupied by the matrices scales as N2, and is exactly

24N2 bytes assuming all are distinct and double precision.

Most of these examples use N = 2048, so require around 100MB of memory,

and will take 16s if run at 1 GFLOPs.

86

Our Computer

These examples use a 2.4GHz quad core Core2 with 4GB of RAM. Each

core can complete two additions and two multiplications per clock cycle, so

its theoretical sustained performance is 9.6 GFLOPs.

Measured memory bandwidth for unit stride access over an array of 64MB is

6GB/s, and for access with a stride of 2048 doubles it is 84MB/s (one item

every 95ns).

We will also consider something older and simpler, a 2.8GHz Pentium 4 with

3GB of RAM. Theoretical sustained performance is 5.6 GFLOPs, 4.2GB/s

and 104ns. Its data in the following slides will be shown in italics in square

brackets.

The Core 2 processor used, a Q6600, was first released in 2007. The Pentium 4 used was first released in 2002. The successor to the

Core 2, the Nehalem, was first released late in 2008.

87

Speeds

do i=1,n for(i=0;i<n;i++){

do j=1,n for(j=0;j<n;j++){

t=0 t=0;

do k=1,n for(k=0;k<n;k++){

t=t+b(i,k)*c(k,j) t+=b[i][k]*c[k][j];

enddo }

a(i,j)=t a[i][j]=t;

enddo }

enddo }

If the inner loop is constrained by the compute power of the processor, it will

achieve 9.6 GFLOPs. [5.6 GFLOPS]

If constrained by bandwidth, loading two doubles and performing two

FLOPS per iteration, it will achieve 750 MFLOPs. [520 MFLOPS]

If constrained by the large stride access, it will achieve two FLOPs every

95ns, or 21 MFLOPs. [19 MFLOPS]

88

The First Result

When compiled with gfortran -O0 the code achieved 41.6 MFLOPS.

[37 MFLOPS]

The code could barely be less optimal – even t was written out to memory,

and read in from memory, on each iteration. The processor has done an

excellent job with the code to achieve 47ns per iteration of the inner loop.

This must be the result of some degree of speculative loading overlapping the

expected 95ns latency.

In the mess which follows, one can readily identify the memory location -40(%rbp) with t, and one can also see two integer

multiplies as the offsets of the elements b(i,k) and c(k,j) are calculated.

89

Messy

.L22:

movq -192(%rbp), %rbx

movl -20(%rbp), %esi

movslq %esi, %rdi

movl -28(%rbp), %esi

movslq %esi, %r8

movq -144(%rbp), %rsi

imulq %r8, %rsi

addq %rsi, %rdi

movq -184(%rbp), %rsi

leaq (%rdi,%rsi), %rsi

movsd (%rbx,%rsi,8), %xmm1

movq -272(%rbp), %rbx

movl -28(%rbp), %esi

movslq %esi, %rdi

movl -24(%rbp), %esi

movslq %esi, %r8

movq -224(%rbp), %rsi

imulq %r8, %rsi

addq %rsi, %rdi

movq -264(%rbp), %rsi

leaq (%rdi,%rsi), %rsi

movsd (%rbx,%rsi,8), %xmm0

mulsd %xmm1, %xmm0

movsd -40(%rbp), %xmm1

addsd %xmm1, %xmm0

movsd %xmm0, -40(%rbp)

cmpl %ecx, -28(%rbp)

sete %bl

movzbl %bl, %ebx

addl $1, -28(%rbp)

testl %ebx, %ebx

je .L22

90

Faster

When compiled with gfortran -O1 the code achieved 118 MFLOPS. The

much simpler code produced by the compiler has given the processor greater

scope for speculation and simultaneous outstanding memory requests. Don’t

expect older (or more conservative) processors to be this smart – on an ancient

Pentium 4 the speed improved from 37.5 MFLOPS to 37.7 MFLOPS.

Notice that t is now maintained in a register, %xmm0, and not written out to memory on each iteration. The integer multiplications

of the previous code have all disappeared, one by conversion into a Shift Arithmetic Left Quadbyte of 11 (i.e. multiply by 2048, or

2ˆ11).

.L10:

movslq %eax, %rdx

movq %rdx, %rcx

salq $11, %rcx

leaq -2049(%rcx,%r8), %rcx

addq %rdi, %rdx

movsd 0(%rbp,%rcx,8), %xmm1

mulsd (%rbx,%rdx,8), %xmm1

addsd %xmm1, %xmm0

addl $1, %eax

leal -1(%rax), %edx

cmpl %esi, %edx

jne .L10

91

Unrolling: not faster

do i=1,nn

do j=1,nn

t=0

do k=1,nn,2

t=t+b(i,k)*c(k,j)+b(i,k+1)*c(k+1,j)

enddo

a(i,j)=t

enddo

enddo

This ‘optimisation’ reduces the overhead of testing the loop exit condition,

and little else. The memory access pattern is unchanged, and the speed is

also pretty much unchanged – up by about 4%.

92

Memory Access Pattern

a(1,1) a(2,1) a(3,1) a(n,1) a(1,2) a(2,2)

Below an 8× 8 array being accessed the correct and incorrect way around.

93

Blocking: Faster

do i=1,nn,2

do j=1,nn

t1=0

t2=0

do k=1,nn

t1=t1+b(i,k)*c(k,j)

t2=t2+b(i+1,k)*c(k,j)

enddo

a(i,j)=t1

a(i+1,j)=t2

enddo

enddo

This has changed the memory access pattern on the array b. Rather than the pessimal order

b(1,1) b(1,2) b(1,3) b(1,4) ... b(1,n) b(2,1) b(2,2)

we now have

b(1,1) b(2,1) b(1,2) b(2,2) b(1,n) b(2,n) b(3,1) b(4,1)

Every other item is fetched almost for free, because its immediate neighbour has just been

fetched. The number of iterations within this inner loop is the same, but the loop is now

executed half as many times.

94

Yes, Faster

We would predict a speedup of about a factor of two, and that is indeed seen.

Now the Core 2 reaches 203 MFLOPS (up from 118 MFLOPS), and the

Pentium 4 71 MFLOPS (up from 38 MFLOPS).

Surprisingly changing the blocking factor from 2 to 4 (i.e. four elements

calculated in the inner loop) did not impress the Core 2. It improved to just

224 MFLOPS (+10%). The Pentium 4, which had been playing fewer clever

tricks in its memory controller, was much happier to see the blocking factor

raised to 4, now achieving 113 MFLOPS (+59%).

95

More, more more!

do i=1,nn,nb

do j=1,nn

do kk=0,nb-1

a(i+kk,j)=0

enddo

do k=1,nn

do kk=0,nb-1

a(i+kk,j)=a(i+kk,j)+b(i+kk,k)*c(k,j)

enddo

enddo

enddo

enddo

With nb=1 this code is mostly equivalent to our original naı̈ve code. Only

less readable, potentially buggier, more awkward for the compiler, and

a(i,j) is now unlikely to be cached in a register. With nb=1 the Core 2

achieves 74 MFLOPS, and the Pentium 4 33 MFLOPS. But with nb=64 the

Core 2 achieves 530 MFLOPS, and the Pentium 4 320 MFLOPS – their best

scores so far.

96

Better, better, better

do k=1,nn,2

do kk=0,nb-1

a(i+kk,j)=a(i+kk,j)+b(i+kk,k)*c(k,j)+ &

b(i+kk,k+1)*c(k+1,j)

enddo

enddo

Fewer loads and stores on a(i,j), and the Core 2 likes this, getting

707 MFLOPS. The Pentium 4 now manages 421 MFLOPS. Again this is

trivially extended to a step of four in the k loop, which achieves 750 MFLOPS

[448 MFLOPS]

97

Other Orders

a=0

do j=1,nn

do k=1,nn

do i=1,nn

a(i,j)=a(i,j)+b(i,k)*c(k,j)

enddo

enddo

enddo

Much better. 1 GFLOPS on the Core 2, and 660 MFLOPS on the Pentium 4.

In the inner loop, c(k,j) is constant, and so we have two loads and one

store, all unit stride, with one add and one multiply.

98

Better Yet

a=0

do j=1,nn,2

do k=1,nn

do i=1,nn

a(i,j)=a(i,j)+b(i,k)*c(k,j)+ &

b(i,k)*c(k,j+1)

enddo

enddo

enddo

Now the inner loop has c(k,j) and c(k,j+1) constant, so still has two

loads and one store, all unit stride (assuming efficient use of registers), but

now has two adds and two multiplies.

Both processors love this – 1.48 GFLOPS on the Core 2, and 1.21 GFLOPS

on the Pentium 4.

99

Limits

Should we exend this by another factor of two, and make the outer loop of

step 4?

The Core 2 says a clear yes, improving to 1.93 GFLOPS (+30%). The

Pentium 4 is less enthusiastic, improving to 1.36 GFLOPS (+12%).

What about 8? The Core 2 then gives 2.33 GFLOPS (+20%), and the

Pentium 4 1.45 GFLOPS (+6.6%).

100

Spills

With a step of eight in the outer loop, there are eight constants in the inner

loop, c(k,j) to c(k,j+7), as well as the two variables a(i,j) and

b(i,k). The Pentium 4 has just run out of registers, so three of the constant

c’s have to be loaded from memory (cache) as they don’t fit into registers.

The Core 2 has twice as many FP registers, so has not suffered what is called

a ‘register spill’, when values which ideally would be kept in registers spill

back into memory as the compiler runs out of register space.

101

Horrid!

Are the above examples correct? Probably not – I did not bother to test them!

The concepts are correct, but the room for error in coding in the above style

is large. Also the above examples assume that the matrix size is divisible by

the block size. General code needs (nasty) sections for tidying up when this

is not the case.

Also, we are achieving around 20% of the peak performance of the processor.

Better than the initial 1-2%, but hardly wonderful.

102

Best Practice

Be lazy. Use someone else’s well-tested code where possible.

Using Intel’s Maths Kernel Library one achieves 4.67 GFLOPS on the

Pentium 4, and 8.88 GFLOPS on one core of a Core 2. Better, that library can

make use of multiple cores of the Core 2 with no further effort, then achieving

33.75 GFLOPS when using all four cores.

N.B.

call cpu_time(time1)

...

call cpu_time(time2)

write(*,*) time2-time1

records total CPU time, so does not show things going faster as more cores are used. One

wants wall-clock time:

call system_clock(it1,ic)

time1=real(it1,kind(1d0))/ic

...

103

Other Practices

Use Fortran90’s matmul routine.

Core 2

ifort -O3: 5.10 GFLOPS

gfortran: 3.05 GFLOPS

pathf90 -Ofast: 2.30 GFLOPS

pathf90 1.61 GFLOPS

ifort: 0.65 GFLOPS

Pentium 4

ifort -O3: 1.55 GFLOPS

gfortran: 1.05 GFLOPS

ifort: 0.43 GFLOPS

104

Lessons

Beating the best professional routines is hard.

Beating the worst isn’t.

The variation in performance due to the use of different routines is much

greater than that due to the single-core performance difference between a

Pentium 4 and a Core 2. Indeed, the Pentium 4’s best result is about 30× as

fast as the Core 2’s worst result.

105

Difficulties

For the hand-coded tests, the original naı̈ve code on slide 91 compiled with

gfortran -O1 recorded 118 MFLOPS [37.7 MFLOPS], and was firmly

beaten by reversing the loop order (slide 98) at 1 GFLOPS [660 MFLOPS].

Suppose we re-run these examples with a matrix size of 25 × 25 rather

than 2048 × 2048. Now the speeds are 1366 MFLOPS [974 MFLOPS] and

1270 MFLOPS [770 MFLOPS].

The three arrays take 3 × 25 × 25 × 8 bytes, or 15KB, so things fit into L1

cache on both processors. L1 cache is insensitive to data access order, but the

‘naı̈ve’ method allows a cache access to be converted into a register access

(in which a sum is accumulated).

106

Leave it to Others!

So comparing these two methods, on the Core 2 the one which wins by

a factor of 8.5 for the large size is 7% slower for the small size. For the

Pentium 4 the results are more extreme: 17× faster for the large case, 20%

slower for the small case.

A decent matrix multiplication library will use different methods for different

problem sizes, ideally swapping between them at the precisely optimal point.

It is also likely that there will be more than two methods used as one moves

from very small to very large problems.

107

Reductio ad Absurdum

Suppose we now try a matrix size of 2 × 2. The ‘naı̈ve’ code now

manages 400 MFLOPS [540 MFLOPS], and the reversed code 390 MFLOPS

[315 MFLOPS].

If instead one writes out all four expressions for the elements of a explicitly,

the speed jumps to about 3,200 MFLOPS [1,700 MFLOPS].

Loops of unknown (at compile time) but small (at run time) iteration count

can be quite costly compared to the same code with the loop entirely

eliminated.

For the first test, the 32 bit compiler really did produce significantly better code than the 64 bit compiler, allowing the Pentium 4 to

beat the Core 2.

108

Maintaining Zero GFLOPS

One matrix operation for which one can never exceed zero GFLOPS is the

transpose. There are no floating point operations, but the operation still takes

time.

do i=1,nn

do j=i+1,nn

t=a(i,j)

a(i,j)=a(j,i)

a(j,i)=t

enddo

enddo

This takes about 24ns per element in a on the Core 2 [96ns on Pentium 4]

with a matrix size of 4096.

109

Problems

It is easy to see what is causing trouble here. Whereas one of the accesses in

the loop is sequential, the other is of stride 32K. We would naı̈vely predict that

this code would take around 43ns [52ns] per element, based on one access

taking negligible time, and the other the full latency of main memory.

The Pentium 4 is doing worse than our naı̈ve model because 104ns is its access time for reads from main memory. Here we have

writes as well, so there is a constant need to evict dirty cache lines. This will make things worse.

The Core 2 is showing the sophistication of a memory controller capable of having several outstanding requests and a CPU capable

of speculation.

110

Faster

If the inner loop instead dealt with a small 2 × 2 block of element, it would

have two stride 32K accesses per iteration and exchange eight elements,

instead of one stride 32K access to exchange two elements. If the nasty stride

is the problem, this should run twice as fast. It does: 12ns per element [42ns].

111

Nasty Code

do i=1,nn,2

do j=i+2,nn,2

t=a(i,j)

a(i,j)=a(j,i)

a(j,i)=t

t=a(i+1,j)

a(i+1,j)=a(j,i+1)

a(j,i+1)=t

t=a(i,j+1)

a(i,j+1)=a(j+1,i)

a(j+1,i)=t

t=a(i+1,j+1)

a(i+1,j+1)=a(j+1,i+1)

a(j+1,i+1)=t

enddo

enddo

do i=1,nn,2

j=i+1

t=a(i,j)

a(i,j)=a(j,i)

a(j,i)=t

enddo

Is this even correct? Goodness knows – it is unreadable, and untested. And it is certainly wrong if nn is odd.

112

How far should we go?

Why not use a 3 × 3 block, or a 10 × 10 block, or some other n × n block?

For optimum speed one should use a larger block than 2× 2.

Ideally we would read in a whole cache line and modify all of it for the

sequential part of reading in a block in the lower left of the matrix. Of course,

we can’t. There is no guarantee that the array starts on a cache line boundary,

and certainly no guarantee that each row starts on a cache line boundary.

We also want the whole of the block in the upper right of the matrix to stay in

cache whilst we work on it. Not usually a problem – level one cache can hold

a couple of thousand doubles, but with a matrix size which is a large power

of two, a(i,j) and a(i,j+1) will be separated by a multiple of the cache

size, and in a direct mapped cache will be stored in the same cache line.

113

Different Block Sizes

Block Size Pentium 4 Athlon II Core 2

1 100ns 41ns 25ns

2 42ns 22ns 12ns

4 27ns 21ns 11ns

8 22ns 19ns 8ns

16 64ns 17ns 8ns

32 88ns 41ns 9ns

64 102ns 41ns 12ns

Caches:

Pentium 4: L1 16K 4 way, L2 512K 8 way.

Athlon II: L1 64K 2 way, L2 1MB 16 way.

Core 2: L1 32K 8 way, L2 4MB 16 way.

Notice that even on this simple test we have the liberty of saying that the Athlon II is merely 15% faster than the old Pentium 4, or a

more respectable 3.75× faster. One can prove almost anything with benchmarks. I have several in which that Athlon II would easily

beat that Core 2. . .

114

Nastier Code

do i=1,nn,nb

do j=i+nb,nn,nb

do ii=0,nb-1

do jj=0,nb-1

t=a(i+ii,j+jj)

a(i+ii,j+jj)=a(j+jj,i+ii)

a(j+jj,i+ii)=t

enddo

enddo

enddo

enddo

do i=1,nn,nb

j=i

do ii=0,nb-1

do jj=ii+1,nb-1

t=a(i+ii,j+jj)

a(i+ii,j+jj)=a(j+jj,i+ii)

a(j+jj,i+ii)=t

enddo

enddo

enddo

Is this even correct? Goodness knows – it is unreadable, and untested. And it is certainly wrong if nn is not divisible by nb.

115

Different Approaches

One can also transpose a square matrix by recursion: divide the matrix into

four smaller square submatrices, transpose the two on the diagonal, and

transpose and exchange the two off-diagonal submatrices.

For computers which like predictable strides, but don’t much care what those

strides are (i.e. old vector computers, and maybe GPUs?), one might consider

a transpose moving down each off-diagonal in turn, exchanging with the

corresponding off-diagonal.

By far the best method is not to transpose at all – make sure that whatever one

was going to do next can cope with its input arriving lacking a final transpose.

Note that most routines in the ubiquitous linear algebra package BLAS accept their input matrices in either conventional or transposed

form.

116

There is More Than Multiplication

This lecture has concentrated on the ‘trivial’ examples of matrix

multiplication amd transposes. The idea that different methods need to be

used for different problem sizes is much more general, and applies to matrix

transposing, solving systems of linear equations, FFTs, etc.

It can make for large, buggy, libraries. For matrix multiplication, the task is

valid for multiplying an n ×m matrix by a m × p matrix. One would hope

that any released routine was both correct and fairly optimal for all square

matrices, and the common case of one matrix being a vector. However, did

the programmer think of testing for the case of multiplying a 1, 000, 001× 3
matrix by a 3×5 matrix? Probably not. One would hope any released routine

was still correct. One might be disappointed by its optimality.

117

Doing It Oneself

If you are tempted by DIY, it is probably because you are working with a

range of problem sizes which is small, and unusual. (Range small, problem

probably not small.)

To see if it is worth it, try to estimate the MFLOPS achieved by whatever

routine you have readily to hand, and compare it to the processor’s peak

theoretical performance. This will give you an upper bound on how much

faster your code could possibly go. Some processors are notoriously hard to

get close to this limit. Note that here the best result for the Core 2 was about

91%, whereas for the Pentium 4 it was only 83%.

If still determined, proceed with a theory text book in one hand, and a stop-

watch in the other. And then test the resulting code thoroughly.

Although theory may guide you towards fast algorithms, processors are sufficiently complex and undocumented that the final

arbitrator of speed has to be the stopwatch.

118

119

Memory Management

120

Memory: a Programmer’s Perspective

From a programmer’s perspective memory is simply a linear array into which

bytes are stored. The array is indexed by a pointer which runs from 0 to 232

(4GB) on 32 bit machines, or 264 (16EB) on 64 bit machines.

The memory has no idea what type of data it stores: integer, floating point,

program code, text, it’s all just bytes.

An address may have one of several attributes:

Invalid not allocated

Read only for constants and program code

Executable for program code, not data

Shared for inter-process communication

On disk paged to disk to free up real RAM

(Valid virtual addresses on current 64 bit machines reach only 248 (256TB).

So far no-one is complaining. To go further would complicate the page table

(see below).)

121

Pages

In practice memory is broken into pages, contiguous regions, often of 4KB,

which are described by just a single set of the above attributes. When the

operating system allocates memory to a program, the allocation must be an

integer number of pages. If this results in some extra space, malloc()

or allocate() will notice, and may use that space in a future allocation

without troubling the operating system.

Modern programs, especially those written in C or, worse, C++, do a lot of

allocating and deallocating of small amounts of memory. Some remarkably

efficient procedures have been developed for dealing with this. Ancient

programs, such as those written in Fortran 77, do no run-time allocation of

memory. All memory is fixed when the program starts.

Pages also allow for a mapping to exist between virtual addresses as seen by

a process, and physical addresses in hardware.

122

No Fragmentation

0GB

2GB

0GB 0GB

1.4GB

400MB

Program A

kernel

Real Memory

Free

Program A

Program B

Program A
Program A

Program B
Virtual Memory

Virtual Memory

Pages also have an associated location in real, physical memory. In this

example, program A believes that it has an address space extending from

0MB to 1400MB, and program B believes it has a distinct space extending

from 0MB to 400MB. Neither is aware of the mapping of its own virtual

address space into physical memory, or whether that mapping is contiguous.

123

Splendid Isolation

This scheme gives many levels of isolation.

Each process is able to have a contiguous address space, starting at zero,

regardless of what other processes are doing.

No process can accidentally access another process’s memory, for no process

is able to use physical addresses. They have to use virtual addresses, and

the operating system will not allow two virtual addresses to map to the same

physical address (except when this is really wanted).

If a process attempts to access a virtual address which it has not been granted

by the operating system, no mapping to a physical address will exist, and the

access must fail. A segmentation fault.

A virtual address is unique only when combined with a process ID (deliberate

sharing excepted).

124

Fast, and Slow

This scheme might appear to be very slow. Every memory access involves

a translation from a virtual address to a physical address. Large translation

tables (page tables) are stored in memory to assist. These are stored at known

locations in physical memory, and the kernel, unlike user processes, can

access physical memory directly to avoid a nasty catch-22.

Every CPU has a cache dedicated to storing the results of recently-used page

table look-ups, called the TLB. This eliminates most of the speed penalty,

except for random memory access patterns.

A TLB is so essential for performance with virtual addressing that the 80386, the first Intel processor to support virtual addressing,

had a small (32 entry) TLB, but no other cache.

125

Page Tables

A 32 bit machine will need a four-byte entry in a page table per page. With

4KB pages, this could be done with a 4MB page table per process covering

the whole of its virtual address space. However, for processes which make

modest use of virtual address space, this would be rather inefficient. It would

also be horrific in a 64 (or even 48) bit world.

So the page table is split into two. The top level describes blocks of 1024

pages (4MB). If no address in that range is valid, the top level table simply

records this invalidity. If any address is valid, the top level table then points

to a second level page table which contains the 1024 entries for that 4MB

region. Some of those entries may be invalid, and some valid.

The logic is simple. For a 32 bit address, the top ten bits index the top level

page table, the next ten index the second level page table, and the final 12 an

address within the 4KB page pointed to by the second level page table.

126

Page Tables in Action

Physical Address

Directory
Table
Page

10 10 12

1220

32 bit Virtual Address

Tables
Page

For a 64 bit machine, page table entries must be eight bytes. So a 4KB page contains just 512 (29) entries. Intel currently uses a four

level page table for ‘64 bit’ addressing, giving 4× 9+12 = 48 bits. The Alpha processor used a three level table and an 8KB page

size, giving 3 × 10 + 13 = 43 bits.

127

Efficiency

This is still quite a disaster. Every memory reference now requires two

or three additional accesses to perform the virtual to physical address

translation.

Fortunately, the CPU understands pages sufficiently well that it remembers

where to find frequently-referenced pages using a special cache called a TLB.

This means that it does not have to keep asking the operating system where a

page has been placed.

Just like any other cache, TLBs vary in size and associativity, and separate

instruction and data TLBs may be used. A TLB rarely contains more than

1024 entries, often far fewer.

Even when a TLB miss occurs, it is rarely necessary to fetch a page table from main memory, as the relevant tables are usually still

in secondary cache, left there by a previous miss.

TLB = translation lookaside buffer

ITLB = instruction TLB, DTLB = data TLB if these are separate

128

TLBs at work

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16
Stride 8K

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384 65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16
Stride 32
Stride 4K

The left is a repeat of the graph on page 80, but with an 8KB stride added. The XP900 uses

8KB pages, and has a 128 entry DTLB. Once the data set is over 1MB, the TLB is too small

to hold its pages, and, with an 8KB stride, a TLB miss occurs on every access, adding 92ns.

The right is a repeat of the Core 2 graph from page 81, with a 4KB stride added. The Core 2

uses 4KB pages, and has a 256 entry DTLB. Some more complex interactions are occuring

here, but it finishes up with a 50ns penalty.

Given that three levels of page table must be accessed, it is clear that most of the relevant parts of the page table were in cache. So

the 92ns and 50ns recovery times for a TLB miss are best cases – with larger data sets it can get worse. The Alpha is losing merely

43 clock cycles, the Core 2 about 120. As the data set gets yet larger, TLB misses will be to page tables not in cache, and random

access to a 2GB array results in a memory latency of over 150ns on the Core 2.

129

More paging

Having suffering one level of translation from virtual to physical addresses,

it is conceptually easy to extend the scheme slightly further. Suppose that the

OS, when asked to find a page, can go away, read it in from disk to physical

memory, and then tell the CPU where it has put it. This is what all modern

OSes do (UNIX, OS/2, Win9x / NT, MacOS), and it merely involves putting

a little extra information in the page table entry for that page.

If a piece of real memory has not been accessed recently, and memory is in

demand, that piece will be paged out to disk, and reclaimed automatically (if

slowly) if it is needed again. Such a reclaiming is also called a page fault,

although in this case it is not fatal to the program.

Rescuing a page from disk will take about 10ms, compared with under 100ns for hitting main memory. If just one in 105 memory

accesses involve a page-in, the code will run at half speed, and the disk will be audibly ‘thrashing’.

The union of physical memory and the page area on disk is called virtual memory. Virtual addressing is a prerequisite for virtual

memory, but the terms are not identical.

130

Less paging

Certain pages should not be paged to disk. The page tables themselves are an

obvious example, as is much of the kernel and parts of the disk cache.

Most OSes (including UNIX) have a concept of a locked, that is, unpageable,

page. Clearly all the locked pages must fit into physical memory, so they are

considered to be a scarce resource. On UNIX only the kernel or a process

running with root privilege can cause its pages to be locked.

Much I/O requires locked pages too. If a network card or disk drive wishes to

write some data into memory, it is too dumb to care about virtual addressing,

and will write straight to a physical address. With locked pages such pages

are easily reserved.

Certain ‘real time’ programs which do not want the long delays associated with recovering pages from disk request that their pages

are locked. Examples include CD/DVD writing software, or video players.

131

Blatant Lies

Paging to disk as above enables a computer to pretend that it has more RAM

than it really does. This trick can be taken one stage further. Many OSes are

quite happy to allocate virtual address space, leaving a page table entry which

says that the address is valid, not yet ever been used, and has no physical

storage associated with it. Physical storage will be allocated on first use.

This means that a program will happily pass all its malloc() / allocate

statements, and only run into trouble when it starts trying to use the memory.

The ps command reports both the virtual and physical memory used:

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

spqr1 20241 100 12.7 711764 515656 pts/9 Rl+ 13:36 3:47 castep si64

RSS – Resident Set Size (i.e. physical memory use). Will be less than the

physical memory in the machine. %MEM is the ratio of this to the physical

memory of the machine, and thus can never exceed 100.

VSZ – Virtual SiZe, i.e. total virtual address space allocated. Cannot be

smaller than RSS.

132

The Problem with Lying

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

spqr1 25175 98.7 25.9 4207744 1049228 pts/3 R+ 14:02 0:15 ./a.out

Currently this is fine – the process is using just under 26% of the memory.

However, the VSZ field suggests that it has been promised 104% of the

physical memory. This could be awkward.

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

spqr1 25175 39.0 90.3 4207744 3658252 pts/0 D+ 14:02 0:25 ./a.out

Awkward. Although the process does no I/O its status is ‘D’ (waiting for

‘disk’), its share of CPU time has dropped (though no other process is active),

and inactive processes have been badly squeezed. At this point Firefox had

an RSS of under 2MB and was extremely slow to respond. It had over 50MB

before it was squeezed.

Interactive users will now be very unhappy, and if the computer had another

GB that program would run almost three times faster.

133

Grey Areas – How Big is Too Big?

It is hard to say precisely. If a program allocates one huge array, and then

jumps randomly all over it, then the entirety of that array must fit into physical

memory, or there will be a huge penalty. If a program allocates two large

arrays, spends several hours with the first, then moves it attention to the

second, the penalty if only one fits into physical memory at a time is slight.

Total usage of physical memory is reported by free under Linux. Precise

interpretation of the fields is still hard.

$ free

total used free shared buffers cached

Mem: 4050700 411744 3638956 0 8348 142724

-/+ buffers/cache: 260672 3790028

Swap: 6072564 52980 6019584

The above is fine. The below isn’t. Don’t wait for free to hit zero – it won’t.

$ free

total used free shared buffers cached

Mem: 4050700 4021984 28716 0 184 145536

-/+ buffers/cache: 3876264 174436

Swap: 6072564 509192 5563372

134

Page sizes

A page is the smallest unit of memory allocation from OS to process, and

the smallest unit which can be paged to disk. Large page sizes result in

wasted memory from allocations being rounded up, longer disk page in and

out times, and a coarser granularity on which unused areas of memory can be

detected and paged out to disk. Small page sizes lead to more TLB misses, as

the virtual address space ‘covered’ by the TLB is the number of TLB entries

multiplied by the page size.

Large-scale scientific codes which allocate hundreds of MB of memory

benefit from much larger page sizes than a mere 4KB. However, a typical

UNIX system has several dozen small processes running on it which would

not benefit from a page size of a few MB.

Intel’s processors do support 2MB pages, but support in Linux is

unimpressive prior to 2.6.38. Support from Solaris for the page sizes offered

by the (ancient) UltraSPARC III (8K, 64K, 512K and 4MB) is much better.

DEC’s Alpha solves this issue in another fashion, by allowing one TLB entry to refer to one, eight, 64 or 512 consecutive pages, thus

effectively increasing the page size.

135

Large Pages in Linux

From kernel 2.6.38, Linux will use large pages (2MB) by default when it can.

This reduces TLB misses when jumping randomly over large arrays.

 0

 20

 40

 60

 80

 100

 120

1 16 256 4096 65536 1048576

tim
e,

 n
s

Data set size, KB

4KB pages
2MB pages

The disadvantage is that sometimes fragmentation in physical memory will

prevent Linux from using (as many) large pages. This will make code run

slower, and the poor programmer will have no idea what has happened.

This graph can be compared with that on page 129, noting that here a random access pattern is used, the y axis is not logarithmic, the

processor is an Intel Sandy Bridge, and the x axis is extended another factor of 64.

136

Expectations

The Sandy Bridge CPU used to generate that graph has a 32KB L1 cache, a

256KB L2, and a 8MB L3. If one assumes that the access times are 1.55ns,

3.9ns, 9.5ns for those, and for main memory 72.5ns, then the line for 2MB

pages can be reproduced remarkably accurately. (E.g. at 32MB assume one

quarter of accesses are lucky and are cached in L3 (9.5ns), the rest are main

memory (72.5ns), so expect 56.7ns. Measured 53.4ns.)

With 4KB pages, the latency starts to increase again beyond about 512MB.

The cause is the last level of the page table being increasingly likely to have

been evicted from the last level of cache by the random access on the data

array. If the TLB miss requires a reference to a part of the page table in main

memory, it must take at least 72ns. This is probably happening about half of

the time for the final data point (4GB).

This graph shows very clearly that ‘toy’ computers hate big problems:

accessing large datasets can be much slower than accessing smaller ones,

although the future is looking (slightly) brighter.

137

Caches and Virtual Addresses

Suppose we have a two-way associative 2MB cache. This means that we can

cache any contiguous 2MB region of physical memory, and any two physical

addresses which are identical in their last 20 bits.

Programs works on virtual addresses. The mapping from virtual to

physical preserves the last 12 bits (assuming 4KB pages), but is otherwise

unpredictable. A 2MB region of virtual address space will be completely

cacheable only for some mappings. If one is really unlucky, a mere 12KB

region of virtual address space will map to three physical pages whose last

20 bits are all identical. Then this cannot be cached. A random virtual to

physical mapping would make caching all of a 2MB region very unlikely.

Most OSes do magic (page colouring) which reduces, or eliminates, this

problem, but Linux does not. This is particularly important if a CPU’s L1

cache is larger than its associativity multiplied by the OS’s page size (AMD

Athlon / Opteron, but not Intel). When the problem is not eliminated, one

sees variations in runtimes as a program is run repeatedly (and the virtual to

physical mapping changes), and the expected sharp steps in performance as

arrays grow larger than caches are slurred.

138

Segments

A program uses memory for many different things. For instance:

• The code itself

• Shared libraries

• Statically allocated uninitialised data

• Statically allocated initialised data

• Dynamically allocated data

• Temporary storage of arguments to function calls and of local variables

These areas have different requirements.

139

Segments
Text

Executable program code, including code from statically-linked libraries.

Sometimes constant data ends up here, for this segment is read-only.

Data

Initialised data (numeric and string), from program and statically-linked

libraries.

BSS

Uninitialised data of fixed size. Unlike the data segment, this will not form

part of the executable file. Unlike the heap, the segment is of fixed size.

heap

Area from which malloc() / allocate() traditionally gain memory.

stack

Area for local temporary variables in (recursive) functions, function return

addresses, and arguments passed to functions.

140

A Linux Memory Map

rw−

rw−

rw−

r−x

rw−

Access

(128MB)

Growable

Growable

(3GB)

Growable

kernel
0xffff ffff

0xc000 0000

stack

0x0000 0000
reserved

text

data
bss

heap

0x0804 8000

free

free
0xb800 0000

mmap

This is roughly the layout used by Linux 2.6 on 32 bit machines, and not to scale.

The mmap region deals with shared libraries and large objects allocated via malloc, whereas smaller malloced objects are placed

on the heap in the usual fashion. Earlier versions grew the mmap region upwards from about 1GB (0x4000 0000).

Note the area around zero is reserved. This is so that null pointer dereferencing will fail: ask a C programmer why this is important.

141

What Went Where?

Determining to which of the above data segments a piece of data has been

assigned can be difficult. One would strongly expect C’s malloc and F90’s

allocate to reserve space on the heap. Likewise small local variables tend

to end up on the stack.

Large local variables really ought not go on the stack: it is optimised for

the low-overhead allocation and deletion needed for dealing with lots of

small things, but performs badly when a large object lands on it. However

compilers sometimes get it wrong.

UNIX limits the size of the stack segment and the heap, which it ‘helpfully’

calls ‘data’ at this point. See the ‘ulimit’ command ([ba]sh).

Because ulimit is an internal shell command, it is documented in the shell man pages (e.g. ‘man bash’), and does not have its

own man page.

142

Sharing

If multiple copies of the same program or library are required in memory,

it would be wasteful to store multiple identical copies of their unmodifiable

read-only pages. Hence many OSes, including UNIX, keep just one copy

in memory, and have many virtual addresses refering to the same physical

address. A count is kept, to avoid freeing the physical memory until no

process is using it any more!

UNIX does this for shared libraries and for executables. Thus the memory

required to run three copies of Firefox is less than three times the memory

required to run one, even if the three are being run by different users.

Two programs are considered identical by UNIX if they are on the same device and have the same inode. See elsewhere for a

definition of an inode.

If an area of memory is shared, the ps command apportions it appropriately when reporting the RSS size. If the whole libc is being

shared by ten processes, each gets merely 10% accounted to it.

143

mmap

It has been shown that the OS can move data from physical memory to disk,

and transparently move it back as needed. However, there is also an interface

for doing this explicitly. The mmap system call requests that the kernel set up

some page tables so that a region of virtual address space is mapped onto a

particular file. Thereafter reads and writes to that area of ‘memory’ actually

go through to the underlying file.

The reason this is of interest, even to Fortran programmers, is that it is how all

executable files and shared libraries are loaded. It is also how large dynamic

objects, such as the result of large allocate / malloc calls, get allocated.

They get a special form of mmap which has no physical file associated with

it.

144

Heap vs mmap

Consider the following code:

a=malloc(1024*1024*1024); b=malloc(1); free(a)

(in the real world one assumes that something else would occur before the

final free).

With a single heap, the heap now has 1GB of free space, followed by a single

byte which is in use. Because the heap is a single contiguous object with just

one moveable end, there is no way of telling the OS that is can reclaim the

unused 1GB. That memory will remain with the program and be available for

its future allocations. The OS does not know that its current contents are no

longer required, so its contents must be preserved, either in physical memory

or in a page file. If the program (erroneously) tries accessing that freed area,

it will succeed.

Had the larger request resulted in a separate object via mmap, then the free

would have told the kernel to discard the memory, and to ensure that any

future erroneous accesses to it result in segfaults.

145

Automatically done

Currently by default objects larger than 128KB allocated via malloc are

allocated using mmap, rather than via the heap. The size of allocation

resulting will be rounded up to the next multiple of the page size (4KB). Most

Fortran runtime libraries end up calling malloc in response to allocate.

A few do their own heap management, and only call brk, which is the basic

call to change the size of the heap with no concept of separate objects existing

within the heap.

Fortran 90 has an unpleasant habit of placing large temporary and local

objects on the stack. This can cause problems, and can be tuned with options

such as -heap-arrays (ifort) and -static-data (Open64).

Objects allocated via mmap get placed in a region which lies between the

heap and the stack. On 32 bit machines this can lead to the heap (or stack)

colliding with this region.

146

Heap layout

double precision, allocatable :: a(:),b(:),c(:)

allocate (a(300),b(300),c(20000))

In the absence of other allocations, one would expect the heap to contain a

followed by b. This is 600 doubles, 4,800 bytes, so the heap will be rounded

to 8KB (1024 doubles), the next multiple of 4KB. The array c, being over

128KB, will go into a separate object via mmap, and this will be 160KB,

holding 20,480 doubles.

a
b

free heap

c

spare space

heap,
8KB

160KB

object,
mmapped

to scale!
Diagram not

bss

147

More segfaults

So attempts to access elements of c between one and 20,480 will work, and

for a indices between one and 300 will find a, between 301 and 600 will

find b, and 601 and 1024 will find free space. Only a(1025) will cause

a segfault. For indices less than one, c(0) would be expected to fail, but

b(-100) would succeed, and probably hit a(200). And a(-100) is

probably somewhere in the static data section preceeding the heap, and fine.

Array overwriting can go on for a long while before segfaults occur, unless

a pointer gets overwritten, and then dereferenced, in which case the resulting

address is usually invalid, particularly in a 64 bit world where the proportion

of 64 bit numbers which are valid addresses is low.

Fortran compilers almost always support a -C option for checking array

bounds. It very significantly slows down array accesses – use it for

debugging, not real work! The -g option increases the chance that line

numbers get reported, but compilers differ in how much information does

get reported.

C programmers using malloc() are harder to help. But they may wish to ask Google about Electric Fence.

148

Theory in Practice

$ cat test.f90

double precision, allocatable :: a(:),b(:),c(:)

allocate (a(300),b(300),c(20000))

a=0

b(-100)=5

write(*,*)’Maximum value in a is ’,maxval(a), &

’ at location ’,maxloc(a)

end

$ ifort test.f90 ; ./a.out

Maximum value in a is 5.00000000000000 at location 202

$ f95 test.f90 ; ./a.out

Maximum value in a is 5.0 at location 204

$ gfortran test.f90 ; ./a.out

Maximum value in a is 5.0000000000000000 at location 202

$ openf90 test.f90 ; ./a.out

Maximum value in a is 0.E+0 at location 1

149

-C
$ ifort -C -g test.f90 ; ./a.out

forrtl: severe (408): fort: (3): Subscript #1 of the array B

has value -100 which is less than the lower bound of 1

$ f95 -C -g test.f90 ; ./a.out

****** FORTRAN RUN-TIME SYSTEM ******

Subscript out of range. Location: line 5 column 3 of ’test.f90’

Subscript number 1 has value -100 in array ’B’

Aborted

$ gfortran -C -g test.f90 ; ./a.out

Maximum value in a is 5.0000000000000000 at location 202

$ gfortran -fcheck=bounds -g test.f90 ; ./a.out

At line 5 of file test.f90

Fortran runtime error: Index ’-100’ of dimension 1 of array ’b’

below lower bound of 1

$ openf90 -C -g test.f90 ; ./a.out

lib-4964 : WARNING

Subscript is out of range for dimension 1 for array

’B’ at line 5 in file ’test.f90’,

diagnosed in routine ’__f90_bounds_check’.

Maximum value in a is 0.E+0 at location 1

150

Disclaimer

By the time you see this, it is unlikely that any of the above examples is with

the current version of the compiler used. These examples are intended to

demonstrate that different compilers are different. That is why I have quite a

collection of them!

ifort: Intel’s compiler, v 11.1

f95: Sun’s compiler, Solaris Studio 12.2

gfortran: Gnu’s compiler, v 4.5

openf90: Open64 compiler, v 4.2.4

Four compilers. Only two managed to report line number, and which array

bound was exceeded, and the value of the errant index.

151

The Stack Layout

Address Contents Frame Owner

. . . calling

2nd argument function

%ebp+8 1st argument

%ebp+4 return address

%ebp previous %ebp

local current

variables function

etc.

%esp end of stack

The stack grows downwards, and is divided into frames, each frame

belonging to a function which is part of the current call tree. Two registers

are devoted to keeping it in order.

152

Memory Maps in Action

Under Linux, one simply needs to examine /proc/[pid]/maps using

less to see a snapshot of the memory map for any process one owns. It also

clearly lists shared libraries in use, and some of the open files. Unfortunately

it lists things upside-down compared to our pictures above.

The example on the next page clearly shows a program with the bottom four

segments being text, data, bss and heap, of which text and bss are read-only.

In this case mmaped objects are growing downwards from f776 c000,

starting with shared libraries, and then including large malloced objects.

The example was from a 32 bit program running on 64 bit hardware and

OS. In this case the kernel does not need to reserve such a large amount

of space for itself, hence the stack is able to start at 0xfffb 9000 not

0xc000 0000, and the start of the mmap region also moves up by almost

1GB.

Files in /proc are not real files, in that they are not physically present on any disk drive. Rather attempts to read from these ‘files’

are interpretted by the OS as requests for information about processes or other aspects of the system.

The machine used here does not set read and execute attributes separately – any readable page is executable.

153

The Small Print
$ tac /proc/20777/maps

ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]

fff6e000-fffb9000 rwxp 00000000 00:00 0 [stack]

f776b000-f776c000 rwxp 0001f000 08:01 435109 /lib/ld-2.11.2.so

f776a000-f776b000 r-xp 0001e000 08:01 435109 /lib/ld-2.11.2.so

f7769000-f776a000 rwxp 00000000 00:00 0

f774b000-f7769000 r-xp 00000000 08:01 435109 /lib/ld-2.11.2.so

f7744000-f774b000 rwxp 00000000 00:00 0

f773e000-f7744000 rwxp 00075000 00:13 26596314 /opt/intel/11.1-059/lib/ia32/libguide.so

f76c8000-f773e000 r-xp 00000000 00:13 26596314 /opt/intel/11.1-059/lib/ia32/libguide.so

f76a7000-f76a9000 rwxp 00000000 00:00 0

f76a6000-f76a7000 rwxp 00017000 08:01 435034 /lib/libpthread-2.11.2.so

f76a5000-f76a6000 r-xp 00016000 08:01 435034 /lib/libpthread-2.11.2.so

f768e000-f76a5000 r-xp 00000000 08:01 435034 /lib/libpthread-2.11.2.so

f768d000-f768e000 rwxp 00028000 08:01 435136 /lib/libm-2.11.2.so

f768c000-f768d000 r-xp 00027000 08:01 435136 /lib/libm-2.11.2.so

f7664000-f768c000 r-xp 00000000 08:01 435136 /lib/libm-2.11.2.so

f7661000-f7664000 rwxp 00000000 00:00 0

f7660000-f7661000 rwxp 00166000 08:01 435035 /lib/libc-2.11.2.so

f765e000-f7660000 r-xp 00164000 08:01 435035 /lib/libc-2.11.2.so

f765d000-f765e000 ---p 00164000 08:01 435035 /lib/libc-2.11.2.so

f74f9000-f765d000 r-xp 00000000 08:01 435035 /lib/libc-2.11.2.so

f74d4000-f74d5000 rwxp 00000000 00:00 0

f6fac000-f728a000 rwxp 00000000 00:00 0

f6cec000-f6df4000 rwxp 00000000 00:00 0

f6c6b000-f6c7b000 rwxp 00000000 00:00 0

f6c6a000-f6c6b000 ---p 00000000 00:00 0

f6913000-f6b13000 rwxp 00000000 00:00 0

f6912000-f6913000 ---p 00000000 00:00 0

f6775000-f6912000 rwxp 00000000 00:00 0

097ea000-0ab03000 rwxp 00000000 00:00 0 [heap]

0975c000-097ea000 rwxp 01713000 08:06 9319119 /scratch/castep

0975b000-0975c000 r-xp 01712000 08:06 9319119 /scratch/castep

08048000-0975b000 r-xp 00000000 08:06 9319119 /scratch/castep
154

The Madness of C

#include<stdio.h>

#include<stdlib.h>

void foo(int *a, int *b);

int main(void){

int *a,*b;

a=malloc(sizeof(int));

b=malloc(sizeof(int));

*a=2;*b=3;

printf("The function main starts at address %.8p\n",main);

printf("The function foo starts at address %.8p\n",foo);

printf("Before call:\n\n");

printf("a is a pointer. It is stored at address %.8p\n",&a);

printf(" It points to address %.8p\n",a);

printf(" It points to the value %d\n",*a);

printf("b is a pointer. It is stored at address %.8p\n",&b);

printf(" It points to address %.8p\n",b);

printf(" It points to the value %d\n",*b);

155

foo(a,b);

printf("\nAfter call:\n\n");

printf(" a points to the value %d\n",*a);

printf(" b points to the value %d\n",*b);

return 0;

}

void foo(int *c, int *d){

printf("\nIn function:\n\n");

printf("Our return address is %.8p\n\n",*(&c-1));

printf("c is a pointer. It is stored at address %.8p\n",&c);

printf(" It points to address %.8p\n",c);

printf(" It points to the value %d\n",*c);

printf("d is a pointer. It is stored at address %.8p\n",&d);

printf(" It points to address %.8p\n",d);

printf(" It points to the value %d\n",*d);

*c=5;

((&c+1))=6;

}

156

The Results of Madness

The function main starts at address 0x08048484

The function foo starts at address 0x080485ce

Before call:

a is a pointer. It is stored at address 0xbfdf8dac

It points to address 0x0804b008

It points to the value 2

b is a pointer. It is stored at address 0xbfdf8da8

It points to address 0x0804b018

It points to the value 3

In function:

Our return address is 0x0804858d

c is a pointer. It is stored at address 0xbfdf8d90

It points to address 0x0804b008

It points to the value 2

d is a pointer. It is stored at address 0xbfdf8d94

It points to address 0x0804b018

It points to the value 3

After call:

a points to the value 5

b points to the value 6

157

The Explanation

0xbfdf ffff approximate start of stack

....

0xbfbf 8da8 local variables in main()

....

0xbfdf 8d94 second argument to function foo()

0xbfdf 8d90 first argument

0xbfdf 8d8c return address

....

0x0fdf 8d?? end of stack

0x0804 b020 end of heap

0x0804 b018 the value of b is stored here

0x0804 b008 the value of a is stored here

0x0804 b000 start of heap

0x0804 85ce start of foo() in text segment

0x0804 858d point at which main() calls foo()

0x0804 8484 start of main() in text segment

And if you note nothing else, note that the function foo managed to manipulate its second argument using

merely its first argument.

(This example assumes a 32-bit world for simplicity.)

158

159

Hello: My First Program

160

Hello, World

The idea of a first example program being one to print the text “hello,

world” is mainly due to the first example in Kernighan and Ritchie’s book

“The C Programming Language.” (Kernighan and Ritchie invented C, with

most of the work being done by 1973. Before C was standardised by a

proper standards’ body (ANSI, in 1989), their book (published 1978) was

the definitive description of the language.)

This section considers many ways of writing such a program, and, so that it

is as clear as possible what is really happening, most of the examples are in

assembler. The first does not even make use of the operating system to do

more than act as a program loader.

!!WARNING!! Some of the examples in this section work only on very

specific OS versions, although the concepts are much more general. All the

Linux examples assume 32 bit Intel Linux, not 64 bit.

161

Direct Hardware Access

On an IBM PC, the default text video mode is 80 columns by 25 lines. The

video memory is mapped starting at address 0xB8000 (top left of screen),

with alternate bytes being the ASCII(-ish) representation of the character,

and an attribute byte which specifies the colour.

0 1 3 4 52 6

H e l l

colour information for preceeding letter

As the screen usually scrolls by one line immediately after a command

finishes, we shall print the string on the second line, so starting 160 bytes

into the video memory.

162

DOS Memory

DOS runs on 16 bit computers, so addresses are 16 bits in size, and only

64KB of memory can be addressed. As this was ridiculous, even in the early

1980s, it uses a trick of combining two registers, a segment register and an

offset register, in order to construct an address. The physical address is given

by 16× segment value + offset, allowing addresses of up to 1MB (20 bits).

One would say that this is an historical irrelevance if it were not for the fact

that all Intel’s 32 bit processors from the Pentium Pro onwards use something

called PAE (Physical Address Extension) to allow them to break the 4GB

barrier of 32 bit addressing and address up to 64GB of memory. This uses a

similar sort of segment plus offset trick.

PAE is supported by the 32 bit versions of Linux, MacOS X and some

versions of Windows Server 2000 and 2003.

163

DOS .COM files

The simplest executable file format is the DOS .COM file. Its contents are

simply loaded into a segment at an offset of 0x100 within that segment, all

segment registers are pointed to that segment, and the instruction pointer is

set to address 0x100 to commence execution.

So a .COM file contains no header information, must fit within a 64KB

segment, and is always loaded at the same address.

164

Hello, World (1)

section .text

org 0x100 void main(){

int cx;

mov ax,0xB800 char *di, *si;

mov es,ax

mov di,160 di=(char*)(0xb8000+160);

lea si,[string] si="Hello, World";

mov cx,12 cx=12;

next_ch: movsb do { *(di++)=*(si++);

inc di di++;

loop next_ch cx--;} while (cx>0);

ret }

string db "Hello, World"

165

Hello, PC World (1)

Tell the assember that this is the text segment, and it starts at 0x100.

The address we wish to write the string to is 0xB800:160 – set this up in es:di.

Point si at the start of our string, and put the number of characters in cx.

The movsb instruction is a horrible CISCy thing. It reads a byte from ds:si, writes it to

es:di, and adds one to both si and di.

We need to skip the attribute bytes in the video memory, so di is incremented again.

Finally loop is another CISCy thing. It decrements cx, and jumps to the label given if cx

is not zero.

166

Hello, PC World(2)

The above can be assembled (the syntax is NASM’s) to give a remarkably

short .COM file: just 32 bytes.

A disassembler interprets the resulting file as follows

D:\MJR\ASM\NASM>debug hello1.com

-u

0C80:0100 B800B8 MOV AX,B800

0C80:0103 8EC0 MOV ES,AX

0C80:0105 BFA000 MOV DI,00A0

0C80:0108 8D361401 LEA SI,[0114]

0C80:010C B90C00 MOV CX,000C

0C80:010F A4 MOVSB

0C80:0110 47 INC DI

0C80:0111 E2FC LOOP 010F

0C80:0113 C3 RET

167

Hello, PC World(3)

The .COM file has been loaded at into segment number 0x0c80 at the

expected offset of 0x100.

Note the variable instruction lengths, one to four bytes here, and the backward

(little-endian) nature of the storage of immediate data: A000 for 00A0 (160),

1401 for 0114, 0C00 for 000C (12), etc. The reference to 0114 is to the string

“Hello, World” which follows the executable instructions immediately.

In the loop instruction, the jump is −4 bytes, as the next instruction will be

10F (again) not 113. Converting −4 to two’s complement, one gets FC. Label

names have been lost – there is no occurance of ‘next ch’ or ‘string’ in the

.COM file.

168

Calling DOS

The above code has several disadvantages. It works in just one video mode.

It always writes at the same location on the screen, regardless of what was

there. It requires precise knowledge of the hardware. Its output does not

obey the normal redirections (’>’ and ’|’).

DOS provides a function for writing a string to the terminal, which works in

whichever video mode is in use, which writes at the current cursor position,

and which does obey redirections. DOS is called via the CPU’s ‘interrupt’

instruction, normally interrupt number 0x21. The arguments to the function

are passed in the CPU’s registers. Most importantly, the ah register specifies

which DOS function one requires.

Function 9 prints a string from the address in dx. The string must be

terminated by a ‘$’.

Function 0x4C exits, returning the contents of al as the exit code.

169

Hello, DOS World

section .text

org 0x100

lea dx,[string]

mov ah,9

int 0x21

mov ah,0x4C

mov al,0

int 0x21

string db "Hello, World$"

Now a mere 27 bytes!

170

Real Operating Systems: Linux

A real operating system would not allow direct hardware access as used in

the first example above (indeed, in the presence of virtual addressing, the first

example is nonsensical). It would insist on a coding style like the second.

However, like DOS it is called via an interrupt instruction, and again the

required function and its arguments are placed in the CPU registers. Unlike

DOS, the interrupt is always number 0x80.

Being C-based, UNIX tends to have functions similar to some of the C

functions. Two of interest here are write() and exit(). In Linux write

is function number four, and has three arguments: file descriptor, pointer to

data, and length of data to be written.

Linux uses a more structured form for its binary files, called ELF.

(ELF = Enhanced Library Format.)

171

Hello, Linux World

section .text

global _start

_start

mov eax,4 ; write is function 4

mov ebx,1 ; unit 1 is stdout

lea ecx,[msg] ; pointer to message

mov edx,13 ; length of message

int 0x80

mov eax,1 ; exit is function 1

mov ebx,0 ; exit code of zero

int 0x80

msg db "Hello, World",10

172

Hello, Linux World (2)

This file can be run (on a 32 bit Linux PC) using:

$ nasm -f elf hello.asm

$ ld hello.o

$./a.out

Hello, World

Here ld is not linking, merely adding (more) ELF magic to the object

file. It likes the global symbol start to specify where execution

should commence. Some superfluous information can be removed with the

command strip a.out.

The resulting binary file is 364 bytes long. That it contains more structure

than the DOS .COM file can be revealed by

$ file a.out

a.out: ELF 32-bit LSB executable, Intel 80386,

version 1 (SYSV), statically linked, stripped

173

Babel

Those used to the more command AT&T / Gnu assembler syntax will have been surprised

by these examples which are in Intel’s syntax. They would prefer:

.section .text

.global _start

_start:

movl $4,%eax # write is function 4

movl $1,%ebx # unit 1 is stdout

lea msg,%ecx # pointer to message

movl $12,%edx # length of message

int $0x80

movl $1,%eax # exit is function 1

movl $0,%ebx # exit code of zero

int $0x80

msg:

.ascii "Hello World\n"

Note the dollars before constants, %s before register names, the reversal of the order of the

operands, and the change of the comment character. Create a binary with:

as -o hello.o hello.s ; ld hello.o

174

The int in detail

In the DOS example, we chose to call DOS via the conventional int 0x21 call. However,

the DOS ‘kernel’ ran with the same privileges as our own code, and we could have jumped

into it by any route. Executing int 0x21 merely places a return address on the stack, and

jumps to the address given by entry number 0x21 in the interrupt vector table, which, for the

8086, starts at address zero, occupies the first 1K of memory, and is easily read or modified.

In Linux, int 0x80 is rather different. The address it refers to is not modifiable by the

user code, and when it is executed, a flag in the CPU is immediately set to indicate that the

CPU is executing kernel code. When this flag is set, direct hardware access is possible. The

flag gets reset as the execution returns to the original program. Any attempt to execute the

privileged instructions which the kernel uses without this flag set will be denied by the CPU

itself. There is a very clear distinction between ‘kernel space’ and ‘user space’.

The 8086 interrupt table has 256 four-byte (segment then offset) entries.

The IA32 processors have several modes of operation. The default, used by DOS, has no concept of privileged instructions –

everything is always acceptable. The modes which Linux (MacOS X, Windows) use do enforce different privilege levels.

175

Using libraries

As a first example of using a library, we shall convert the above Linux code

to call the write() and exit() functions from libc, rather than using

the kernel interface directly.

The most important UNIX library, libc, contains all the (non-maths)

functions required by ANSI C and any extensions supported by the platform,

as well as C wrappers to all kernel calls. Thus some of its functions, such

as strlen(), do not call the kernel at all, some, such as printf() do

considerable work before calling a more basic kernel function and others,

such as write(), are trivial wrappers for kernel functions.

The last category is traditionally documented in section 2 of the manual

pages, whereas the others are in section 3.

Some C functions call kernel functions occasionally, such as malloc(), which needs to provide any amount of memory that the

program requests, but can only request memory from the kernel in multiples of the page size (typically 4K or 8K).

Yes, UNIX has an online manual for C functions. E.g. ‘man 3 printf’ for those who cannot remember ever format specifier.

176

Using libraries: 2

Several changes are necessary to our code. The symbols write and exit

need to be declared to the assembler as external – they are not defined in the

code given, and the linker will insert the relevant code.

The routines in libc can be invoked using the call instruction, but they do

not expect their arguments to be in registers, but rather on the stack. The stack

is a downwards-growing area of scratch memory whose next free address is

given by the register esp. An instruction such as push eax puts a copy of

the value in eax on the stack, and subtracts four from esp (as four bytes are

needed to store the value in eax).

The call instruction also uses the stack for storing the return address – the

address to return to after the function exits.

177

A Stack of Arguments

Third Argument

Second Argument

First Argument

variables local
function

Stack pointer
on entry to Return Address

Space for

to function

of calling funct
Local variables

called

The stack mixes function return addresses, local variables and arguments in close proximity, with predictable, bad, results. It may

also contain compiler-generated temporary variables.

Here all the arguments were of the same size. Of course double precision numbers, and, on 64 bit machines, pointers, will be twice

the size of a 32 bit integer. The use of the stack for all arguments is inefficient. Sometimes the first few arguments are sent in registers

instead. But of course the library and the calling program must agree about how arguments are transfered!

In practice, all C compilers on Linux agree, and for this, and other, reasons, one can compile different bits of a C program with

different compilers, and everything works. Fortran compilers agree about almost nothing. This is why one needs a separate NAG

(and MKL and MPI and . . .) library for the Intel, PathScale, Gnu, Portland, Sun, . . . , compiler, and it is very tedious.

178

Hello, libc World

.section .text

.extern write

.extern _exit

.global _start

_start:

movl $13,%eax # length of message

push %eax

lea msg,%eax # pointer to message

push %eax

movl $1,%eax # unit 1 is stdout

push %eax

call write # write(fd,*buff,count)

pop %eax # remove the three arguments

pop %eax

pop %eax

mov $0,%eax

push %eax

call _exit # _exit(status)

msg:

.ascii "Hello, World\n"

179

The Linker

The above code can be compiled and linked with

$ as -o hello.libc.o hello.libc.asm

$ ld -static hello.libc.o -lc

The assembler was told that write and exit were external symbols, that

is, symbols used but not defined in the source file.

Linkers join together collections of binary object files resolving such

references. A library is merely a collection of many object files from separate

source files gathered into a single archive file. The library libc.a, which

will contain a superset of those functions required by the ANSI C standard,

on the system used was a 2.5MB archive formed from 1,300 separate .o files.

The linker extracted just those routines required and placed them in the

resulting executable. So the final executable file was 1770 bytes.

Don’t try this at home! A modern libc expects various initialisation routines to be called before it is used, and will simply segfault in

this example.

180

Linker and Compiler command lines

The option -lfoo is simply shorthand for ‘look for libfoo.a in all

the directories where library files are expected, included those directories

specified by -L options.’ So specifying -lc here is equivalent to specifiying

/usr/lib/libc.a.

Computers read from left to right.

$ ld -static -lc hello.libc.o

fails reporting undefined references to write and exit. Initially the

linker regards start as its only undefined symbol. In libc.a it found

no definition of start, so included none of that archive. Looking in

hello.lib.c.o it found a definition of start, but gained write and

exit as unresolved symbols. Continuing through the files in the order

given, there are no more left from which to find definitions of these symbols.

Fortunately modern compilers often do work if one specifies libraries before the source files which require them. It means that

well-educated Humans can detect which of their colleagues are less than precise in their approach to their work.

181

FIX ME!

It should be clear that none of the sections taken from the library will end

up at any particular address. Their destination will depend on the size of the

user-supplied program, and which other library functions have been included.

The linker performs the task of relocating the code, ‘fixing’ any absolute

addresses within the library code (text and data) as required.

The virtual addresses at which the text, initialised data and uninitialised data

(the fixed-sized segments) will be loaded is fixed at link time.

182

Moving to C

A C programmer would probably use the function printf() rather than

write() in a ‘Hello World’ program. A C compiler expects the start of the

code to be a function called main, not a point called start.

In C main is a function returning an integer, and for 32 bit Linux this means

that the return value should be placed in the register eax.

Strings in C are terminated with a null byte (rather than the Fortran / Pascal

practice of storing a separate length, and having no byte as a special end-of-

string marker).

183

Hello, mostly C

.section .text

.extern printf

.global main

main:

lea msg,%eax # pointer to message

push %eax

call printf # printf(*buff)

pop %eax # remove one argument

movl $0,%eax

ret # return from function

msg:

.ascii "Hello, World\n"

.byte 0

This needs compiling as

$ as -o hello.c.o hello.c.s

$ gcc -static hello.c.o

And this might even work on a current 32-bit Linux installation.

184

gcc vs ld

This was not linked with ld, but with gcc. What is the difference?

Firstly gcc assumes a -lc automatically.

Secondly, to cope with the fact that a C programmer expects the starting point

to be an integer function called main (taking two or three arguments, which

we are ignoring), and UNIX expects the starting point to be called start,

gcc includes a tiny object file which has an entry point called start and

itself calls main. This file is called crt1.o by gcc.

In practice gcc includes a few other tiny object files, and sometimes the odd

library too. And, indeed, crt1.o actually calls libc start main so

that libc can do any initialisation it wishes, and it then calls main.

The days when one could call ld directly to link are probably over for those

who wish to remain sane.

Of course, had gcc been offered a file ending .c rather than .o, it would have compiled it first and passed the resulting .o file to

the linker.

185

Bloat

The problem with our gcc-linked program is that it is 2.6MB (on a machine

with a 15MB libc.a). Even a completely null program is this length.

The reason people have ceased caring about such bloat is that executables

today usually perform dynamic linking (or runtime linking). The linker

merely places in the executable the names of the libraries which will be

needed at runtime, and checks that they do resolve all unresolved symbols.

The actual linking process occurs every time the program is run.

Dynamic linking is the default. The -static options above changed back

to the older style of linking.

Unfortunately one can not use the same library for both static and dynamic

linking. So every library appears twice. Once, as a .a file for static linking

(and only needed to support compiling in conjunction with static linking),

and once as a .so file (shared object) which is needed at both compile time

and run time for dynamic executables.

186

Dynamic or Static?

$ gcc -static hello.C.o

produces a 2.6MB executable, whereas

$ gcc hello.C.o

produces a 9.7KB executable. One can tell which libraries are being used at

run-time by typing

$ ldd ./a.out

linux-gate.so.1 => (0xffffe000)

libc.so.6 => /lib/libc.so.6 (0xb76ec000)

/lib/ld-linux.so.2 (0xb786d000)

(The first and the last of the above are needed by every dynamic executable

running on Linux.)

187

Libraries and Paths

At compile time, the linker searches a set of default directories for libraries,

probably

/lib, /usr/lib, and maybe /usr/local/lib

but maybe with lib replaced by lib64. At run-time the dynamic linker

searches a set of directories which is probably set to be the same.

The linker option ‘-L’ prefixes directories to the standard search path at

compile time. The linker option ‘-rpath’ does the same for the run-time

linkage, storing the extra path in the executable. The environment variable

LD LIBRARY PATH, if set, is also used at run-time for finding libraries.

So, if linking against a library which is in an unusual place, there are three choices:

1/ Make sure you link against a static library

2/ If the library is shared, and unlikely to move, use -L and -rpath.

3/ If the library is likely to move (e.g. you might try giving a bundle of files to a friend), then LD LIBRARY PATH may be needed.

(The rules for shared libraries which require additional shared libraries which were not specified at compile time are different and

confusing. Once one has worked out which libraries they will require, specifying them at compile time solves all problems.)

188

Dynamic Advantages

If each of the 2,000 executables residing in /usr/bin needed to be just

2MB bigger, the disk space requirement would be annoying. However, X11

programs tend to be dynamically linked against tens of MB of libraries, so

the increase could be more dramatic.

Also significant is the gain in physically memory use. If two programs use

the same dynamic library, it is loaded just once into physical memory, even

if different users are executing it. If they are statically linked, the kernel has

no way of telling which parts of the executables are common, and two copies

are needed in physical memory.

If a bug is fixed in a dynamic library, any program using it will get the new

version next time it is run, with no need to relink or recompile.

189

Dynamic Disadvantages

Programs are no longer stand-alone binary blobs, but need a host of libraries,

of the correct version, on the machine on which they are run. Users have

some control over this via LD LIBRARY PATH.

Beware that LD LIBRARY PATH is searched first every time any dynamic

executable is run. Point this at an NFS-mounted directory, and if there is any

problem on that server even simple commands such as ls on a local directory

will take forever, as ls is a dynamic executable, so will attempt to use the

target of LD LIBRARY PATH for finding its libraries before looking at the

standard system libraries.

If a bug is introduced in a dynamic library, programs using it will get the new

version next time it is run, and programs which used to work cease working.

So also the same program can give different answers on different computers.

If one links against a library unnecessarily (no symbols from that library were

actually required), its presence is still required at run-time. So don’t link

everything against everything just in case. Only Gnomes do that.

There is a (very) slight and often overstated overhead on every function call.

190

Not C

There are two approaches for compilers of non-C languages. One could

call the kernel directly from some sort of libc equivalent designed for the

language in question. This is tedious compared to having a language-specific

library which, rather than calling the kernel, uses libc for access to kernel

functions.

So most Fortran compilers have a Fortran library, often called libf, which

supplies those functions which a Fortran programmer expects, and, when

kernel assistance is required (e.g. for write and open, but not for sqrt or

sin) calls libc.

191

Avoiding Collisions

If one is linking against libc, one must avoid using the name of any C

function in one’s code. This is fine in C, but it is unreasonable to expect

Fortran programmers to avoid using names such as rand, abort, system,

qsort etc. because C got there first.

The solution used by most Fortran compilers is to append an underscore to all

external names. No external symbol in the C library ends in an underscore,

so collisions are avoided. Calling functions in libc directly from Fortran

becomes impossible, as any attempt to write

call qsort(...)

will look for a routine called qsort . However, only the very simplistic

would think that they had a hope of working out the syntax to get Fortran to

pass the four arguments which qsort required: a pointer to an array, two

size t objects, and a pointer to a function.

192

Overloading

Neither the C language nor ld permit function overloading, that is, functions

behaving differently depending on the number and type of their arguments.

C++ and Fortran 90 do. When a C++ programmer writes

int add(int a, int b);

double add(double a, double b);

void dummy(int x, double y){

*x=add(x,x);

*y=add(y,y);

}

the linker needs to see three distinct functions. With C++ on Linux these

names are mangled to Z3adddd, Z3addii and Z5dummyid. As

C/C++ identifiers must start with a letter, there is no ambiguity here. A

debugger which understands C++ will demangle the names automatically.

The same situation applies to Fortran 90.

A C++ program calling (or creating) a C function must do so explicitly.

extern "C" void dummy(int x, double y){ ...
193

Debugging

Names which are not needed by the dynamic linker are not needed in an

executable. So a static executable does not need to retain any hint of the

variable names or function names which were in the original program. A

dynamic executable does need to retain the names of those functions which it

calls from dynamic libraries, but that is all.

The inclusion of original variable and function names can be extremely

useful when debugging. By default most compilers include function name

information in their code, and some variable names too. If encouraged

with options such as -g, the names of all local variables are included, and

even which source line number gave rise to which instructions (a slightly

ill-defined concept, particularly on high optimisation levels).

Including detailed debugging information can easily double the size of the

executable. It need not slow it down, although -g sometimes implies -O0

to prevent the compiler from optimising variables entirely into registers,

reordering lines, etc.

194

Debugging the Stack

An executable with debugging information will contain information about

which address ranges correspond to which of its functions. If a program

crashes and produces a ‘core dump’, that dump contains a snapshot of the

program’s memory and registers at the time the crash occured.

A debugger can examine the dump, work out what function was active when

the dump happened (from the value of the instruction pointer register), and,

making use of the extra ‘base pointer’ register, it can walk backwards through

the stack to find the complete call tree until it reaches the initial main()’

function.

This works perfectly, provided the stack is not corrupted. However, programs

often crash precisely because they have suffered from variables over-writing

each other, at which point the vulnerable structure of ‘frames’ on the stack

will be destroyed, and the debugger will have no clue where it is.

Really bad debuggers then crash themselves. In the worse cases, they produce core dumps which over-write the one which you were

attempting to analyse. Yes, such lunacy has persisted into the 21st century.

195

Compilers & Optimisation

196

Optimisation

Optimisation is the process of producing a machine code representation of a

program which will run as fast as possible. It is a job shared by the compiler

and programmer.

The compiler uses the sort of highly artificial intelligence that programs have.

This involves following simple rules without getting bored halfway through.

The human will be bored before he starts to program, and will never have

followed a rule in his life. However, it is he who has the Creative Spirit.

This section discussed some of the techniques and terminology used.

197

Loops

Loops are the only things worth optimising. A code sequence which is

executed just once will not take as long to run as it took to write. A loop,

which may be executed many, many millions of times, is rather different.

do i=1,n

x(i)=2*pi*i/k1

y(i)=2*pi*i/k2

enddo

Is the simple example we will consider first, and Fortran will be used

to demonstrate the sort of transforms the compiler will make during the

translation to machine code.

198

Simple and automatic

CSE

do i=1,n

t1=2*pi*i

x(i)=t1/k1

y(i)=t1/k2

enddo

Common Subexpression Elimination. Rely on the compiler to do this.

Invariant removal

t2=2*pi

do i=1,n

t1=t2*i

x(i)=t1/k1

y(i)=t1/k2

enddo

Rely on the compiler to do this.

199

Division to multiplication

t2=2*pi

t3=1/k1 t1=2*pi/k1 t1=2*pi/k1

t4=1/k2 t2=2*pi/k2 t2=2*pi/k2

do i=1,n do i=1,n do i=1,n

t1=t2*i t=real(i,kind(1d0))

x(i)=t1*t3 x(i)=i*t1 x(i)=t*t1

y(i)=t1*t4 y(i)=i*t2 y(i)=t*t2

enddo enddo enddo

From left to right, increasingly optimised versions of the loop after the elimination of the

division.

The compiler shouldn’t default to this, as it breaks the IEEE standard subtly. However, there

will be a compiler flag to make this happen: find it and use it!

Conversion of x**2 to x*x will be automatic.

Remember multiplication is many times faster than division, and many many times faster than logs and exponentiation.

Some compilers now do this by default, defaulting to breaking IEEE standards for arithmetic. I prefered the more Conservative world

in which I spent my youth.

200

Another example

y=0

do i=1,n

y=y+x(i)*x(i)

enddo

As machine code has no real concept of a loop, this will need converting to a

form such as

y=0

i=1

1 y=y+x(i)*x(i)

i=i+1

if (i<n) goto 1

At first glance the loop had one fp add, one fp multiply, and one fp load. It

also had one integer add, one integer comparison and one conditional branch.

Unless the processor supports speculative loads, the loading of x(i+1)

cannot start until the comparison completes.

201

Unrolling

y=0

do i=1,n-mod(n,2),2

y=y+x(i)*x(i)+x(i+1)*x(i+1)

enddo

if (mod(n,2)==1) y=y+x(n)*x(n)

This now looks like

y=0

i=1

n2=n-mod(n,2)

1 y=y+x(i)*x(i)+x(i+1)*x(i+1)

i=i+2

if (i<n2) goto 1

if (mod(n,2)==1) y=y+x(n)*x(n)

The same ‘loop overhead’ of integer control instructions now deals with two

iterations, and a small coda has been added to deal with odd loop counts.

Rely on the compiler to do this.

The compiler will happily unroll to greater depths (2 here, often 4 or 8 in practice), and may be able to predict the optimum depth

better than a human, because it is processor-specific.

202

Reduction

This dot-product loop has a nasty data dependency on y: no add may start

until the preceeding add has completed. However, this can be improved:

t1=0 ; t2=0

do i=1,n-mod(n,2),2

t1=t1+x(i)*x(i)

t2=t2+x(i+1)*x(i+1)

enddo

y=t1+t2

if (mod(n,2)==1) y=y+x(n)*x(n)

There are no data dependencies between t1 and t2. Again, rely on the

compiler to do this.

This class of operations are called reduction operations for a 1-D object (a vector) is reduced to a scalar. The same sort of transform

works for the sum or product of the elements, and finding the maximum or minimum element.

Reductions change the order of arithmetic operations and thus change the answer. Conservative compilers won’t do this without

encouragement.

Again one should rely on the compiler to do this transformation, because the number of partial sums needed on a modern processor

for peak performance could be quite large, and you don’t want your source code to become an unreadable lengthy mess which is

optimised for one specific CPU.

203

Prefetching

y=0

do i=1,n

prefetch_to_cache x(i+8)

y=y+x(i)*x(i)

enddo

As neither C/C++ nor Fortran has a prefetch instruction in its standard, and

not all CPUs support prefetching, one must rely on the compiler for this.

This works better after unrolling too, as only one prefetch per cache line is required. Determining how far ahead one should prefetch

is awkward and processor-dependent.

It is possible to add directives to one’s code to assist a particular compiler to get prefetching right: something for the desperate only.

204

Loop Elimination

do i=1,3

a(i)=0

endo

will be transformed to

a(1)=0

a(2)=0

a(3)=0

Note this can only happen if the iteration count is small and known at compile

time. Replacing ‘3’ by ‘n’ will cause the compiler to unroll the loop about 8

times, and will produce dire performance if n is always 3.

205

Loop Fusion

do i=1,n

x(i)=i

enddo

do i=1,n

y(i)=i

enddo

transforms trivially to

do i=1,n

x(i)=i

y(i)=i

enddo

eliminating loop overheads, and increasing scope for CSE. Good compilers

can cope with this, a few cannot.

Assuming x and y are real, the implicit conversion of i from integer to real is a common operation which can be eliminated.

206

Fusion or Fission?

Ideally temporary values within the body of a loop, including pointers, values

accumulating sums, etc., are stored in registers, and not read in and out on

each iteration of the loop. A sane RISC CPU tends to have 32 general-pupose

integer registers and 32 floating point registers.

Intel’s 64 bit processors have just 16 integer registers, and 16 floating point

vector registers storing two (or four in recent processors) values each. Code

compiled for Intel’s 32 bit processors uses just half this number of registers.

A ‘register spill’ occurs when a value which ideally would be kept in a register

has to be written out to memory, and read in later, due to a shortage of

registers. In rare cases, loop fission, splitting a loop into two, is preferable to

avoid a spill.

Fission may also help hardware prefetchers spot memory access patterns.

207

Strength reduction

double a(2000,2000)

do j=1,n

do i=1,n

a(i,j)=x(i)*y(j)

enddo

enddo

The problem here is finding where the element a(i,j) is in memory. The

answer is 8(i − 1) + 16000(j − 1) bytes beyond the first element of a: a

hideously complicated expression.

Just adding eight to a pointer every time i increments in the inner loop is

much faster, and called strength reduction. Rely on the compiler again.

208

Inlining

function norm(x)

double precision norm,x(3)

norm=x(1)**2+x(2)**2+x(3)**2

end function

...

a=norm(b)

transforms to

a=b(1)**2+b(2)**2+b(3)**2

eliminating the overhead of the function call.

Often only possible if the function and caller are compiled simultaneously.

209

Instruction scheduling and loop pipelining

A compiler ought to move instructions around, taking care not to change the

resulting effect, in order to make best use of the CPU. It needs to ensure

that latencies are ‘hidden’ by moving instructions with data dependencies on

each other apart, and that as many instructions as possible can be done at

once. This analysis is most simply applied to a single pass through a piece of

code, and is called code scheduling.

With a loop, it is unnecessary to produce a set of instructions which do not

do any processing of iteration n+1 until all instructions relating to iteration

n have finished. It may be better to start iteration n+1 before iteration n has

fully completed. Such an optimisation is called loop pipelining for obvious

reasons..

Sun calls ‘loop pipelining’ ‘modulo scheduling’.

Consider a piece of code containing three integer adds and three fp adds, all independent. Offered in that order to a CPU capable of

one integer and one fp instruction per cycle, this would probably take five cycles to issue. If reordered as 3×(integer add, fp add), it

would take just three cycles.

210

Debugging

The above optimisations should really never be done manually. A decade ago

it might have been necessary. Now it has no beneficial effect, and makes code

longer, less readable, and harder for the compiler to optimise!

However, one should be aware of the above optimisations, for they help

to explain why line-numbers and variables reported by debuggers may not

correspond closely to the original code. Compiling with all optimisation off

is occassionally useful when debugging so that the above transformations do

not occur.

211

Loop interchange

The conversion of

do i=1,n

do j=1,n

a(i,j)=0

enddo

enddo

to

do j=1,n

do i=1,n

a(i,j)=0

enddo

enddo

is one loop transformation most compilers do get right. There is still no

excuse for writing the first version though.

212

The Compilers

f90 -fast -o myprog myprog.f90 func.o -lnag

That is options, source file for main program, other source files, other objects,

libraries. Order does matter (to different extents with different compilers),

and should not be done randomly.

Yet worse, random options whose function one cannot explain and which

were dropped from the compiler’s documentation two major releases ago

should not occur at all!

The compile line is read from left to right. Trying

f90 -o myprog myprog.f90 func.o -lnag -fast

may well apply optimisation to nothing (i.e. to the source files following -fast). Similarly

f90 -o myprog myprog.f90 func.o -lnag -lcxml

will probably use routines from NAG rather than cxml if both contain the same routine. However,

f90 -o myprog -lcxml myprog.f90 func.o -lnag

may also favour NAG over cxml with some compilers.

213

Calling Compilers

Almost all UNIX commands never care about file names or extensions.

Compilers are very different. They do care greatly about file names, and they

often use a strict left to right ordering of options.

Extension File type

.a static library

.c C

.cc C++

.cxx C++

.C C++

.f Fixed format Fortran

.F ditto, preprocess with cpp

.f90 Free format Fortran

.F90 ditto, preprocess with cpp

.i C, do not preprocess

.o object file

.s assembler file

214

Consistency

It is usual to compile large programs by first compiling each separate source

file to an object file, and then linking them together.

One must ensure that one’s compilation options are consistent. In particular,

one cannot compile some files in 32 bit mode, and others in 64 bit mode. It

may not be possible to mix compilers either: certainly on our Linux machines

one cannot link together things compiled with NAG’s f95 compiler and Intel’s

ifc compiler.

215

Common compiler options

-lfoo and -L

-lfoo will look first for a shared library called libfoo.so, then a static library

called libfoo.a, using a particular search path. One can add to the search path

(-L${HOME}/lib or -L.) or specify a library explicitly like an object file, e.g.

/temp/libfoo.a.

-O, -On and -fast

Specify optimisation level, -O0 being no optimisation. What happens at each level is

compiler-dependent, and which level is achieved by not specifying -O at all, or just -O with

no explicit level, is also compiler dependent. -fast requests fairly aggressive optimisation,

including some unsafe but probably safe options, and probably tunes for specific processor

used for the compile.

-c and -S

Compile to object file (-c) or assembler listing (-S): do not link.

-g

Include information about line numbers and variable names in .o file. Allows a debugger to

be more friendly, and may turn off optimisation.

216

More compiler options

-C

Attempt to check array bounds on every array reference. Makes code much slower, but can

catch some bugs. Fortran only.

-r8

The -r8 option is entertaining: it promotes all single precision variables, constants and

functions to double precision. Its use is unnecessary: code should not contain single precision

arithmetic unless it was written for a certain Cray compiler which has been dead for years.

So your code should give identical results whether compiled with this flag or not.

Does it? If not, you have a lurking reference to single precision arithmetic.

The rest

Options will exist for tuning for specific processors, warning about unused variables,

reducing (slightly) the accuracy of maths to increase speed, aligning variables, etc. There

is no standard for these.

IBM’s equivalent of -r8 is -qautodbl=dbl4.

217

A Compiler’s view: Basic Blocks

A compiler will break source code into basic blocks. A basic block is a

sequence of instructions with a single entry point and a single exit point. If

any instruction in the sequence is executed, all must be executed precisely

once.

Some statements result in multiple basic blocks. An if/then/else instruction

will have (at least) three: the conditional expression, the then clause, and the

else clause. The body of a simple loop may be a single basic block, provided

that it contains no function calls or conditional statements.

Compilers can amuse themselves re-ordering instructions within a basic

block (subject to a little care about dependencies). This may result in a

slightly complicated correspondence between line numbers in the original

source code and instructions in the compiled code. In turn, this makes

debugging more exciting.

218

A Compiler’s view: Sequence Points

A sequence point is a point in the source such that the consequences of

everything before it point are completed before anything after it is executed.

In any sane language the end of a statement is a sequence point, so

a=a+2

a=a*3

is unambiguous and equivalent to a=(a+2)*3.

Sequence points usually confuse C programmers, because the increment and

decrement operators ++ and -- do not introduce one, nor do the commas

between function arguments.

j=(++i)*2+(++i);

printf("%d %d %d\n",++i,++i,++i);

could both do anything. With i=3, the first produces 13 with most compilers,

but 15 with Open64 and PathScale. With i=5, the latter produces ‘6 7 8’

with Intel’s C compiler and ‘8 8 8’ with Gnu’s. Neither is wrong, for the

subsequent behaviour of the code is completely undefined according to the C

standard. No compiler tested produced a warning by default for this code.

219

And: there’s more

if ((i>0)&&(1000/i)>1) ...

if ((i>0).and.(1000/i>1)) ...

The first line is valid, sane, C. In C && is a sequence point, and logical

operators guarantee to short-circuit. So in the expression

A&&B

A will be evaluated before B, and if A is false, B will not be evaluated at all.

In Fortran none of the above is true, and the code may fail with a division by

zero error if i=0.

A.and.B

makes no guarantees about evaluation order, or in what circumstances both

expressions will be evaluated.

What is true for && in C is also true for || in C.

220

Fortran 90

Fortran 90 is the language for numerical computation. However, it is not

perfect. In the next few slides are described some of its many imperfections.

Lest those using C, C++ and Mathematica feel they can laugh at this point,

nearly everything that follows applies equally to C++ and Mathematica. The

only (almost completely) safe language is F77, but that has other problems.

Most of F90’s problems stem from its friendly high-level way of handling

arrays and similar objects.

So that I am not accused of bias,

http://www.tcm.phy.cam.ac.uk/˜mjr/C/

discusses why C is even worse. . .

221

Slow arrays

a=b+c

Humans do not give such a simple statement a second glace, quite forgetting

that depending what those variables are, that could be an element-wise

addition of arrays of several million elements. If so

do i=1,n

a(i)=b(i)+c(i)

enddo

would confuse humans less, even though the first form is neater. Will both

be treated equally by the compiler? They should be, but many early F90

compilers produce faster code for the second form.

222

Big surprises

a=b+c+d

really ought to be treated equivalently to

do i=1,n

a(i)=b(i)+c(i)+d(i)

enddo

if all are vectors. Many early compilers would instead treat this as

temp_allocate(t(n))

do i=1,n

t(i)=b(i)+c(i)

enddo

do i=1,n

a(i)=t(i)+d(i)

enddo

This uses much more memory than the F77 form, and is much slower.

223

Sure surprises

a=matmul(b,matmul(c,d))

will be treated as

temp_allocate(t(n,n))

t=matmul(c,d)

a=matmul(b,t)

which uses more memory than one may first expect. And is the matmul

the compiler uses as good as the matmul in the BLAS library? Not if it is

Compaq’s compiler.

I don’t think Compaq is alone in being guilty of this stupidity. See IBM’s -qessl=yes option. . .

Note that even a=matmul(a,b) needs a temporary array. The special case which does not is a=matmul(b,c).

224

Slow Traces

allocate (a(16384,16384))

call tr(a(1:nn,1:nn),nn,x)

subroutine tr(m,n,t)

double precision m(n,n),t

integer i,n

t=0

do i=1,n

t=t+m(i,i)

enddo

end subroutine

As n was increased by factors of two from 512 to 16384, the time in seconds

to perform the trace was 3ms, 13ms, 50ms, 0.2s, 0.8s, 2ms.

225

Mixed Languages

The tr subroutine was written in perfectly reasonable Fortran 77. The call is

perfectly reasonable Fortran 90. The mix is not reasonable.

The subroutine requires that the array it is passed is a contiguous 2D array.

When n=1024 it requires m(i,j) to be stored at an offset of 8(i − 1) +
8192(j − 1) from m(1,1). The original layout of a in the calling routine of

course has the offsets as 8(i− 1) + 131072(j − 1).

The compiler must create a new, temporary array of the shape which tr

expects, copy the relevant part of a into, and, after the call, copy it back,

because in general a subroutine may alter any elements of any array it is

passed.

Calculating a trace should be order n in time, and take no extra memory. This

poor coding results in order n2 in time, and n2 in memory.

In the special case of n=16384 the compiler notices that the copy is unnecessary, as the original is the correct shape.

Bright people deliberate limit their stack sizes to a few MB (see the output of ulimit -s. Why? As soon as their compiler creates

a large temporary array on the stack, their program will segfault, and they are thus warned that there is a performance issue which

needs addressing.

226

Pure F90

use magic

call tr(a(1:nn,1:nn),nn,x)

module magic

contains

subroutine tr(m,n,t)

double precision m(:,:),t

integer i,n

t=0

do i=1,n

t=t+m(i,i)

enddo

end subroutine

end module magic

This is decently fast, and does not make extra copies of the array.

227

Pure F77

allocate (a(16384,16384))

call tr(a,16384,nn,x)

subroutine tr(m,msize,n,t)

double precision m(msize,msize),t

integer i,n,msize

t=0

do i=1,n

t=t+m(i,i)

enddo

end subroutine

That is how a pure F77 programmer would have written this. It is as fast as

the pure F90 method (arguably marginally faster).

228

Type trouble

type electron

integer :: spin

real (kind(1d0)), dimension(3) :: x

end type electron

type(electron), allocatable :: e(:)

allocate (e(10000))

Good if one always wants the spin and position of the electron together. However, counting

the net spin of this array

s=0

do i=1,n

s=s+e(i)%spin

enddo

is now slow, as an electron will contain 4 bytes of spin, 4 bytes of padding, and three 8 byte

doubles, so using a separate spin array so that memory access was unit stride again could be

eight times faster.

229

What is temp allocate?

Ideally, an allocate and deallocate if the object is ‘large’, and placed
on the stack otherwise, as stack allocation is faster, but stacks are small and
never shrink. Ideally reused as well.

a=matmul(a,b)

c=matmul(c,d)

should look like

temp_allocate(t(n,n))

t=matmul(a,b)

a=t

temp_deallocate(t)

temp_allocate(t(m,m))

t=matmul(c,d)

c=t

temp_deallocate(t)

with further optimisation if m=n. Some early F90 compilers would allocate

all temporaries at the beginning of a subroutine, use each once only, and

deallocate them at the end.

230

a=sum(x*x)

temp_allocate(t(n))

do i=1,n

t(i)=x(i)*x(i)

enddo

a=0

do i=1,n

a=a+t(i)

enddo

or

a=0

do i=1,n

a=a+x(i)*x(i)

enddo

Same number of arithmetic operations, but the first has 2n reads and n writes

to memory, the second n reads and no writes (assuming a is held in a register

in both cases). Use a=dot_product(x,x) not a=sum(x*x)! Note that

a compiler good at loop fusion may rescue this code.

231

Universality

The above examples pick holes in Fortran 90’s array operations. This is not an

attack on F90 – its array syntax is very convenient for scientific programming.

It is a warning that applies to all languages which support this type of syntax,

including Matlab, Python, C++ with suitable overloading, etc.

It is not to say that all languages get all examples wrong. It is to say that most

languages get some examples wrong, and, in terms of efficiency, wrong can

easily cost a factor of two in time, and a large block of memory too. Whether

something is correctly optimised may well depend on the precise version of

the compiler / interpreter used.

232

233

Disks, Filesystem & Fileservers

234

A Physical Disk Drive

A single hard disk contains a spindle with multiple platters. Each platter has

two magnetic surfaces, and at least one head ‘flying’ over each surface. The

heads do fly, using aerodynamic effects in a dust-free atmosphere to maintain

a very low altitude. Head crashes (head touching surface) are catastrophic.

There is a special ‘landing zone’ at the edge of the disk where the heads must

settle when the disk stops spinning.

sector

track

platter

head

235

Disk Drives vs Memory

Memory and disk drives differ in some important respects.

Disk drives retain data in the absence of power.

Memory is addressable at the level of bytes, disk drives at the level of blocks,

typically 512 bytes.

Disk drives are cheaper per unit of storage. Disks cost around £40 per TB,

and a typical PC case can contain about 10TB of disks, memory costs around

£6,000 per TB, and a typical PC case can contain about 0.03TB.

236

Disk Drives vs Memory: Speed

Disk drives are slow for bandwidth, but not that slow. Physical spinning

drives can manage around 0.1GB/s, whereas a memory DIMM is around

10GB/s.

The big difference is on latency. Memory latencies are below 0.1µs. Disk

drive latencies are at least half a revolution at typically 7,200rpm. This

is about 4ms, and other factors push the number up to about 10ms. So

bandwidth down by a factor of 100, but latency up by a factor of 100,000.

237

Accuracy

Each sector on a disk is stored with an error-correcting checksum. If the

checksum detects a correctable error, the correct data are returned, the sector

marked as bad, a spare ‘reserved’ sector used to store a new copy of the

correct data, and this mapping remembered.

A modern disk drive does all of this with no intervention from the operating

system. It has a few more physical sectors than it admits to, and is able to

perform this trick until it runs out of spare sectors.

An uncorrectable error causes the disk to report to the OS that the sector is

unreadable. The disk should never return incorrect data.

Memory in most modern desktops does no checking whatsoever. In TCM we

insist on ECC memory – 1 bit error in 8 bytes corrected, 2 bit errors detected.

Data CDs use 288 bytes of checksum per 2048 byte sector, and DVDs 302

bytes per 2K sector. Hard drives do not reveal what they do.

238

Big Requests

To get reasonable performance from memory, one needs a transfer size of

around 10GB/s × 100ns = 1KB, or latency will dominate.

To get reasonable performance from disk, one needs a transfer size of around

0.1GB/s × 10ms = 1MB, or latency will dominate. Hence disks have a

minimum transaction size of 512 bytes – rather small, but better than one

byte.

Writing a single byte to a disk drive is very bad, because it can operate only

on whole sectors. So one must read the sector, wait for the disk to spin a

whole revolution, and write it out again with the one byte changed. Even

assuming that the heads do not need moving, this must take, on average, the

time for 1.5 revolutions. So a typical 7,200rpm disk (120rps) can manage no

more than 80 characters per second when addressed in this fashion.

239

Really

#include<stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int main(int argc, char** argv){

int i,fd1,fd2;

char c;

fd1=open(argv[1],O_CREAT|O_SYNC|O_RDWR,0644);

fd2=open(argv[1],O_SYNC|O_RDONLY);

write(fd1,"Maggie ",7);

for(i=0;i<7*200;i++){

read(fd2,&c,1);

write(fd1,&c,1);

}

close(fd1); close(fd2);

return(0);

}

240

S l o w

The above code writes the string ‘Maggie ’ to a file two hundred times.

m1:˜/C$ gcc disk_thrash.c

m1:˜/C$ time ./a.out St_Margaret

real 0m13.428s

user 0m0.000s

sys 0m0.153s

m1:˜/C$ ls -l St_Margaret

-rw-r--r-- 1 mjr19 users 1407 Jul 16 17:40 St_Margaret

So 104 characters per second. Better than we predicted, but still horrid.

241

Caching and Buffering

To avoid performance disasters, much caching occurs.

Applications buffer writes (an automatic feature of certain functions in the

C library) in order to coalesce multiple small writes. This buffering occurs

before the application contacts the kernel. If the application dies, this data

will be lost, and no other application (such as tail -f) can see the data

until the buffer is flushed. Typical default buffer sizes are 4KB for binary

data, and one line for text data.

The OS kernel will also cache aggressively. It will claim it has written data

to disk when it hasn’t, and write it later when it has nothing better to do. It

will remember recent reads and writes, and then if those data are read again,

will provide the data almost instantly from its cache. Writes which have

reached the kernel’s cache are visible to all applications, and are protected if

the writing application dies. They are lost if the kernel dies (i.e. computer

crashes).

242

Buffering: A practical demonstration

$ perl -e ’$|=1;for(;;){print "x";select(undef,undef,undef,0.001);}’

An incomprehensible perl fragment which prints the letter ’x’ every

millisecond.

$ perl -e ’for(;;){print "x";select(undef,undef,undef,0.001);}’

Ditto, but with buffering, so it prints 4096 x’s every 4.1s.

In general output to terminals is unbuffered or line buffered, and output to

files is line or block buffered, but not everything obeys this.

If a job is run under a queueing system, so that stdout is no longer a terminal

but redirected to a file, buffering may happen where it did not before.

243

RAID

Redundant Arrays of Inexpensive/Independent Disks. These come in many

flavours, and one should be aware of levels 0, 1, 5 and 6. Via hardware or

software, a virtual disk consisting of several physical disks is presented to the

operating system

Level 0 is not redundant. It simply uses n disks in parallel giving n times the

capacity and n times the bandwidth of a single disk. Latency is unchanged,

and to keep all disks equally active it is usual to store data in stripes, with

a singel stripe continaing multiple contiguous blocks from each disk. To

achieve full performance on single access, very large transfers are needed.

Should any disk fail, all data on the whole array are lost.

Level 1 is the other extreme. It is often called mirroring, and here two disks

store identical data. Should either fail, the data are read from the other.

Bandwidth and latency usually unchanged, though really smart systems can

try reading from both disks at once, and returning data from whichever

responds faster. This trick does not work for writes.

244

RAID 5

RAID 5 uses n disks to store n − 1 times as much data as a single disk, and

can survive any single disk failing. Like RAID 0, it works in stripes. A single

stripe now stores data on n − 1 disks, and parity information on the final

disk. Should a disk fail, its data can be recovered from the other data disks in

combination with the parity disk.

Read bandwidth might be n− 1 times that of a single disk. Write bandwidth

is variable. For large writes it can be n − 1 times that of a single disk. For

small writes, it is dreadful, as, even for a full block, one has to:

read old data block and old parity block

write new data block, calculate new parity block (old parity XOR old data

XOR new data), write new parity block.

Two reads and two writes, where a single disk would have needed a single

write, and RAID 1 would have needed two writes, one to each disk, which

could progress in parallel. RAID 5 hates small writes.

245

RAID 6

RAID 6 uses n disks to store n − 2 times as much data as a single disk, and

can survive any two disks failing. Colloquially refered to as ‘double parity’,

but such an expression would offend any mathematician. Has much the same

properies as RAID-5, only small writes are even worse.

RAID is not much use unless disk failures are rapidly noticed and addressed,

especially in the case of RAID 5 and RAID 1 which leave no redundancy in

the period between a failure occuring and the disk being replaced and refilled

with the relevant data. Refilling a disk can easily take 12 hours.

RAID systems can have background ‘patrol reads’ in which the whole array

is read, and the consistency of the data and ‘parity’ information checked.

Such activity can be given a low priority, progressing only when the array

would otherwise be idle. It can spot the ‘impossible’ event of a disk returning

incorrect data in a block whilst claiming that the data are good.

RAID improves disk reliability and bandwidth, particularly for reads. It does

little to nothing for latency.

246

File Systems

Disks store blocks of data, indexed by a single integer from 0 to many

millions.

A file has an associated name, its length will not be an exact number of

blocks, and it might not occupy a consecutive series of blocks. The filing

system is responsible for:

• a concept of a ‘file’ as an ordered set of disk blocks.

• a way of refering to a file by a textual name.

• a way of keeping track of free space on the disk.

• a concept of subdirectories.

The data describing the files, rather than the data in the files themselves, is

called metadata.

247

Different Solutions

Many filesystems have been invented: FAT16 and VFAT32 from DOS, NTFS

from Windows, UFS (and many, many relations, such as ext2) from Unix,

HFS from MacOS, and many others. They differ in:

Maximum file length.

Maximum file name length.

Maximum volume size.

Which characters are permitted in file names.

Whether ownership is recorded, and how.

Which of creation time, modification time, and last access time exist.

Whether flags such as read-only, execute and hidden exist.

248

Lowest Common Denominator

DOS. Supported by almost everything. Even in its VFAT32 form very

slow for volumes of more than about 500GB. Maximum file size 4GB. The

characters : and \ are not allowed in filenames. The old FAT16 standard of

DOS is free of any patents, and mostly useless. Microsoft claims four of its

patents protect the VFAT extension which allows filenames of more than 8.3

characters, and tries to charge royalties on devices using it.

NFTS, ext3 and HFS both readily support 1TB+ volumes on their own OSes.

Getting them to work away from their host OSes is hard.

249

The UNIX Filesystem

Every UNIX vendor has one (or more) file systems of his own. However, the

traditional UNIX file system (UFS) has the following features.

The UNIX file system has three types of metadata: the block bitmap, the

index node (inode) and the directory entry.

The block bitmap simply contains one bit for each cluster (block) on the disk,

and marks whether the cluster is free.

The directory entry is also simple: a variable-length field containing the

name, and a field giving an index into the inode table.

The original UNIX filesystem was even simpler, with fixed-length 16 byte directory entries containing a 14 character name and a two

byte i-node number.

Again every subdirectory contains explicit entries for ‘.’ and ‘..’ giving its own and its parent’s inode number.

250

The inode table

The inode table is of fixed size, containing a fixed number of fixed-length

records (typically 128 bytes each), each describing one file. Each record

contains:

File length

File ownership (user and group)

File ‘creation’, modification and last access times

File access permissions

The number of directory entries pointing at this file

A list of the first ten clusters occupied by the file

Three pointers to clusters containing details of further clusters used

Again, the block bitmap, inode table and directory entries must all be

consistent.

The file and group ownership records the numeric user id (typically 32 bits), not the eight character textual user name.

The program fsck checks for consistency. fsck = File System ChecK.

251

Large Files

Files smaller than c.10 blocks have the complete list of blocks used in their

inode. Longer files use an entry which points to a disk block filled with a list

of the next blocks used. If a block number is 4 bytes long, and a block is 1K,

this gives another 256 blocks.

For larger files, the inode has another entry pointing to a block filled with

entries pointing to blocks containing the rest of the list! This adds another

65000 or so blocks. There may be one further level of indirection for very

large files.

1

3

5
6
7
8

10

114

2

266

to

1035-1546

523-1034

267-522

9

65547-65802

252

An Experiment

$ dd if=/dev/zero of=test bs=1024 count=40

$ ls -l test

-rw-r--r-- 1 spqr1 users 40960 Sep 9 13:56 test

$ du -k test

40 test

A 40KB file takes 40KB of disk space.

$ ls -l test

-rw-r--r-- 1 spqr1 users 41984 Sep 9 13:58 test

$ du -k test

44 test

A 41KB file takes 44KB of disk space – probably using 4KB blocks.

$ ls -l test

-rw-r--r-- 1 spqr1 users 50176 Sep 9 14:00 test

$ du -k test

56 test

A 49KB file takes 56KB of disk space – thirteen 4KB blocks for the data, and one extra block

for the indirect block list. (This example should be repeatable with ext3, probably not ext4.)

253

Fast or Slow?

Simply getting a list of files from a directory is fast – the directory needs

to be read, the names are sorted alphabetically, and that is it. With luck the

directory is stored in a very small number of contiguous blocks on disk.

The output of ls -l, ls -F, or a ‘colour’ ls, is much more complicated.

For each entry in the directory, the corresponding inode must be opened and

read in order to find out information about the file type, length, etc. Chasing

a bunch of inodes, which may be widely separated on disk, is slow. Hope that

they are in a cache, and there is no need to search the physical disk! (Linux’s

ext4 can add the file type to the directory entry, to the benefit of ls -F.)

The traditional directory also becomes inefficient once there are more than a

thousand or so files in a directory – the traditional directory is an unindexed,

variable record length, flat file database, the worst sort. More recent UNIXes

use slightly saner structures, but it is generally bad to attempt to turn a

filesystem into a database with tens of thousands of entries per directory.

If you do think that tens of thousands of files in a directory is a good idea, make sure that you understand that commands such as

‘rm *dat’ will behave oddly if ‘*dat’ expands to more than about 100,000 characters. . .

254

Open, Move, Delete

Opening a file is done by name, and involves a directory look-up to find an

inode number. Once a file is open, the directory entry is irrelevant.

The mv command renames a file, possibly between directories, without

changing its inode number.

Truncating a file to zero length and writing it out again (presumably modified)

does not change its inode number. Deleting it and creating a new file with the

same name does.

Deleting a file which is open does not remove it from disk – the processes

which have it open will be unaware of its deletion, and only when the last

process closes it will it be removed from disk.

If mv is used to move a file between devices, then of course the inode must change, and it is equivalent to cp followed by rm.

255

Hard Links

So far we have seen two file types: ordinary files and directories. UNIX also

has two forms of link.

The first, the hard link, is not a new file type at all. One merely has

two directory entries pointing at the same inode. As the inode stores the

information about file length and access times, there are no consistency

problems.

This would not be the case for DOS’s FAT filesystem, in which file length and modification time are stored along with the name in

the directory entry.

The link count in the inode keeps track of how many directory entries point

to that inode, and only when deletion reduces the count to zero are the inode

and data blocks actually freed.

All directory entries pointing at the same inode are equivalent, and must

reside on the same filesystem.

Deletion (the freeing of data blocks) will also not occur if any program has the file open, even if there is no remaining directory entry

pointing to its inode.

Hard links to directories are not permitted, as they would cause the directory to have multiple equivalent parents.

256

Hard Link Surprises

If foo and bar are hard links to each other, and hence indistinguishable,

then

mv bar baz

leaves foo and baz as indistinguishable hard links. Similarly truncating

foo and writing new contents into it leaves foo and bar identical.

However, deleting foo and recreating a file with the same name will break

the hard link, and foo and bar will now be completely distinct, as is also

the case after

cp bar baz; rm bar

which leaves foo and baz as independent files with separate inodes.

A compiler should delete and recreate its output file. Then, if its output file (i.e. an executable) is open (i.e. is being run), the run will

continue uninterrupted. If it truncates and rewrites, the running program will suffer modification whilst it runs, and will crash.

An editor should truncate and rewrite, otherwise it will break hard links, which presumably existed for a reason.

A directory has a link count of two plus the number of subdirectories it has. (Consider its own ‘.’ entry, and its subdirectories’ ‘..’

entries.) A directory with a link count of just two has no subdirectories.

257

Symbolic links

A symbolic, or soft, link is a new file type. The file simply contains an

indirection, saying ‘don’t look at me, look over there instead.’

tcm30:/usr/sbin> ls -l /usr/sbin/sendmail

lrwxrwxrwx 1 root system 24 Sep 12 1998

sendmail -> /usr/local/exim/bin/exim

References to /usr/sbin/sendmail will be redirected to

/usr/local/exim/bin/exim. The l at the start of the permissions bits

shows that this is a symbolic link. The rest of the permissions are ignored (the

file is not world-writable!).

The length, 24 bytes, is the number of characters in the target filename, which

is stored as the file ‘data’. The link and its target are quite distinguishable,

and need not be on the same filesystem. The target need not even exist!

Soft links to directories are permitted. UNIX will check for circular paths in symlinks.

Soft links are usually safer, in that they lead to fewer surprises. However, the UNIX ln command defaults to making hard links, and

one needs to specify ln -s for the soft sort.

Many versions of UFS, including ext2, are able to store short soft links (under about 60 characters) in the inode in place of the data

block list, so no data block is allocated.

258

Inconsistencies

A file system will be consistent before and after a file is deleted, but not

during the deletion: the directory might be changed but the block bitmap not.

And clearly if the OS has a write-behind cache, the data on the disk need not

be the same the data in the cache.

Hence it is important to tell a computer to finish all disk operations and to

send all modified data from its cache to the disk before turning it off. This is

called flushing the cache, or syncing the disks.

(‘Syncing’ abbreviates ‘synchronising’, so is similarly pronounced.)

Any filesystem which records last access times (such as UFS) will be frequently modifying data on disk.

UNIX systems, and some versions of Windows, will detect if they have been turned off without being shutdown properly, and check

their disks for consistency when they are next turned on. If they have been shutdown correctly, they don’t bother.

Though fsck and scandisk can often autorepair a filesystem to a consistent state, it is worth pointing out that consistency and

correctness are different: formatting a disk also reduces its filesystem to a consistent state, but in a slightly unhelpful manner.

259

Journalling filesystems

Because checking filesystem consistency is painful on large fileservers – it

can often take over an hour – various filesystems which never need a full

consistency check have been developed.

They all work by keeping a log, or journal, of operations which they are about

to do. Deleting a UNIX file might be broken down as:

write to journal ‘I am about to remove this

directory entry, free this inode, and mark

these clusters as free.’

do the above

remove the journal entry

After a crash, the journal is scanned and those entries which have not been

completed are finished.

A journalling filesystem must flush the journal from cache to disk before attempting the updates described by the journal.

Digital UNIX has AdvFS as a journalled filesystem, Irix has xfs, AIX has jfs, Linux has ext3, and WinNT has NTFS.

260

Journal problems

Journalling produces a significant performance penalty, as every write is

turned into two: one to the journal, and one to the real file. For this reason

most journalled filesystems only journal metadata.

Journalling metadata can ensure that the filesystem remains consistent, and

guards against the type of errors which can cause whole directories to vanish.

The contents of files can still be corrupted by crashes.

Journalling data as well as metadata is a serious performance penalty, and

requires a much bigger area for the journal. Many journalling filesystems do

not support data journalling at all.

The final problem with journalling is that hardware errors or bugs in the OS

can still cause a journalled filesystem to become inconsistent. Because the

recovery tools for journalled filesystems are used less frequently, they tend to

be less tested and less effective.

Linux’s ext3 and Solaris’s UFS support journalling and still use the same layout as the older, non-journalled, filesystem they are based

on. Hence the old recovery tools are valid.

261

Multiple programs

What happens when two programs try to manipulate the same file? Chaos,

often.

As an example, consider a password file, and suppose two users change their

entries ‘simultaneously.’ As the entries need not be the same size as before,

the following might happen:

User A reads in password file, changes his entry in his copy in memory,

deletes the old file, and starts writing out the new file.

Before A has finished, user B reads in the password file, changes his entry in

memory, deletes the old, and writes out the new.

It is quite possible that A was part way through writing out the file when

B started reading it in, and that B hit the end of file marker before A had

finished writing out the complete file. Hence B read a truncated version of

the file, changed his entry, and wrote out that truncated version.

262

Locking

The above scenario is rather too probable. It is unlikely that one can write out

more than a few 10s of KB before there is a strong chance that your process

will lose its scheduling slot to some other process.

UNIX tacked on the concept of file locking to its filing systems. A ‘lock’ is a

note to the kernel (nothing is recorded on disk) to say that a process requests

exclusive access to a file. It will not be granted if another process has already

locked that file.

Because locking got tacked on later, it is a little unreliable, with two different

interfaces (flock and fcntl), and a very poor reputation when applied to

remote filesystems over NFS.

As the lock is recorded in the kernel, should a process holding a lock die, the

lock is reliably cleared, in the same way that memory is released, etc.

Microsoft, trying to be positive, refers to ‘file sharing’ not ‘file locking.’

263

Multiple Appending

What happens when multiple programs open the same file, e.g. a log file, and

later try to append to it?

Suppose two programs try to write ‘Hello from A’ and ‘Hello from B’

respectively.

The output could occur in either order, be interleaved:

Hello frHello from A

om B

or the last one to write might over-write the previous output, and thus one

sees only a single line.

The obvious problem is that the file can grow (or shrink) after program A has opened it, but before it writes to it, without the change

being caused by program A.

This situation is common with parallel computers, when multiple nodes attempt to write to the same file. A set of standards called

‘POSIX’ states that over-writing will not occur when appending, but not all computers obey this part of POSIX.

264

File Servers

Filesystems are tolerably fast and reliable when the process accessing them

is running on the same computer that the physical disks are in. There is

one kernel to which the processes send their requests, and which controls

all accesses to the disk drives. Caching reads is particularly easy, as the

kernel knows that nothing apart from itself can change the contents of the

disk. If remote fileservers are involved, this gets complicated. The kernel on

the remote server can cache agressively, but the kernel on the machine the

program is running on cannot.

cache
kernel

process

cache
kernel

process

cache
kernel

Client Client

Server Disk

265

Solutions

The clients could abandon all caching, and rely on the server to cache.

However, this introduces a large overhead – the fastest one could hope to

send a packet over a local network and get a response is about 100µs, or

about 105 clock cycles of the CPU.

So in practice the clients do cache, and do not even always check with the

server to see if their cached data are now incorrect. However, the clients dare

not cache writes ever.

This restores half-tolerable performance, at the cost of sometimes showing

inconsistencies.

UNIX’s remote filesystem protocol, NFS, is surprisingly paranoid. The

specification states that the server may not acknowledge a write request until

the data has reached permanent storage. Many servers lie.

266

Does it Matter

If one is reading and writing large amounts of data which would not have

been cacheable anyway, this is not much of an issue.

The other extreme is writing a small file, reading it in again, and deleting it.

This is almost precisely what a compiler does. (It writes an object file, which

is then read by the linker to produce the executable, and the object file is often

deleted. It may even write an assembler file and then read that in to produce

the object file.)

If this is aimed at a local disk, a good OS will cache so well that the file which

is deleted is never actually written. If a remote disk is involved, the writes

must go across the network, and this will be much slower.

Compiling on a local scratch disk can be much faster than compiling on a

network drive.

On remote drives the difference in performance between ls and ls -l (or

coloured ls) can be quite noticeable – one needs to open an inode for every

file, the other does not.

267

Remote Performance: A Practical Example

$ time tar -xvf Castep.tgz

Scratch disk, 0.6s; home, 101s. Data: 11MB read, 55MB written in 1,200 files.

Untarring on the fileserver directly completed in 8.2s. So most of the problem

is not that the server is slow and ancient, but that the overheads of the

filesystem being remote are crippling. A modern fileserver on an 1GBit/s link

managed 7.5s, still over ten times slower than the local disk, and over ten times slower

than the theoretical 120MB/s of the server.

More crippling is the overhead of honesty. The ‘Maggie’ test at the start of

this talk took 0.4s on the modern fileserver – impossibly fast. On the old and

honest one, 20.7s.

$./compile-6.1 CASTEP-6.1.1

(An unoptimised, fast compile.) Scratch disk, 136s; home directory, 161s.

$ time rm -r cc

Deleting directory used for this. Scratch disk, 0.05s; home directory, 14s.

268

Remote Locking

The performance problems on a remote disk are nothing compared to the

locking problems. Recall that locks are taken out be processes, and then

returned preferably explicitly, and otherwise when the file is closed, or when

the process exits for any reason. There is no concept of asking a process

which has a lock whether it really still needs it, or even of requiring it to

demonstrate that it is still alive.

With remote servers this is a disaster. The lock must exist on the server, so

that it effects all clients. But the server has no way of telling when a process

on a remote client exits. It is possible that the remote kernel, or, more likely,

some daemon on the remote client, may tell it, but this cannot be reliable.

In particular, if the client machine’s kernel crashes, then it cannot tell any

remote server that locks are no longer relevant – it is dead.

269

Are You There?

Networks are unreliable. They lose individual packets (a minor issue which

most protocols cope with), and sometimes they go down completely for

seconds, minutes, or hours (sometimes because a Human has just unplugged

a cable). A server has no way of telling if a client machine has died, or if

there is a network fault.

Most networked filing systems are quite good at automatically resuming once

the network returns. But locking presents a problem. Can a server ever decide

that a client which appears to have died no longer requires a lock? If the client

has really died, this is fine. If the client is alive, and the network is about to be

restored, there is no mechanism for telling a process that the lock it thought

it had has been rescinded.

Similarly a client cannot tell the difference between a network glitch and a

server rebooting. It expects its locks to be maintained across both events,

especially because it might not have noticed either – network glitches and

server reboots are obvious only if one is actively attempting to use the

network or server.

270

Whose Lock is it Anyway

UNIX’s locking mechanisms is particularly deficient. The only way of testing

whether a file is locked is to attempt to lock it yourself. If you succeed, it

wasn’t. There is no standard mechanism for listing all locks in existance, or

even for listing all locks on a given file.

Most UNIXes provide some backdoor for reading the relevant kernel data

structure. This may be accessible to root only. In the case of remote locks,

they will all be owned by one of the server’s local NFS daemons. This makes

tracing things hard. With luck the server’s NFS lock daemon will provide a

mechanism for listing which clients currently have locks. Even then, it will

not actually know the process ID on the remote machine, as all requests will

have been channelled through a single NFS daemon on the remote client.

Daemon – a long-running background process dedicated to some small, specific task.

In Linux locks are usually listed in /proc/locks, which is world-readable.

271

Breaking Locks

The safest recipe is probably as follows.

Copy the locked file to a new file in the same directory, resulting in two files

of identical contents, but different inode numbers, only the original being

locked.

Move the new version onto the old. This will be an atomic form of delete

followed by rename. The old name is now associated with the new, unlocked

file. The old file has no name, so no new process can accidentally access it.

Unfortunately the old, locked, file still exists – neither its inode nor its disk

blocks are freed. If it is locked, it must be open by some process. If it is

open, it cannot be removed from the disk merely because another process has

removed its directory entry. Any processes which have it open will write to

the original if they attempt any updates, and such updates will be lost when

the last process closes the file.

272

273

Parallel Computers

274

Not Parallel: Multitasking

A single CPU can run only one program at once. Multitasking is an illusion

for the confusion of gullible humans.

The processor runs one program for a timeslice, typically 1 to 20ms, then

switches to another. The shorter the timeslice, the less humans will notice.

When the CPU performs a process switch, it must save to memory all its

registers and reload the set relevant to the new process. This will take

hundreds of clock cycles. The restarted process will also find the caches

mostly, or entirely, storing data relevant to the previous process.

The program does not know that it had been suspended and later restarted,

and needs no special code. Any I/O arriving for it will be held by the kernel

and for delivery whilst the program is active.

The more registers a CPU has, the more expensive a process switch is, as more state needs to be written to memory and read back.

The longer the timeslice, the less time is wasted switching.

275

Caches: flushed or shared?

Once a CPU is running multiple tasks via multitasking, its caches are

effectively shared in some fashion. A task when switched in will find small

caches are empty (i.e. full of data relating to the previous task), and large

caches somewhat shared (i.e. still containing data from the process’s previous

scheduling slot, as well as data from the other process(es)).

How much this matters depends enormously on the applications concerned.

Filling a large last level cache can be expensive – an 8MB cache will take

0.5ms to fill at an optimistic 16GB/s. A typical scheduling timeslot is around

1ms, so, by the time one has filled the cache, the scheduling slot is lost, and

one never gets to reuse any of the data!

Similar arguments can be made for TLBs.

Smooth interactive performance requires short time slots, whereas efficient

use of caches can require long timeslots.

276

Inequality

If the operating system knows a process is waiting for input (disk, network,

human), it will not give that process any timeslices until input is ready for

it. Such a process will be marked as waiting rather than running. The

arrival of input might cause an immediate process switch to be triggered,

with the timeslice of whatever process was running being interrupted. Thus

fast response to I/O events is achieved.

The part of the operating system responsible for assigning priorities to

processes is called the scheduler. The priorities need not be equal.

The UNIX ps command shows processes waiting for input in a state of ‘wait’ or ‘sleep’. Only those in a state of ‘run’ are actively

competing for CPU cycles.

The load or load average is UNIX’s term for the number of proceses is the ‘run’ state averaged over a short period. The uptime

command reports three averages, over 1, 5 and 15 minutes on most UNIXes.

Under UNIX the nice and renice commands can be used to decrease the scheduling priority of any process you own. The priority

cannot be increased again, unless one is root. (If you use tcsh or csh as your shell, nice is a shell built-in and is documented in

the shell man page. Otherwise, it is /usr/bin/nice and documented by man nice in the usual way.)

277

Parallel Computers: the Concepts

Modern supercomputers are generally parallel computers. That is, they

have more than one CPU. So are desktops and laptops now that almost all

processors have multiple cores.

Some tasks are clearly suited to being done by a ‘farm’ of ‘workers’ working

simultaneously, whilst others are not. As two examples:

Integration of differential equation over very many timesteps. Clearly one

cannot start the 5,000th timestep until the 4,999th has been finished. The

process is fundamentally serial.

Dumb Factorisation of a large number. The independent trial factors from 2
to

√
n are readily distributed amongst multiple processors.

A simple example of parallelisation has alrady been seen in the various ‘multimedia’ instructions. This is known as SIMD parallelism:

Single Instruction Multiple Data. The parallelism discussed in this section is MIMD (Multiple. . .).

278

Scaling

How much faster does a code run when spread over more CPUs?

no. of CPUs

Sp
ee

d

From top to bottom: Linear scaling (rare!), Amdahl’s Law (see below), The

Real World

Notice that the speed is not monotonic in the number of CPUs

279

Amdahl’s Law

Amdahl was a pioneer of supercomputing and an employee of IBM.

This law assume that a program splits neatly into an unparallelisable part, and

a completely parallelisable part. It claims:

tn = ts + tp/n

The total run time on n processors is the time for the serial part of the code,

plus the time the parallel part would take on a single processor divided by the

number of processors.

Consider ts = 0.2 and tp = 0.8. Then t1 = 1.0, t32 = 0.225 and t∞ = 0.2.

On 32 processors the speedup is 4.5× and the efficiency is just 14%.

280

Bigger is better

Suppose ts and tp scale differently with problem size.

Assume ts scales as N and tp as N3 and consider a problem 4× as large as

before. Now

ts = 0.8 and tp = 51.2 giving t1 = 52 and t32 = 2.4.

Now the speedup on 32 processors is 21×, and the efficiency is now over

67%.

Supercomputers like big problems.

Conversely, workstations hate big problems, as their various caches become less effective and their overall efficiency falls.

281

MPP and SMP

We first consider the MPP design of parallel computer. It is simple, consisting

of lots of separate single-processor computers with a fast network between

them. Each separate sub-computer, or node, has its own memory, and, in

some cases, even its own disk drive. Such a parallel computer is called a

distributed memory computer or massively parallel processor

cache

I/Omemory

CPU cache

I/Omemory

CPU

Interconnect

memory I/O

cacheCPU

memory

CPU

I/O

cache

282

Breaking the Code

This arrangement is so far removed from the traditional model of a computer,

that traditional code does not run on it. The programmer must be prepared to

think in terms of multiple processors working on his program at once, each

with its own private memory, and any interprocessor communication being

explicitly requested.

Fortunately this is not nearly as hard as it might sound, and there are standard

programming models to assist. Thus one can write code for a Cray T3E, using

C or FORTRAN with MPI, and be confident that it will run, unmodified, on

an IBM SP, a Beowulf cluster, or on a machine not yet developed. One merely

has to follow the relevant standards and not be lured down the road of vendor-

specific extensions. . .

MPI (1994) and PVM (1991, now obsolete) standardised the programming model for MPPs. Before PVM, each vendor had its own

way of doing things.

283

Topologies

There are many different ways of connecting nodes together, as ever governed

by cost and practicality.

Two useful ways of characterising a network are the ‘diameter’, the maximum

number of hops from one node to another, and the bisectional bandwidth, the

bandwidth between two halves of the machine.

Bandwidth Diameter

Ring 2 N/2

2D Grid
√
N 2

√
N

2D Torus 2
√
N

√
N

Hypercube N/2 log2N
Tree 2 2 log2N
Fat tree N/2 2 log2N
X-bar N/2 1
3D X-bar N/2 3

The Cray T3D was a 2D torus, the IBM SP2 a fat tree, the SGI Origin2000 a form of hypercube, and the Hitachi SR2201 a 3D X-bar.

Ideally the network topology should not be apparent to the user.

284

16 Nodes. . .

Hypercube

2D mesh

2D torus

Ring (1D torus)

Tree (log 2) Fat Tree (log 4)

285

Performance

Another important characteristic of the interconnect is its raw performance,

both bandwidth and latency. These are most usefully measured using a

standard interface such as MPI, and not using the hardware directly.

Ideally the time to transmit a packet is simply

latency + size / bandwidth

If size < latency × bandwidth, then the latency will dominate.

Also ideally communication between a pair of nodes is unaffected by any

other communications happening simultaneously between other nodes. Such

a network is called non-blocking.

Typical figures are 1 to 3 GB/s bandwidth and 1 to 3 µs latency. Clusters using 1GBit/s ethernet typically run at around 100 MB/s

and 20 µs.

286

Parallelisation Overheads

Amdahl’s law assume that there are no overheads associated with

parallelisation. This is certainly a gross approximation.

Consider the case where each node must exchange data with every other node

at some point in the program: some sort of rearranging of an array spread over

all the nodes. E.g. an FFT

Each node must send n − 1 messages of size a/n where a is the size of the

distributed array. Even assuming that the nodes can do this simultaneously,

the time taken will be

(n− 1)×
(

λ+
a

nσ

)

≈ nλ+
a

σ

where λ is the latency and σ the bandwidth.

287

Amdahl revisited

A better form of Amdahl’s law might be

tn = t′s + tp/n+ cλn

where t′s > ts.

Now tn is no longer a monotonically decreasing function, and its minimum

value is governed by λ.

This form stresses that the quality of the interconnect can be more important

than the quality of the processors.

Hence ‘cheap’ PC clusters work well up to about 16 nodes, and then their high latency compared to ‘real’ MPPs starts to be significant.

288

SMP: Bused Based

SMP (Symmetric Multi Processor, Shared Memory Processor) describes

another class of multi-CPU computer.

The original, bus-based, SMP computer simply has multiple CPUs attached

to a single system bus.

CPU CPU CPU CPU

memory

The architecture is symmetric (all CPUs are equivalent), and the memory is

shared between them.

289

Shared memory

This is precisely what a modern multi-core CPU looks like, as a single core

is equivalent to the old idea of a CPU.

As all processors access the same main memory, it is easy for different parts

of a program executing on different processors to exchange data. One CPU

can write an array into memory, possibly from disk, possibly as the result of

a calculation, then all other CPUs can read it with no further effort.

Programming is thus simple: all the data are in one place, and there is merely

the little matter of dividing up the millions of instructions to be executed in

a long loop between the multiple eager processors – a job so simple that the

compiler can do it automatically.

Except it is not quite that simple.

290

Two Heads are Better than One?

As in a conventional, single-CPU computer, the single processor typically

spends between 75 and 95% of its time waiting for memory, trying to ‘feed’

two or more CPUs from one memory bank is clearly crazy. The memory

was, and is, the bottleneck. The CPU was not. However the design is cheap,

and is now ubiquitous within a CPU, as the diagram below illustrates, and is

common in multi-socket designs.

cache cache cache cache

Core 1 Core 2 Core 3 Core 4

Shared cache

Memory Controller

291

Cache coherency

CPUCPU
A B

cache cache

memory

Processor A reads a variable from memory. Later, it reads the same variable,

which it can now get directly from its cache, without troubling the system

bus.

Only it can’t. For what if processor B has modified that variable, and

processor A needs the new value? If processor B has a write back cache,

the new value may not even have reached the main memory, with the current

value being held in processor B’s cache only.

292

Snoopy caches

The trivial solution is to abandon all caches.

An easy solution is to ban write-back caches, and to ensure that each cache

‘snoops’ the traffic on the system bus, and, if it sees a write to a line it is

currently caching, it must either update itself automatically, or mark its copy

as being invalid.

These solutions severely compromise one’s cache architecture, and often

lead to a SMP machine generating more traffic to the main memory than a

uniprocessor machine would running the same code. Thus a SMP machine

can fail to reach the performance of a single-processor workstation based on

the same CPU.

With either of these solutions, the definitive data are always those in the main memory.

Even single core single CPU workstations have a lesser version of this problem, as it is common for the CPU and the disk controller

to be able to read and write directly to the main memory. However, with just two combatants, the problem is fairly easily resolved.

293

More Complexity: NUMA

Most modern SMP machines are not bus based. Internally they are configured

like MPPs, with the memory physically distributed amongst the processors.

Much magic makes this distributed memory appear to be global.

This (partially) addresses the poor memory bandwidth of the bus based SMP

machines.

However, there are problems. . .

Not least that some memory is now local to a CPU, some attached to

its neighbour(s), some its next nearest neighbour(s). Access times and

bandwidths will vary depending on the relationship between the physical

location of the memory and the core on which a process is executing. Hence

the acronym Non Uniform Memory Architecture.

And magic costs money, and, in this case tends to degrade performance over an MPP, providing instead increased flexibility.

To emphasise that majic has been used to make even caches work correctly, one sometimes sees the acronym cc-NUMA, cache-

coherent NUMA. Fortunately the alternative of non cache coherent NUMA is extremely rare.

294

Modern, small SMPs

Modern processors not only contain multiple cores, but also often contain the

interconnect needed to construct SMP machines of two or four sockets. (The

below diagram should really show four or six cores per CPU.)

e

o
C

r
e

o
C

r

Mem Cntrllr

Interconnect

Cache

e

o
C

r
e

o
C

r

Mem Cntrllr

Interconnect

Cache

M
A
R
D

M
A
R
D

Cntrllr
PCIe

Interfaces
Disk

Network
Interfaces

AMD’s HyperTransport (HT) interconnect and Intel’s rather later Quick Path Interconnect (QPI) are quite similar. In both cases a

CPU has about three links, which can connect either to other CPUs, or to I/O controllers (e.g. PCIe bus controllers). The above

diagram shows the left-hand processor using two links, and the right-hand one. Not only is the memory NUMA, but so is access to

disk and network.

295

NUMA in Action

A version of the Streams benchmark written in MPI gives a measure of

memory bandwidth. The command taskset can be used to specify which

cores it runs on. Here a dual socket machine with quad core processors:

Process count cores used bandwidth

1 1 9.8 GB/s

2 1&3 12.3 GB/s

2 1&5 12.3 GB/s

2 1&2 19.6 GB/s

4 1,3,5&7 13.0 GB/s

4 1,2,3&4 24.1 GB/s

4 1,2,5&6 24.1 GB/s

8 1–8 26.0 GB/s

Conclusion: each core has maximum b/w of c.10 GB/s

each socket has maximum b/w of c.13 GB/s

This was a dual socket 2.4GHz quad core Intel ‘Nehalem’. Each processor has a 24 byte wide bus to DDR3/800 memory, so

theoretically 19.2GB/s per socket. It seems that cores 1, 3, 5 & 7 are on one CPU (socket), and the even numbers on the other.

Note that here the performance gain in moving from one process to eight on an eight core machine for a code with no inter-process

communication is a factor of merely 2.7. The gain from using one core per socket to all four is a factor of just 1.3.

296

The Consequences of NUMA

If a processor is mangling an array, it now matters crucially that that array

is stored in the memory on directly attached to that processor, and not on

memory the other side of the machine. Getting this wrong can drop the

performance by a factor of three or more instantly.

Whereas with MPP all memory accesses are guaranteed to be local, as one

cannot access remote memory except by explicit requests at the program

level, with SMP the compiler has many ways of getting things wrong.

for(i=0;i<10000000;i++)

t+=x[i]*y[i];

Consider this on a two processor NUMA machine. If the code is split so

that each processor stores the first 5000000 elements of each array in its

directly attached memory, and does the first half of the loop, then optimal

performance is obtained. If the whole of x is stored in the memory local to

one processor, the whole of y the other, then much reduced performance will

result.

297

MESI solutions for caches

A typical SMP has extra bits associated with each cache line, which mark it

as being on one of four states:

• Modified (i.e. dirty) – this state exists for uniprocessor machines too

• Exclusive (in no other cache)

• Shared (possibly in other caches too)

• Invalid

Modified implies exclusive, and a line must be exclusive before it can be

modified.

A line fill for a read ensures that no other cache has the line modified or

exclusive, then loads the line marked as ‘shared.’ A fill for a write also

ensures than any caches with that line shared mark it invalid. In either case

any cache with it ‘modified’ (there can be only one) writes it back to memory.

Thus a line can be:

In no caches

In one cache and marked as modified (or exclusive)

In one or more caches and modified (or exclusive) in none

298

More Messes

It may seem as though ensuring that each thread works on its own data, and

rarely exchanges data with other threads, is sufficient to ensure performance.

It isn’t, for there is the overhead of checking to ensure that one core is not

trying to update data held in another core’s cache. All modern computers do

this in hardware. Even if the compiler knows that two data items are distinct,

the hardware will still check, and may need to do so as a thread may migrate

from one core to another during its execution.

One method of checking simply broadcasts details of all line fills to all cache

controllers, and the fill does not progress until the other controllers have had

an opportunity to reveal that they held the line. The amount of broadcast

traffic tends to scale as the square of the number of caches, so this works

poorly for large numbers of CPU – in practice, beyond about four.

A significant improvement uses a ‘directory’. A directory entry is associated with each line in memory, and records which caches

have copies of the line. Then a fill need simply check the directory, contact only those caches listed (probably none), and proceed,

updating the directory as it does so. In practice a directory which only provides partial coverage of the main memory can be used,

falling back to broadcasting when the directory is incomplete.

Secondly, the important concept is not the sharing of data, but the sharing of cache lines. If two threads attempt to write to adjacent

items in the same cache line, this is no better from the point of view of copying data around in a MESI system than if they were

writing to the same element. This is sometimes called ‘false sharing’.

299

Broadcast Failures

In 2006 I had the fun of testing an 8-socket Opteron server with dual

core processors. The board design was cheap, and not quite up to AMD’s

recommendations, so the following results are not a fair reflection on

AMD. . .

The measured bandwidth using the Streams benchmark was 2.0GB/s for a

single process, peaked at 8.0GB/s for six, and 7.4GB/s for sixteen. Why am

I convinced that this reflects a severe broadcast problem? The server design

allowed me to remove physically four of the CPUs. The numbers I then

measured were 4.4GB/s for a single process, and 16.3GB/s for eight.

Simply having the extra four CPUs present, and informed of what was

happening, even if one did not use them, halved the preformance of this

machine for Streams! A single process memory latency benchmark moved

from a poor 190ns to a very poor 290ns just by having the extra CPUs present.

Even Linpack, normally forgiving of poor memory subsystems, managed 26.4 GFLOPS running on eight cores (four CPUs present),

and only 22 GFLOPS on 16 cores (8 CPUs present) with an array size of 40,000. The cores had a theoretical peak performance of

4.4 GFLOPS each.

300

Sharing, True and False

Naturally things get worse if multiple processors really are trying to update

the same memory location. Not only does this need detecting, but once

detected, it needs action to ensure that correct behaviour is observed.

Corrective action tends to involve the automatic transfer of cache lines

between CPUs. Not fast, as lines are big.

However, the important concept is not the sharing of data, but the sharing

of cache lines. If two threads attempt to write to adjacent items in the same

cache line, this is no better from the point of view of copying data around

in a MESI system than if they were writing to the same element. This is

sometimes called ‘false sharing’.

301

A False Sharing Example

#pragma omp parallel for private(j,ptr1,ptr2)

for(i=0;i<=1;i++){

if(i==0){

ptr1=line;

ptr2=line+2*OFFSET;

}

else{

ptr1=line+OFFSET;

ptr2=ptr1+3*OFFSET;

}

for(j=0;j<(1<<28);j++){

*ptr1+=*ptr2;

}

}

The above takes 2s to execute in a serial fashion on a certain dual core

machine with a particular compiler. In parallel, it takes 1s. Unless OFFSET

is one or two, in which case it takes over 12s in parallel, and still 2s in serial.

302

Inclusive Levels

There are three common approaches to a cache hierarchy:

• Data in one level is guaranteed to be in no other level.

• Data in level n is guaranteed to be in all levels > n.

• Neither of the above guarantees

Intel likes the second scheme, inclusive caches. In response to cache

coherency requests, it need only check the last level cache, for if the data

are not there, they can be in no other level.

AMD likes the first, exclusive caches, for the total amount of data cached is

then the sum of the sizes of the levels, not simply the size of the last.

303

Programming Example

Consider doing an enormous dot product between two arrays previously set

up. The SMP code might look as follows:

! Let’s hope the compiler optimises

! this loop properly

t=0.0

do i=1,100000000

t=t+a(i)*b(i)

enddo

Easy to write, but little control over whether it is effective!

To be fair, HPF (High Performance Fortran) and OpenMP (a set of directives to Fortran and C) permit the programmer to tell an SMP

compiler which sections of code to parallelise, and how to break up arrays and loops. One day I might meet someone using such a

language for real research.

304

Programming, MPP

! Arrays already explicitly distributed

! Do the dot product for our bit

t_local=0.0

do i=1,nmax ! nmax approx 100000000/ncpus

t_local=t_local+a(i)*b(i)

enddo

! Condense results

call MPI_AllReduce(t_local,t,1, &

MPI_DOUBLE_PRECISION, MPI_SUM, &

MPI_COMM_WORLD)

(Those MPI calls are not half as bad as they look once one is used to them!)

All the variables are local to each node, and only the MPI call causes one (t) to contain the sum of all the t local’s and to be set

to the same value on all nodes. The programmer must think in terms of multiple copies of the code running, one per node.

305

The Programming Differences

With MPP programming, the programmer explicitly distributes the data

across the nodes and divides up the processing amongst the nodes. The

programmer can readily access the total number of CPUs and adjust the

distribution appropriately.

Data are moved between nodes by explicitly calling a library such as MPI.

With SMP, the compiler tries to guess how best to split the task up amongst

its CPUs. It must do this without a knowledge of the physical problem being

modeled. It cannot know which loops are long, and which short.

Artificial intelligence vs human intelligence usually produces a clear victory

for the latter!

The MPP model will work, often quite efficiently, on an SMP machine. The

converse is not true.

306

Modern, large MPPs

Modern MPP designs join SMP nodes like the above. Such a machine is

awkward to program optimally, as one has both internode and intranode

parallelism to address, with two very different interconnect speeds. A

program which is merely correct, but not necessarily optimal, can ignore the

SMP nature of the nodes, and consider the machine to be an MPP of all the

cores.

M

R
A

M

R
A

M

R
A

M

R
A

CPU CPU

I/O

CPUCPU

I/O

Interconnect

CPU CPU

I/O

CPUCPU

I/O

R

M
A

R

M
A

R

M
A

R

M
A

307

Differing Speeds

The link between a CPU and its directly-attached memory is typically a

128 bit (or 256 bit) 1666MHz DDR3 bus. Theoretical bandwidth 26GB/s

(or 52BG/s), unidirectional.

The link between CPUs is typically 16 bit 6.4GT/s HyperTransport or QPI.

Bandwidth 13GB/s, supporting traffic in both directions simultaneously.

The link from the I/O controller to the interconnect controller is typically 16

bit PCIe 2.0. This has a theoretical bandwidth of 8GB/s, and is bidirectional.

The interconnect itself is often quad data rate Infiniband 4X. This has a

theoretical bandwidth of 4GB/s, and is bidirectional.

Measured latencies vary more widely, from under 0.1µs for accessing

memory within a node, to just over 1µs for an MPI transfer between nodes.

Infiniband is not the only possible inter-node interconnect. It is the most common of the specialised interconnects, other examples

including CrayLink and Myrinet.

The cheap and nasty option is simply to use 1GBit/s ethernet, for a theoretical bandwidth of 0.1GB/s and a latency of around 20µs.

(All data current in 2013.)

308

Does Speed Matter?

The current trend seems to be for nodes to be increasing in internal

bandwidth, and in peak MFLOPS, rather faster than (cheap) inter-node

interconnects are increasing in speed. The first MPP I used seriously,

a Hitachi SR2201 installed in 1997, had a per node performance of

300MFLOPS, and an interconnect peak bandwidth of 300MB/s, so one byte

of interconnect bandwidth per FP operation.

A current node would probably have two processors, each of eight cores

running at 2.5GHz and capable of eight FP ops per clock cycle. With

QDR Infiniband 4X this is one byte of interconnect bandwidth per 80 FP

operations.

For some algorithms this is still so much more than is needed that one need

not care. For others, careful division of one’s code to reflect the different

performance of intra-node and inter-node transfers can be beneficial (if time-

consuming). One approach is to use OpenMP within a node, and MPI

between nodes. Another is to attempt to get topology information into the

MPI system.

309

Strong or Weak?

Much is said about overlapping communication and computation in

MPI codes. This assumes that separate hardware is responsible for

communication, and is called ‘strong progress.’

In practice, most MPI implementations rely on the CPU for both

communications and calculations. Worse, MPI transfers can be progressed

only whilst MPI calls are being made. This results in ‘weak progress.’

Process 0 Process 1

Large, non-blocking send Matching blocking receive

Lots of computation [no data transferred]

Another MPI call [more data transferred]

310

In Practice#include <stdio.h>

#include <mpi.h>

#include <time.h>

#define SIZE 4096

int main(int argc, char *argv[]){

int this_process, num_processes,*a;

MPI_Status status;

MPI_Request req;

time_t t1;

a=malloc(SIZE);

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&num_processes);

MPI_Comm_rank(MPI_COMM_WORLD,&this_process);

printf("Process %d out of %d\n",this_process,num_processes);

MPI_Barrier(MPI_COMM_WORLD);

t1=time(NULL);

if (this_process==0){

MPI_Isend(a,SIZE/sizeof(int),MPI_INT,1,123,MPI_COMM_WORLD,&req);

sleep(10);

}

else if (this_process==1){

MPI_Recv(a,SIZE/sizeof(int),MPI_INT,0,123,MPI_COMM_WORLD,&status);

}

printf("Process %d reaching barrier at time %d\n",this_process,

(int)(time(NULL)-t1));

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

}

311

Results

SIZE=2048

Process 0 out of 2

Process 1 out of 2

Process 1 reaching barrier at time 0

Process 0 reaching barrier at time 10

SIZE=4096

Process 0 out of 2

Process 1 out of 2

Process 1 reaching barrier at time 10

Process 0 reaching barrier at time 10

The behaviour of code like this will vary enormously depending on the details of one’s MPI implementation. If one has fewer

cores than MPI processes, so the scheduler might not be able to run sending and receiving processes simultaneously, other major

slow-downs might occur.

Please don’t write C like the above – no error codes were checked, the excuse here being that it needed to fit on one slide!

The MPI implementation used for the above was OpenMPI 1.6.3 running on a dual core computer.

312

Multithreading

Whether in a uni- or multi-processor computer, the CPU is often used very

inefficiently, with most of its functional units idle waiting for memory to

respond or data dependencies to be resolved. It is rare for a four-way

superscalar CPU to be able to issue four instructions simultaneously.

Conventional multitasking is not the answer. This software-driven process-

switching takes thousands of clock cycles, so is useful for latencies caused

by disk drives, networks and humans.

However, there are rarely data dependencies between processes, so in some

sense multitasking is the answer.

A multithreading processor gains multiple banks of registers, one per ‘thread’

(process) which will be run simultaneously. These processes share access to

the functional units, caches, instruction decoding logic, etc.

313

SMT

There are different ways of achieving multithreading. Some change thread

every clock-cycle, whereas the more advanced Simultaneous MultiThreading

allows instructions from different threads to be issued in the same cycle.

The extra logic on the CPU need to keep track of a modest number of threads

is very small, increasing the CPU size by less than 10%. The gain is zero if the

computer is only ever running a single thread, but sometimes the throughput

can increase by over half when two threads are run.

However, multithreading, or hyperthreading as Intel calls it, gives one no

more memory bandwidth, no more functional units, and no more caches.

A processor supporting two threads generally appears to the user as two

processors, but these virutal processors will share the caches, functional

units and memory controller that were dedicated to a single core. For most

scientific codes there is no gain to be had here.

Intel’s ‘Pentium4 with Hyperthreading’ (2002) supported two threads per processor (core), but instructions from different threads

could not be dispatched in the same clockcycle. Intel’s Core and Core 2 processors abandoned hyperthreading, but the current

Core i5/i7 line has reintroduced it, improved so that instructions from different threads can be dispatched on the same cycle.

Processors from IBM and Sun also support two threads per core. Sun’s UltraSPARC T1 series supports up to eight threads per

core. AMD has yet to offer any form of hyperthreading. Gains tend to be low in tightly coupled parallel jobs – if all threads do the

same thing at the same time, then usually one part of the CPU is overloaded, and the rest idle, with or without SMT. SMT works

better when different threads are making different demands on the CPU.

314

-r8, 217

.COM file, 164

/proc, 153

0x, 60

address lines, 47, 48

allocate, 142

Alpha, 28

AMD, 24

Amdahl’s law, 280, 287, 288

ARM, 24

assembler, 28

ATE, 70

bandwidth, interconnect, 286

basic block, 218

bisectional bandwidth, 284

BLAS, 83

branch, 27

branch prediction, 29

bss, 140

buffer

IO, 242, 243

bus, 15

C, 221

cache

anti-thrashing entry, 70

associative, 69, 73

direct mapped, 66

exclusive, 303

Harvard architecture, 74

hierarchy, 71

inclusive, 303

line, 63

LRU, 73

memory, 56, 57, 61–292

write back, 72–74

write through, 72

cache coherency

broadcast, 299, 300

directory, 299

snoopy, 72, 293

cache controller, 58

cache line, 298

cache thrashing, 68

caches

and multitasking, 276

cc-NUMA, 294

CISC, 22, 26

clock, 15

compiler, 213–217

compilers, 25

cooling, 78

CPU family, 24

crossbar, 284

CSE, 199

data dependency, 21, 23

data segment, 140

debugging, 193–195, 211, 216, 217

diameter, 284

dirty bit, 72

disk thrashing, 130

distributed memory computer, 282

division

floating point, 35

DRAM, 45–51, 56

DTLB, 128

315

ECC, 53–55, 74

EDO, 49

ELF, 171, 173

ext3, 260, 261

F90, 221

F90 mixed with F77, 226

false sharing, 299, 301

FAT32, 248, 249

file locking, 263, 269–272

flash RAM, 45

FPM, 49

FPU, 14

free, 134

fsck, 259

function overloading, 193

functional unit, 14, 20

heap, 140–142, 145–147

hex, 59, 60

hit rate, 57, 70

HPF, 304

hypercube, 284

hyperthreading, 314

HyperTransport, 308

in-flight instructions, 29

Infiniband, 308

inlining, 209

inode, 250–252, 258

instruction, 17, 18

instruction decoder, 14

instruction fetcher, 14

Intel, 24

issue rate, 20

ITLB, 128

journalling filesystems, 260, 261

kernel, 175

latency, functional unit, 20

latency, interconnect, 286

libraries, shared, 143

link

hard, 256, 257

soft, 258

linking, 180–193, 216

Linpack, 40, 300

ln, 258

load, 277

loop

blocking, 94, 95, 111–114

coda, 202

elimination, 108, 205

fission, 207

fusion, 206, 231

interchange, 212

invariant removal, 199

pipelining, 210

reduction, 203

strength reduction, 208

unrolling, 92, 202

ls, 254, 267

main(), 183, 185

malloc, 142

matrix multiplication, 82, 83

MESI, 298

metadata, 247, 250

316

MFLOPS, 39

micro-op, 26

microcode, 34

MIPS, 24, 39

mmap, 141, 144–147

MPI, 283, 305, 306, 310–312

progress, 310–312

MPP, 282, 283

multitasking, 275

multithreading, 313, 314

mv, 255

name mangling, 193

NFS, 266

nice, 277

non-blocking, 286

null pointer dereferencing, 141

NUMA, 294–297

OpenMP, 304

operating system, 130, 277

optimisation, 197

out-of-order execution, 31

page, 135–137

page colouring, 138

page fault, 130

page table, 126, 127, 129

pages, 122–124

locked, 131

paging, 130

parallel computers, 278

parity, 52, 74

PCIe, 308

physical address, 123

physical address, 122, 124

physical memory, 132

pipeline, 18–20, 27

pipeline depth, 18

power, 78

prefetching, 75, 76, 204

priority, 277

process switch, 275

ps, 132, 133, 277

QPI, 308

RAID 1, 244

RAID 0, 244

RAID 5, 245

RAID 6, 246

register, 14

register spill, 101, 207

registers, 207

renice, 277

RISC, 22, 26, 34

rm, 255

scaling, 280, 281, 288

scheduler, 277

SDRAM, 49

segment, 140

segmentation fault, 124, 145, 148

sequence point, 219, 220

shared memory processor, 289

SIMD, 278

SMP, 289, 294

SMT, 314

SPEC, 41, 42

speculative execution, 30

317

SRAM, 45, 56

stack, 140–142, 152, 178, 195

stalls, 29

streaming, 76

Streams, 296, 300

tag, 61–67

taskset, 296

text segment, 140

timeslice, 275

TLB, 125, 128, 129, 135

topology, 284

trace (of matrix), 225–228

tree, 284

UFS, 248, 250

ulimit, 142

uptime, 277

vector computer, 36–38

virtual address, 122–124

virtual memory, 130, 132

voltage, 78

x87, 34

318

