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History
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History: to 1970

1951 Ferranti Mk I: first commercial computer
UNIVAC I: memory with parity

1953 EDSAC I ‘heavily used’ for science (Cambridge)
1954 Fortran I (IBM)
1955 Floating point in hardware (IBM 704)
1956 Hard disk drive prototype. 24′′ platters (IBM)

1961 Fortran IV
Pipelined CPU (IBM 7030)

1962 Hard disk drive with flying heads (IBM)
1963 CTSS: Timesharing (multitasking) OS

Virtual memory & paging (Ferranti Atlas)
1964 First BASIC
1967 ASCII character encoding (current version)

GE635 / Multics: SMP (General Elect)
1968 Cache in commercial computer (IBM 360/85)

Mouse demonstrated
Reduce: computer algebra package

1969 ARPAnet: wide area network
Fully pipelined functional units (CDC 7600)
Out of order execution (IBM 360/91)
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1970 First DRAM chip. 1Kbit. (Intel)
First floppy disk. 8′′ (IBM)

1971 UNIX appears within AT&T
Pascal
First email

1972 Fortran 66 standard published
First vector computer (CDC)
First TLB (IBM 370)
ASC: computer with ‘ECC’ memory (TI)

1973 First ‘Winchester’ (hard) disk (IBM)
1974 First DRAM with one transistor per bit
1975 UNIX appears outside AT&T

Ethernet appears (Xerox)
1976 Apple I launched. $666.66

Cray I, ILLIAC IV
Z80 CPU (used in Sinclair ZX series) (Zilog)
51

4

′′ floppy disk
1978 K&R C appears (AT&T)

TCP/IP
Intel 8086 processor
Laser printer (Xerox)
WordStar (early wordprocessor)
First VAX (11/780) and VMS (DEC)

1979 TEX
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1980 Sinclair ZX80 £100 (105 sold eventually)
Fortran 77 standard published

1981 Sinclair ZX81 £70 (106 sold eventually)
31

2

′′ floppy disk (Sony)
IBM PC & MS DOS version 1 $3,285
SMTP (current email standard) proposed

1982 Sinclair ZX Spectrum £175 48KB colour
Acorn BBC model B £400 32KB colour
Commodore64 $600 (107 sold eventually)
Cray X-MP (first multiprocessor Cray)
Motorola 68000 (commodity 32 bit CPU)

1983 Internet defined to be TCP/IP only
Apple IIe $1,400
IBM XT, $7,545
Caltech Cosmic Cube: 64 node 8086/7 MPP

1984 Apple Macintosh $2,500. 128KB, 9” B&W screen
Sinclair QL £400. 128KB
IBM AT, $6,150. 256KB
CD ROM

1985 LATEX2.09
PostScript (Adobe)
Ethernet formally standardised
IEEE 748 formally standardised
Intel i386 (Intel’s first 32 bit CPU)
X10R1 (forerunner of X11) (MIT)
C++ 7



History: the RISCs

1986 MIPS R2000, RISC CPU (used by SGI and DEC)
SCSI formally standardised

1987 Intel i860 (Intel’s first RISC CPU)
Acorn Archimedes (ARM RISC) £800
SPARC I, RISC CPU (Sun)
Macintosh II $4,000. FPU and colour.
Multiflow Trace/200: VLIW
X11R1 (MIT)

1989 ANSI C
1990 PostScript Level 2

Power I: superscalar RISC (IBM)
MS Windows 3.0

1991 World Wide Web / HTTP
PVM

1992 PCI
OpenGL
OS/2 2.0 (32 bit a year before Windows NT) (IBM)
Alpha 21064: 64 bit superscalar RISC (DEC)
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A Summary of History

The above timeline stops about two decades before a precursor to this talk was
first given. Computing is not a fast-moving subject, and little of consequence
has happened since. . .

By 1970 the concepts of disk drives, floating point, memory paging, parity
protection, multitasking, caches, pipelining and out of order execution
have all appeared in commercial systems, and high-level languages and
wide area networking have been developed. The 1970s themselves add
vector computers and error correcting memory, and implicit with the vector
computers, RISC.

The rest is just enhanced technology rather than new concepts. The 1980s
see the first serious parallel computers, and much marketing in a home
computer boom. The slight novelty to arrive in the 21st century is the ability
of graphics cards to do floating point arithmetic, and to run (increasingly
complex) programs. ATI’s 9700 (R300) launched in late 2002 supported FP
arithmetic. Nvidia followed a few months later.
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The CPU
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The Heart of the Computer

The CPU is the brains of the computer. Everything else is subordinate to this
source of intellect.

A typical modern CPU understands two main classes of data: integer and
floating point. Within those classes it may understand some additional
subclasses, such as different precisions.

It can perform basic arithmetic operations and comparisons, governed by a
sequence of instructions, or program.

It can also perform comparisons, the result of which can change the execution
path through the program.

Its sole language is machine code, and each family of processors speaks a
completely different variant of machine code.
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What the bits do

• Memory: not part of the CPU. Used to store both program and data.

• Instruction fetcher: fetches next machine code instruction from memory.

• Instruction decoder: decodes instruction, and sends relevant data on to. . .

• Functional unit: dedicated to performing a single operation

• Registers: store the input and output of the functional units There are typically about

32 floating point registers, and 32 integer registers.

Partly for historical reasons, there is a separation between the integer and
floating point parts of the CPU.

On some CPUs the separation is so strong that the only way of transferring data between the integer and floating point registers is via
the memory. On some older CPUs (e.g. the Intel 386), the FPU (floating point unit) is optional and physically distinct.

14

Clock Watching

The best known part of a CPU is probably the clock. The clock is simply
an external signal used for synchronisation. It is a square wave running at a
particular frequency.

Clocks are used within the CPU to keep the various parts synchronised, and
also on the data paths between different components external to the CPU.
Such data paths are called buses, and are characterised by a width (the number
of wires (i.e. bits) in parallel) as well as a clock speed. External buses are
usually narrower and slower than ones internal to the CPU.

Although sychronisation is important – every good orchestra needs a good
conductor – it is a means not an end. A CPU may be designed to do a lot
of work in one clock cycle, or very little, and comparing clock rates between
different CPU designs is meaningless.

The bandwidth of a bus is simple its width × its clock speed × the number of data transfers per clock cycle. For the original IBM
PC bus, 1 byte × 4.77MHz × one quarter (1.2MB/s). For PCIe v2 x16, 2 bytes × 5GHz × four fifths (8GB/s).

15



Typical instructions

Integer:

• arithmetic: +,−,×,/, negate
• logical: and, or, not, xor
• bitwise: shift, rotate
• comparison
• load / store (copy between register and memory)

Floating point:

• arithmetic: +,−,×,/,√, negate, modulus
• convert to / from integer
• comparison
• load / store (copy between register and memory)

Control:

• (conditional) branch (i.e. goto)

Most modern processors barely distinguish between integers used to represent numbers, and integers used to track memory addresses
(i.e. pointers).
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A typical instruction

fadd f4,f5,f6

add the contents of floating point registers 4 and 5, placing the result in
register 6.

Execution sequence:

• fetch instruction from memory
• decode it
• collect required data (f4 and f5) and send to floating point addition unit
• wait for add to complete
• retrieve result and place in f6

Exact details vary from processor to processor.

Always a pipeline of operations which must be performed sequentially.

The number of stages in the pipeline, or pipeline depth, can be between about
5 and 15 depending on the processor.

17



Making it go faster. . .

If each pipeline stage takes a single clock-cycle to complete, the previous
scheme would suggest that it takes five clock cycles to execute a single
instruction.

Clearly one can do better: in the absence of branch instructions, the next
instruction can always be both fetched and decoded whilst the previous
instruction is executing. This shortens our example to three clock cycles per
instruction.

Fetch Decode Execute Return
Result

Fetch
Operands

Fetch Decode Execute Return
Result

Fetch
Operands

Time

second instruction

first instruction
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. . . and faster. . .

A functional unit may itself be pipelined. Considering again floating-point
addition, even in base 10 there are three distinct stages to perform:

9.67 × 105 + 4 × 104

First the exponents are adjusted so that they are equal:

9.67 × 105 + 0.4 × 105

only then can the mantissas be added: 10.07 × 105

then one may have to readjust the exponent: 1.007 × 106

So floating point addition usually takes at least three clock cycles in the
execution stage. But the adder may be able to start a new addition ever clock
cycle, as these stages use distinct parts of the adder.

Such an adder would have a latency of three clock cycles, but a repeat or
issue rate of one clock cycle.
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. . . and faster. . .

Further improvements are governed by data dependency. Consider:

fadd f4,f5,f6
fmul f6,f7,f4

(Add f4 and f5 placing the result in f6, then multiply f6 and f7 placing
the result back in f4.)

Clearly the add must finish (f6 must be calculated) before the multiply can
start. There is a data dependency between the multiply and the add.

But consider

fadd f4,f5,f6
fmul f3,f7,f9

Now any degree of overlap between these two instructions is permissible:
they could even execute simultaneously or in the reverse order and still give
the same result.

20

. . . and faster

We have now reached one instruction per cycle, assuming data independency.

If the instructions are short and simple, it is easy for the CPU to dispatch
multiple instructions simultaneously, provided that each functional unit
receives no more than one instruction per clock cycle.

So, in theory, an FP add, an FP multiply, an integer add, an FP load and an
integer store might all be started simultaneously.

RISC instruction sets are carefully designed so that each instruction uses
only one functional unit, and it is easy for the decode/issue logic to spot
dependencies. CISC is a mess, with a single instruction potentially using
several functional units.

CISC (Complex Instruction Set Computer) relies on a single instruction doing a lot of work: maybe incrementing a pointer and
loading data from memory and doing an arithmetic operation.

RISC (Reduced Instruction Set Computer) relies on the instructions being very simple – the above CISC example would certainly be
three RISC instructions – and then letting the CPU overlap them as much as possible.
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Breaking Dependencies

for(i=0;i<n;i++){ do i=1,n
sum+=a[i]; sum=sum+a(i)

} enddo

This would appear to require three clock cycles per iteration, as the iteration
sum=sum+a[i+1] cannot start until sum=sum+a[i] has completed.
However, consider

for(i=0;i<n;i+=3){ do i=1,n,3
s1+=a[i]; s1=s1+a(i)
s2+=a[i+1]; s2=s2+a(i+1)
s3+=a[i+2]; s3=s3+a(i+2)

} enddo
sum=s1+s2+s3; sum=s1+s2+s3

The three distinct partial sums have no interdependency, so one add can be
issued every cycle.
Do not do this by hand. This is a job for an optimising compiler, as you need to know a lot about the particular processor you are
using before you can tell how many paritial sums to use. And worrying about codas for n not divisible by 3 is tedious.

22

An Aside: Choices and Families

There are many choices to make in CPU design. Fixed length instructions, or
variable? How many integer registers? How big? How many floating point
registers (if any)? Should ‘complicated’ operations be supported? (Division,
square roots, trig. functions, . . . ). Should functional units have direct access
to memory? Should instructions overwrite an argument with the result? Etc.

This has led to many different CPU families, with no compatibility existing
between families, but backwards compatibility within families (newer
members can run code compiled for older members).

In the past different families were common in desktop computers. Now
the Intel/AMD family has a near monopoly here, but mobile phones usually
contain ARM-based CPUs, and printers, routers, cameras etc., often contain
MIPS-based CPUs. The Sony PlayStation uses CPUs derived from IBM’s
Power range, as do the Nintendo Wii and Microsoft Xbox.
At the other end of the computing scale, Intel/AMD has only recently begun to dominate. However, the top twenty machines in the
November 2010 Top500 supercomputer list include three using the IBM Power series of processors, and another three using GPUs
to assist performance. Back in June 2000, the Top500 list included a single Intel entry, admittedly top, the very specialised one-off
ASCI Red. By June 2005 Intel’s position had improved to 7 in the top 20.
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Compilers

CPUs from different families will speak rather different languages, and, even
within a family, new instructions get added from generation to generation to
make use of new features.

Hence intelligent Humans write code in well-defined processor-independent
languages, such as Fortran, and let the compiler do the work of producing
the correct instructions for a given CPU. The compiler must also worry quite
a lot about interfacing to a given operating system, so running a Windows
executable on a machine running MacOS or Linux, even if they have the
same CPU, is far from trivial (and generally impossible).

Compilers can, and do, of course, differ in how fast the sequence of
instructions they translate code into runs, and even how accurate the
translation is.

Well-defined processor-independent languages tend to be supported on by a wide variety of platforms over a long period of time.
What I wrote a long time ago in Fortran 77 or ANSI C I can still run easily today. What I wrote in QuickBASIC then rewrote in
TurboBASIC is now useless again, and became useless remarkably quickly.
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The Intel/AMD Family

The Intel/AMD family has the longest continuous pedigree. Aspects of its
design go back to the late 1970s and electronic desktop calculators. It was
originally a 16 bit processor with much 8 bit heritage.

The ‘x87’ FPU was originally optional, and became standard around 1990. It
had eight 80-bit registers which were arranged as a stack, so always addressed
relative to the stack top, with the basic form of instructions operating on and
removing the top two elements from the stack, and putting the result back on
the stack. Instructions for trig and logarithms existed.

The Pentium4 introduced a new double-precision FPU alongside the old. The
new had 8 directly-addressed registers (SSE2 registers), each storing one
or two 64 bit floating point numbers. This new FPU does not support trig
functions and logarithms, nor the extended 80 bit precision.

Moving data between these two FPUs is not fast.

25



Intel/AMD improvements

Intel’s 80386 (i386) extended the family to 32 bits (IA32) in 1985. Then in
2003 AMD extended it to 64 bits with the Opteron and Athlon64 (x86 64),
and Intel copied the result.

AMD’s extension was not just a simple increasing of the size of the eight
integer registers from 32 bits to 64. It also doubled their number to 16,
and doubled the number of SSE2 registers, renaming them XMM registers.
Conceptually orthogonal to making the processor 64 bit, but very useful for
scientific work, particularly work with complex numbers which tend to use
up registers fast. When one runs 32 bit executables on a 64 bit machine, one
makes no use of these extra integer and floating point registers.

In January 2011 the XMM registers became YMM registers, each storing up
to four 64 bit floating point numbers. (Intel’s Sandy Bridge core.)

All very messy compared to DEC’s Alpha processor which had 32 64-bit
integer registers, and 32 64 bit floating point registers, in all four members of
its (now dead) family.
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Ignoring Intel

Despite Intel’s dominance, this course is utterly biased towards discussing
RISC machines. It is not fun to explain an instruction such as
faddl (%ecx,%eax,8)
(add to the register at the top of the FP register stack the value found at the
memory address given by the ecx register plus 8× the eax register) which
uses an integer shift (×8), integer add, FP load and FP add in one instruction.

Furthermore, since the days of the Pentium Pro (1995), Intel’s processors
have had RISC cores, and a CISC to RISC translator feeding instructions to
the core. The RISC core is never exposed to the programmer, leaving Intel
free to change it dramatically between processors. A hideous operation like
the above will be broken into three or four “µ-ops” for the core. A simpler
CISC instruction might map to single µ-op (micro-op).

Designing a CISC core to do a decent degree of pipelining and simultaneous
execution, when instructions may use multiple functional units, and memory
operations are not neatly separated, is more painful than doing runtime CISC
to RISC conversion.

28

A Branch in the Pipe

So far we have assumed a linear sequence of instructions. What happens if
there is a branch?

double t=0.0; int i,n; t=0
for (i=0;i<n;i++) t=t+x[i]; do i=1,n

t=t+x(i)
# $17 contains n, # $16 contains x enddo

fclr $f0
clr $1
ble $17,L$5

L$6:
ldt $f1, ($16)
addl $1, 1, $1
cmplt $1, $17, $3
lda $16, 8($16)
addt $f0, $f1, $f0
bne $3, L$6

L$5:

There will be a conditional jump or branch at the end of the loop. If the
processor simply fetches and decodes the instructions following the branch,
then when the branch is taken, the pipeline is suddenly empty.

29



Assembler in More Detail

The above is Alpha assembler. The integer registers $1, $3, $16 and $17
are used, and the floating point registers $f0 and $f1. The instructions are
of the form ‘op a,b,c’ meaning ‘c=a op b’.

fclr $f0 Float CLeaR $f0 – place zero in $f0
clr $1 CLeaR $1
ble $17, L$5 Branch if Less than or Equal on comparing $17

to (an implicit) zero and jump to L$5 if less (i.e. skip loop)
L$6:
ldt $f1, ($16) LoaD $f1 with value value from

memory from address $16
addl $1, 1, $1 $1=$1+1
cmplt $1, $17, $3 CoMPare $1 to $17 and place result in $3
lda $16, 8($16) LoaD Address, effectively $16=$16+8
addt $f0, $f1, $f0 $f0=$f0+$f1
bne $3,L$6 Branch Not Equal – if counter ̸=n, do another iteration
L$5:

The above is only assembler anyway, readable by Humans. The machine-code instructions that the CPU actually interprets have a
simple mapping from assembler, but will be different again. For the Alpha, each machine code instruction is four bytes long. For
IA32 machines, between one and a dozen or so bytes.
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More IA32 vs Alpha
double t=0.0; int i,n;
for (i=0;i<n;i++) t=t+x[i];

; %edx contains n # $17 contains n
; %ecx contains x # $16 contains x

fldz fclr $f0
xorl %eax,%eax clr $1
cmpl %edx,%eax
jge .L3 ble $17,L$5

.L5: L$6:
faddl (%ecx,%eax,8) ldt $f1, ($16)
incl %eax addl $1, 1, $1
cmpl %edx,%eax cmplt $1, $17, $3
jl .L5 lda $16, 8($16)

.L3: addt $f0, $f1, $f0
bne $3, L$6

L$5:

Both sides slightly abbreviated, but many differences are clear. Different mnemonics are used (Float LoaD Zero vs Float CLeaR), and
certainly different binary representations. IA32 has a special instruction to increment (add one to) a register, Alpha does not. IA32
can move data from memory directly to the FP adder without passing through a register, Alpha cannot. Etc.
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Predictions

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

Time

ldt $f1

Iteration i

bne

lda $16

cmplt $1

addl $1

OF D Iteration i+1RX

X RF D

X RF D

O

Oaddt $f0, $f1

Without branch prediction ldt $f1, ($16)

ldt $f1, ($16)
With branch

prediction

With the simplistic pipeline model of page 18, the loop will take 9 clock
cycles per iteration if the CPU predicts the branch and fetches the next
instruction appropriately. With no prediction, it will take 12 cycles.
A ‘real’ CPU has a pipeline depth much greater than the five slots shown here: usually ten to twenty. The penalty for a mispredicted
branch is therefore large.

Note the stalls in the pipeline based on data dependencies (shown with red arrows) or to prevent the execution order changing. If the
instruction fetch unit fetches one instruction per cycle, stalls will cause a build-up in the number of in flight instructions. Eventually
the fetcher will pause to allow things to quieten down.

(This is not the correct timing for any Alpha processor.) 32

Speculation

In the above example, the CPU does not begin to execute the instruction after
the branch until it knows whether the branch was taken: it merely fetches and
decodes it, and collects its operands. A further level of sophistication allows
the CPU to execute the next instruction(s), provided it is able to throw away
all results and side-effects if the branch was mispredicted.

Such execution is called speculative execution. In the above example, it
would enable the ldt to finish one cycle earlier, progressing to the point
of writing to the register before the result of the branch were known.

More advanced forms of speculation would permit the write to the register to
proceed, and would undo the write should the branch have been mispredicted.

Errors caused by speculated instructions must be carefully discarded. It is no use if
if (x>0) x=sqrt(x);
causes a crash when the square root is executed speculatively with x=-1, nor if
if (i<1000) x=a[i];
causes a crash when i=2000 due to trying to access a[2000].

Almost all current processors are capable of some degree of speculation.
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OOO!

F O XD R

F O XD R

O X RF D

O X RF D

F O XD R

F O XD R

F O XD R

ldt $f1

Iteration i

bne

lda $16

cmplt $1

addl $1

Iteration i+1

Time

ldt $f1, ($16)

addt $f0, $f1

Previously the cmplt is delayed due to a dependency on the addl
immediately preceeding it. However, the next instruction has no relevant
dependencies. A processor capable of out-of-order execution could execute
the lda before the cmplt.
The timing above assumes that the ldt of the next iteration can be executed speculatively and OOO before the branch. Different
CPUs are capable of differing amounts of speculation and OOOE.

The EV6 Alpha does OOOE, the EV5 does not, nor does the UltraSPARC III. In this simple case, the compiler erred in not changing
the order itself. However, the compiler was told not to optimise for this example.
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Typical functional unit speeds

Instruction Latency Issue rate
iadd/isub 1 1
and, or, etc. 1 1
shift, rotate 1 1
load/store 1-2 1
imul 3-15 3-15
fadd 3 1
fmul 2-3 1
fdiv/fsqrt 15-25 15-25

In general, most things 1 to 3 clock cycles and pipelined, except integer ×
and ÷, and floating point ÷ and √.

‘Typical’ for simple RISC processors. Some processors tend to have longer fp latencies: 4 for fadd and fmul for the
UltraSPARC III, 5 and 7 respectively for the Pentium 4, 3 and 5 respectively for the Core 2 / Nehalem / Sandy Bridge.
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Representing Numbers etc.

Computers store bits, each of which can represent either a 0 or 1. Bits are
processed in groups of eight, called bytes. Storage is not tagged with any
data type, so a (sequence of) bytes may be interpretted as:

Latin text, one character per byte. The ubiquitous ASCII code maps upper
and lower case (unaccented) letters, much punctuation, and the digits 0–9,
onto numbers from zero to 127 which fit into one byte with one bit spare.

An integer, most commonly 4 bytes (32 bits), but sometimes 2 or 8 bytes.

A floating point number, usually 8 bytes (64 bits), sometimes 4 or even 10.

A machine-code instruction, the machine-readable form of assembler. Not
all bit sequences are valid instructions, and attempt to execute an invalid one
leads to SIGILL (illegal instruction) under UNIX.
A random byte about a 40% chance of being a printable ASCII character. If one scans a file for occurances of eight such things in a
row, there will be few false positives, and one will mainly find those pieces of genuine text in the file. One can usefully try this on
any compiled executable, or many other files:

$ strings -8 a.out | less
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A Finite World

Thirty-two bits, each of which can be either 0 or 1, can represent only 232

different values. For integers this is usually chosen to be the range −231 to
231 − 1. Attempts to go beyond this range result in silent wrapping around:
2, 147, 483, 647 + 1 = −2, 147, 483, 648 and
−1 × −2, 147, 483, 648 = −2, 147, 483, 648

Note that a CPU’s clock speed is approximately 231Hz, so it can count to 231

and cause an overflow fairly fast.

When a 32-bit integer is used to address memory, it can address only 232

bytes, or 4GB. Hence the need for 64-bit computers!

C programmers can chose their integers to be unsigned, at which point values from 0 to 4,294,967,295 can be represented with 32 bits.

The use of 64 bit integers is becoming more common, but the default integer type for all C compilers, and most Fortran compilers, is
32 bits.
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Floating Point

Floating point numbers are stored to finite precision. For the ubiquitous 64
bit (8 byte) IEEE-748 double precision format, the precision is approximately
16 decimal digits and a range in the decimal exponent of about ±300. The
single precision format has slightly less than half this precision, and a decimal
exponent range of about ±38.

Unlike integers, some bit patterns are reserved for representing oddities such
as overflows and ‘Not A Number’ (

√
−1 and 0/0).

When working at finite precision, it is no longer true that
(a + b) + c = a + (b + c), or that a/b = a × 1/b. The effects of finite
precision are most obvious when using single precision. However, it must
not be thought that double precision is the same as infinite precision.

It is not obvious that single and double precision numbers should have different ranges. IBM used to use a format in which they had
the same range.

An IEEE-754 double precision number has one bit for the sign, 11 bits for the exponent (which is stored with 1023 added), and 53
bits for the mantissa. As the first bit of the mantissa must be one, it is not stored, so this does add up to 64!
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Sums
n∑

x=1

1

x

Setting n=109 and doing the sum forwards gives totals of 15.403 683 in single
precision, and 21.300 482 in double precision. Doing the sum backwards
gives 18.807 919 in single precision, and 21.300 482 in double precision.
So the single precision results are correct to about one significant figure in a
calculation which takes about 15s of CPU time.

This is a problem if we wish calculations to be re-ordered in order to create
greater data independence.
for(i=1;i<=n;i+=2){ do i=1,n,2

s1+=a[i]; s1=s1+a(i)
s2+=a[i+1]; s2=s2+a(i+1)

} enddo
sum=s1+s2; sum=s1+s2

may be faster than the obvious single sum, but it is likely to give a (slightly) different answer.

As division is not pipelined, we expect each loop iteration to take at least 20 clock cycles, maybe more as there is also an integer to
floating point conversion. So a 2GHz CPU would be expected to take around 15s and to achieve under 100 MFLOPS. Hence division
by a constant is converted to multiplication by its reciprocal by any sane optimising compiler, even though this may alter the answer
slightly.
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Floating Point Rules?

Those slow integer multiplies are more common that it would seem at first.
Consider:

double precision x(1000),y(500,500)

The address of x(i) is the address of x(1) plus 8 × (i − 1). That
multiplication is just a shift. However, y(i,j) is that of y(1,1) plus
8 × ((i − 1) + (j − 1) × 500). A lurking integer multiply!

Compilers may do quite a good job of eliminating unnecessary multiplies
from common sequential access patterns.

C does things rather differently, but not necessarily better.
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Hard or Soft?

The simple operations, such as +, − and ∗ are performed by dedicated
pipelined pieces of hardware which typically produce one result each clock
cycle, and take around four clock cycles to produce a given result.

Slightly more complicated operations, such as / and √ may be done with
microcode. Microcode is a tiny program on the CPU itself which is executed
when a particular instruction, e.g. /, is received, and which may use the other
hardware units on the CPU multiple times.

Yet more difficult operations, such as trig. functions or logs, are usually done
entirely with software in a library. The library uses a collection of power
series or rational approximations to the function, and the CPU needs evaluate
only the basic arithmetic operations.

The IA32 range is unusual in having microcoded instructions for trig. functions and logs. Even on a Core2 or Core i7, a single trig
instruction can take over 100 clock cycles to execute. RISC CPUs tend to avoid microcode on this scale.

The trig. function instructions date from the old era of the x87 maths coprocessor, and no corresponding instruction exists for data in
the newer SSE2/XMM registers.
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Division by Multiplication?

There are many ways to perform floating point division. With a fast hardware
multiplier, Newton-Raphson like iterative algorithms can be attractive.

xn+1 = 2xn − bxn
2

will, for reasonable starting guesses, converge to 1/b. E.g., with b = 6.

n xn

0 0.2
1 0.16
2 0.1664
3 0.16666624
4 0.1666666666655744

How does one form an initial guess? Remember that the number is already stored as m × 2e, and 0.5 ≤ m < 1. So a guess of
0.75 × 21−e is within a factor of 1.5. In practice the first few bits of m are used to index a lookup table to provide the initial guess
of the mantissa.

A similar scheme enables one to find 1/
√

b, and then
√

b = b × 1/
√

b, using the recurrance x → 0.5x(3 − bx2)
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Meaningless Indicators of Performance

The only relevant performance indicator is how long a computer takes to run
your code. Thus my fastest computer is not necessarily your fastest computer.

Often one buys a computer before one writes the code it has been bought for,
so other ‘real-world’ metrics are useful. Some are not useful:

• MHz: the silliest: some CPUs take 4 clock cycles to perform one
operation, others perform four operations in one clock cycle. Only any
use when comparing otherwise identical CPUs.

• MIPS: Millions of Instructions Per Second. Theoretical peak speed of
decode/issue logic, or maybe the time taken to run a 1970’s benchmark.
Gave rise to the name Meaningless Indicator of Performance.

• FLOPS: Floating Point Operations Per Second. Theoretical peak issue rate
for floating point computational instructions, ignoring loads and stores and
with optimal ratio of + to ∗. Hence MFLOPS, GFLOPS, TFLOPS: 106,
109, 1012 FLOPS.
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The Guilty Candidates: Linpack

Linpack 100x100

Solve 100x100 set of double precision linear equations using fixed
FORTRAN source. Pity it takes just 0.7 s at 1 MFLOPS and uses under
100KB of memory. Only relevant for pocket calculators.

Linpack 1000x1000 or nxn

Solve 1000x1000 (or nxn) set of double precision linear equations by any
means. Usually coded using a blocking method, often in assembler. Is that
relevant to your style of coding? Achieving less than 50% of a processor’s
theoretical peak performance is unusual.

Linpack is convenient in that it has an equal number of adds and multiplies
uniformly distributed throughout the code. Thus a CPU with an equal number
of FP adders and multipliers, and the ability to issue instructions to all
simultaneously, can keep all busy.

Number of operations: O(n3), memory usage O(n2).
n chosen by manufacturer to maximise performance, which is reported in GFLOPS.
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SPEC

SPEC is a non-profit benchmarking organisation. It has two CPU
benchmarking suites, one concentrating on integer performance, and one
on floating point. Each consists of around ten programs, and the mean
performance is reported.

Unfortunately, the benchmark suites need constant revision to keep ahead of
CPU developments. The first was released in 1989, the second in 1992, the
third in 1995. None of these use more than 8MB of data, so fit in cache with
many current computers. Hence a fourth suite was released in 2000, and then
another in 2006.

It is not possible to compare results from one suite with those from another,
and the source is not publically available.

Until 2000, the floating point suite was entirely Fortran.

Two scores are reported, ‘base’, which permits two optimisation flags to the compiler, and ‘peak’ which allows any number of
compiler flags. Changing the code is not permitted.

SPEC: Standard Performance Evaluation Corporation (www.spec.org)
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SPEC rates

SPEC also has a set of throughput benchmarks, which consist of running
multiple copies of their serial benchmarks simultaneously. For multicore
machines, this should work well, only in practice the cores compete for
limited memory bandwidth, and it works less well than one might hope.

For instance, in late 2008 Intel published a result of 155 for a 24 core X7460
system. This essentially has four six-core Core 2 processors running at
2.66GHz. Clearly much faster than a single dual-core Core 2 processor at
the same clock speed. However, the Core 2 E8200 achieved a score of 28.9
on this benchmark over six months earlier, so twelve times the core count has
resulted in less than six times the throughput running serial codes.

At that time, AMD was easily beating Intel with four-socket machines.
With four quad-core Opterons running at just 2.3GHz it could match the
performance of the 24 core Intel machine, and at 2.7GHz it could achieve
just over 200.
Intel has since caught up with AMD, and by early 2011 Intel could manage a score of 1150 using eight 8-core Xeon X7560s at
2.27GHz, whereas AMD scored 1310 with eight 12-core Opterons at 2.5GHz. The biggest machine to run this benchmark was an
IBM with 32 8-core Power7 processors running at 4GHz, which scored 10,500.
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Memory

• DRAM

• Parity and ECC

• Going faster: wide bursts

• Going faster: caches
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Memory Design

The first DRAM cell requiring just one transistor and one capacitor to store
one bit was invented and produced by Intel in 1974. It was mostly responsible
for the early importance of Intel as a chip manufacturer.

The design of DRAM has changed little. The speed, as we shall soon see,
has changed little. The price has changed enormously. I can remember when
memory cost around £1 per KB (early 1980s). It now costs around 1p per
MB, a change of a factor of 105, or a little more in real terms. This change
in price has allowed a dramatic change in the amount of memory which a
computer typically has.

Alternatives to DRAM are SRAM – very fast, but needs six transitors per bit,
and flash RAM – unique in retaining data in the absence of power, but writes
are slow and cause significant wear.

RAM: Random Access Memory – i.e. not block access (disk drive), nor sequential access (tape drive).
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D-RAM

The charge in a DRAM cell slowly leaks away. So each cell is read, and
then written back to, several times a second by refresh circuitary to keep the
contents stable. This is why this type of memory is called Dynamic RAM.

Of course, as anyone in the HEP community can testify, one can charge lots
of small capacitors, monitor their charge, and a sudden change means an
ionisation event has occured in their dielectric – an energetic particle has been
detected. DRAM is worrying similar to a semiconductor particle detector, so
cautious people use extra DRAM cells to store an error correction / detection
code so that stray cosmic rays do not end up in one’s results. Such memory
is called ECC memory. (Error Correcting Code.)
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Parity

In the 1980s, business computers had memory arranged in bytes, with one
extra bit per byte which stored parity information. This is simply the sum of
the other bits, modulo 2. If the parity bit disagreed with the contents of the
other eight bits, then the memory had suffered physical corruption, and the
computer would usually crash, which is considered better than calmly going
on generating wrong answers.

Calculating the parity value is quite cheap in terms of speed and complexity,
and the extra storage needed is only 12.5%. However parity will detect only
an odd number of bit-flips in the data protected by each parity bit. If an even
number change, it does not notice. And it can never correct.

51



ECC

Better than parity is ECC memory (Error Correcting Code), usually SEC-
DED (Single Error Corrected, Double Error Detected).

One code for dealing with n bits requires an extra 2+log2 n check bits. Each
code now usually protects eight bytes, 64 bits, for which 2 + log2 64 = 8
extra check bits are needed. Once more, 12.5% extra, or one extra bit per
byte. The example shows an ECC code operating on 8 bits of data.

XXXXXXXX

XXXX

XXXX

XXXX

Eight data bits Five check bits

X

X

X

X

One check bit is a parity check of the other check bits (green, top right), else errors in the check bits are undetected and cause
erroneous ‘corrections’. The other four check bits (red column) store parity information for the data bits indicated. A failing data bit
causes a unique pattern in these bits. This is not the precise code used, & fails to detect 2-bit errors, but it shows the general principle.

Computers with parity could detect one bit in error per byte. Today’s usual ECC code can correct a one bit error per 8 bytes, and
detect a two bit error per eight bytes. Look up Hamming Codes for more information.
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Causes and Prevelance of Errors

In the past most DRAM errors have been blamed on cosmic rays, more recent
research suggest that this is not so. A study of Google’s servers over a 30
month period suggests that faulty chips are a greater problem. Cosmic rays
would be uniformly distributed, but the errors were much more clustered.

About 30% of the servers had at least one correctable error per year, but the
average number of correctable errors per machine year was over 22,000. The
probability of a machine which had one error having another within a year
was 93%. The uncorrectable error rate was 1.3% per machine year.

The numbers are skewed by the fact that once insulation fails so as to lock a
bit to one (or zero), then, on average, half the accesses will result in errors.
In practice insulation can partially fail, such that the data are usually correct,
unless neighbouring bits, temperature, . . . , conspire to cause trouble.

Uncorrectable errors were usually preceded by correctable ones: over 60%
of uncorrectable errors had been preceded by a correctable error in the same
DIMM in the same month, whereas a random DIMM has a less than 1%
correctable error rate per month.
‘DRAM Errors in the Wild: a Large-Scale Field Study’, Schroeder et al.
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ECC: Do We Care?

A typical home PC, run for a few hours each day, with only about half as
much memory as those Google servers, is unlikely to see an error in its five
year life. One has about a one in ten chance of being unlucky. When running
a hundred machines 24/7, the chances of getting through a month, let alone a
year, without a correctable error would seem to be low.

Intel’s desktop i3/i5/i7 processors do not support ECC memory, whereas their
server-class Xeon processors all do. Most major server manufacturers (HP,
Dell, IBM, etc.) simply do not sell any servers without ECC. Indeed, most
also support the more sophisticated ‘Chipkill’ correction which can cope with
one whole chip failing on a bus of 128 data bits and 16 ‘parity’ bits.

I have an ‘ECC only’ policy for servers, both file servers and machines likely to run jobs. In my Group, this means every desktop
machine. The idea of doing financial calculations on a machine without ECC I find amusing and unauditable, but I realise that, in
practice, it is what most Accounts Offices do. But money matters less than science.

Of course an undetected error may cause an immediate crash, it may cause results to be obviously wrong, it may cause results to be
subtly wrong, or it may have no impact on the final result.

‘Chipkill’ is IBM’s trademark for a technology which Intel calls Intel x4 SDDC (single device data correction). It starts by interleaving
the bits to form four 36 bit words, each word having one bit from each chip, so a SEC-DED code is sufficient for each word.
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DRAM in Detail{
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DRAM cells are arranged in (near-)square arrays. To read, first a row is
selected and copied to a buffer, from which a column is selected, and the
resulting single bit becomes the output. This example is a 64 bit DRAM.
This chip would need 3 address lines (i.e. pins) allowing 3 bits of address data to be presented at once, and a single data line.
Also two pins for power, two for CAS and RAS, and one to indicate whether a read or a write is required.

Of course a ‘real’ DRAM chip would contain several tens of million bits.

55



DRAM Read Timings

To read a single bit from a DRAM chip, the following sequence takes place:

• Row placed on address lines, and Row Access Strobe pin signalled.

• After a suitable delay, column placed on address lines, and Column Access
Strobe pin signalled.

• After another delay the one bit is ready for collection.

• The DRAM chip will automatically write the row back again, and will not
accept a new row address until it has done so.

The same address lines are used for both the row and column access. This
halves the number of addess lines needed, and adds the RAS and CAS pins.

Reading a DRAM cell causes a significant drain in the charge on its capacitor, so it needs to be refreshed before being read again.
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More Speed!

The above procedure is tediously slow. However, for reading consecutive
addresses, one important improvement can be made.

Having copied a whole row into the buffer (which is usually SRAM (see
later)), if another bit from the same row is required, simply changing the
column address whilst signalling the CAS pin is sufficient. There is no need
to wait for the chip to write the row back, and then to rerequest the same row.
Thus Fast Page Mode (FPM) and Extended Data Out (EDO) DRAM.

Today’s SDRAM (Synchronous DRAM) takes this approach one stage
further. It assumes that the next (several) bits are wanted, and sends them
in sequence without waiting to receive requests for their column addresses.
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Speed

Old-style memory quoted latencies which were simply the time it would take
an idle chip to respond to a memory request. In the early 1980s this was about
250ns. By the early 1990s it was about 80ns.

Today timings are quoted as clock cycles for column access to data out (TCL

or TCAS) and idle to row select finished (TRCD) These are the first two
numbers of the four usually quoted for memory timings. The clock refered to
is the undoubled data clock, so a DDR3-1333 module with timings of 7-7-7-
24 has a latency of 14 cycles of a 667MHz clock, or 21ns.

So in twenty years memory has got four times faster in terms of latency.
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Bandwidth

Bandwidth has improved much more over the same period. In the early
1980s memory was usually arranged to deliver 8 bits (one byte) at once, with
eight chips working in parallel. By the early 1990s that had risen to 32 bits
(4 bytes), and today one expects 128 bits (16 bytes) on any desktop.

More dramatic is the change in time taken to access consecutive items. In
the 1980s the next item (whatever it was) took slightly longer to access, for
the DRAM chip needed time to recover from the previous operation. So
late 1980s 32 bit wide 80ns memory was unlikely to deliver as much as
four bytes every 100ns, or 40MB/s. Now sequential access is anticipated,
and arrives at the doubled clock speed, so at 1333MHz for DDR3-1333
memory. Coupled with being arranged with 128 bits in parallel, this leads
to a theoretical bandwidth of 20GB/s.

So in twenty years the bandwidth has improved by a factor of about 500.
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Keeping up with the CPU

CPU clock speeds in the past twenty years have increased by a factor of
around 500. (About 60MHz to about 3GHz.) Their performance in terms of
instructions per second has increased by about 10,000, as now one generally
has four cores, each capable of multiple instructions per clock cycle, not a
single core struggling to maintain one instruction per clock cycle.

The partial answer is to use expensive, fast, cache RAM to store frequently
accessed data. Cache is expensive because its SRAM uses multiple transistors
per bit (typically six). It is fast, with sub-ns latency, lacking the output buffer
of DRAM, and not penalising random access patterns.

But it is power-hungry, space-hungry, and needs to be physically very close
to the CPU so that distance does not cause delay. c = 1 in units of feet per ns
in vacuum. So a 3GHz signal which needs to travel just two inches and back
again will lose a complete cycle. In silicon things are worse.

(Experimentalists claim that c = 0.984ft/ns.)
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Caches: the Theory

The theory of caching is very simple. Put a small amount of fast, expensive
memory in a computer, and arrange automatically for that memory to store
the data which are accessed frequently. One can then define a cache hit rate,
that is, the number of memory accesses which go to the cache divided by the
total number of memory accesses. This is usually expressed as a percentage
& will depend on the code run.

CPU

CPU
cache

controller

memory

memory

cache

The first paper to describe caches was published in 1965 by Maurice Wilkes (Cambridge). The first commercial computer to use a
cache was the IBM 360/85 in 1968.
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The Cache Controller

Conceptually this has a simple task:

• Intercept every memory request

• Determine whether cache holds requested data

• If so, read data from cache

• If not, read data from memory and place a copy in the cache as it goes
past.

However, the second bullet point must be done very fast, and this leads to the
compromises. A cache controller inevitably makes misses slower than they
would have been in the absence of any cache, so to show a net speed-up hits
have to be plentiful and fast. A badly designed cache controller can be worse
than no cache at all.
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An aside: Hex

A quick lesson in hexadecimal (base-16) arithmetic is due at this point.
Computers use base-2, but humans tend not to like reading long base-2
numbers.

Humans also object to converting between base-2 and base-10.

However, getting humans to work in base-16 and convert between base-2 and
base-16 is easier.

Hex uses the letters A to F to represent the ‘digits’ 10 to 15. As 24 = 16
conversion to and from binary is done trivially using groups of four digits.

63



Converting to / from Hex

0101 1101 0010 1010 1111 0001 1100 0011

5 C 2 A F 1 B 3

So

0101 1101 0010 1010 1111 0001 1100 00112

= 5C2A F1B316 = 1, 546, 318, 259

As one hex digit is equivalent to four binary digits, two hex digits are exactly
sufficient for one byte.

Hex numbers are often prefixed with ‘0x’ to distinguish them from base ten.

When forced to work in binary, it is usual to group the digits in fours as above, for easy conversion into hex or bytes.
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Our Computer

For the purposes of considering caches, let us consider a computer with a
1MB address space and a 64KB cache.

An address is therefore 20 bits long, or 5 hex digits, or 21
2 bytes.

Suppose we try to cache individual bytes. Each entry in the cache must store
not only the data, but also the address in main memory it was taken from,
called the tag. That way, the cache controller can look through all the tags
and determine whether a particular byte is in the cache or not.

So we have 65536 single byte entries, each with a 21
2 byte tag.

tag data

65



A Disaster

This is bad on two counts.

A waste of space

We have 64KB of cache storing useful data, and 160KB storing tags.

A waste of time

We need to scan 65536 tags before we know whether something is in the
cache or not. This will take far too long.
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Lines

The solution to the space problem is not to track bytes, but lines. Consider a
cache which deals in units of 16 bytes.

64KB = 65536 * 1 byte
= 4096 * 16 bytes

We now need just 4096 tags.

Furthermore, each tag can be shorter. Consider a random address:

0x23D17

This can be read as byte 7 of line 23D1. The cache will either have all of line
23D1 and be able to return byte number 7, or it will have none of it. Lines
always start at an address which is a multiple of their length.
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Getting better. . .

A waste of space?

We now have 64KB storing useful data, and 8KB storing tags. Considerably
better.

A waste of time

Scanning 4096 tags may be a 16-fold improvement, but is still a disaster.

Causing trouble

Because the cache can store only full lines, if the processor requests a single
byte which the cache does not hold, the cache then requests the full line from
the memory so that it can keep a copy of the line. Thus the memory might
have to supply 16× as much data as before!
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A Further Compromise

We have 4096 lines, potentially addressable as line 0 to line 0xFFF.

On seeing an address, e.g. 0x23D17, we discard the last 4 bits, and scan all
4096 tags for the number 0x23D1.

Why not always use line number 0x3D1 within the cache for storing this bit
of memory? The advantage is clear: we need only look at one tag, and see
if it holds the line we want, 0x23D1, or one of the other 15 it could hold:
0x03D1, 0x13D1, etc.

Indeed, the new-style tag need only hold that first hex digit, we know the
other digits! This reduces the amount of tag memory to 2KB.
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Direct Mapped Caches

We have just developed a direct mapped cache. Each address in memory
maps directly to a single location in cache, and each location in cache maps
to multiple (here 16) locations in memory.

0xFFF

0x3D1

line no.

cache

address

memory

0x03D10

0x10000

0x13D10

0x20000

0x30000

0x40000

0x00000

0x23D10

0x33D10

2

tag data
0x000
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Success?

• The overhead for storing tags is 3%. Quite acceptable, and much better than 250%!

• Each ‘hit’ requires a tag to be looked up, a comparison to be made, and
then the data to be fetched. Oh dear. This tag RAM had better be very fast.

• Each miss requires a tag to be looked up, a comparison to fail, and then a
whole line to be fetched from main memory.

• The ‘decoding’ of an address into its various parts is instantaneous.

The zero-effort address decoding is an important feature of all cache schemes.

line address within cache

0x2 3D1 7

byte within line

part to compare with tag
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The Consequences of Compromise

At first glance we have done quite well. Any contiguous 64KB region of
memory can be held in cache. (As long as it starts on a cache line boundary)

E.g. The 64KB region from 0x23840 to 0x3383F would be held in cache lines 0x384 to 0xFFF then 0x000 to 0x383

Even better, widely separated pieces of memory can be in cache
simultaneously. E.g. 0x15674 in line 0x567 and 0xC4288 in line 0x428.

However, consider trying to cache the two bytes 0x03D11 and 0x23D19.
This cannot be done: both map to line 0x3D1 within the cache, but one
requires the memory area from 0x03D10 to be held there, the other the area
from 0x23D10.

Repeated accesses to these two bytes would cause cache thrashing, as the
cache repeatedly caches then throws out the same two pieces of data.
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Associativity
Rather than each line in memory being storable in just one location in cache,
why not make it two?

cache

0x40000

0x00000

tag data
0x000

0xFFF

line no.

0xBD1

memory

address

0x33D10

0x23D10

0x13D10

0x03D10

0x10000

0x20000

0x30000

0x0BD10

0x1BD10

0x2BD10

0x3BD10

0x3D1

Thus a 2-way associative cache, which requires two tags to be inspected for
every access & an extra bit per tag. Can generalise to 2n-way associativity.
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Anti Thrashing Entries

Anti Thrashing Entries are a cheap way of increasing the effective
associativity of a cache for simple cases. One extra cache line, complete with
tag, is stored, and it contains the last line expelled from the cache proper.

This line is checked for a ‘hit’ in parallel with the rest of the cache, and if
a hit occurs, it is moved back into the main cache, and the line it replaces is
moved into the ATE.

Some caches have several ATEs, rather than just one.

double precision a(2048,2),x double a[2][2048],x;
do i=1,2048 for(i=0;i<2047;i++){

x=x+a(i,1)*a(i,2) x+=a[0][i]*a[1][i];
enddo }

Assume a 16K direct mapped cache with 32 byte lines. a(1,1) comes into cache, pulling a(2-4,1) with it. Then a(1,2)
displaces all these, at it must be stored in the same line, as its address modulo 16K is the same. So a(2,1) is not found in cache when
it is referenced. With a single ATE, the cache hit rate jumps from 0% to 75%, the same that a 2-way associative cache would have
achieved for this algorithm.

Remember that Fortran and C store arrays in the opposite order in memory. Fortran will have a(1,1), a(2,1), a(3,1). . . ,
whereas C will have a[0][0], a[0][1], a[0][2]. . .
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A Hierarchy

The speed gap between main memory and the CPU core is so great that there
are usually multiple levels of cache.

The first level, or primary cache, is small (typically 16KB to 128KB),
physically attached to the CPU, and runs as fast as possible.

The next level, or secondary cache, is larger (typically 256KB to 8MB),
slower, and has a higher associativity. There may even be a third level too.

Typical times in clock-cycles to serve a memory request would be:

primary cache 2-4
secondary cache 5-25
main memory 30-300

Cf. functional unit speeds on page 35.

Intel tends to make small, fast caches, compared to RISC workstations which tend to have larger, slower caches.
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Write Back or Write Through?

Should data written by the CPU modify merely the cache if those data are
currently held in cache, or modify the memory too? The former, write back,
can be faster, but the latter, write through, is simpler.

With a write through cache, the definitive copy of data is in the main memory.
If something other than the CPU (e.g. a disk controller or a second CPU)
writes directly to memory, the cache controller must snoop this traffic, and, if
it also has those data in its cache, update (or invalidate) the cache line too.

Write back caches add two problems. Firstly, anything else reading directly
from main memory must have its read intercepted if the cached data for that
address differ from the data in main memory.

Secondly, on ejecting an old line from the cache to make room for a new one,
if the old line has been modified it must first be written back to memory.

Each cache line therefore has an extra bit in its tag, which records whether
the line is modified, or dirty.
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Cache Design Decision

If a write is a miss, should the cache line be filled (as it would for a read)?
If the data just written are read again soon afterwards, filling is beneficial,
as it is if a write to the same line is about to occur. However, caches which
allocate on writes perform badly on randomly scattered writes. Each write of
one word is converted into reading the cache line from memory, modifying
the word written in cache and marking the whole line dirty. When the line
needs discarding, the whole line will be written to memory. Thus writing one
word has been turned into two lines worth of memory traffic.

What line size should be used? What associativity?

If a cache is n-way associative, which of the n possible lines should be
discarded to make way for a new line? A random line? The least recently
used? A random line excluding the most recently used?

As should now be clear, not all caches are equal!

The ‘random line excluding the most recently used’ replacement algorithm (also called pseudo-LRU) is easy to implement. One bit
marks the most recently used line of the associative set. True LRU is harder (except for 2-way associative).

77



Not All Data are Equal

If the cache controller is closely associated with the CPU, it can distinguish
memory requests from the instruction fetcher from those from the load/store
units. Thus instructions and data can be cached separately.

This almost universal Harvard Architecture prevents poor data access
patterns leaving both data and program uncached. However, usually only
the first level of cache is split in this fashion.

The instruction cache is usually write-through, whereas the data cache is
usually write-back. Write-through caches never contain the ‘master’ copy
of any data, so they can be protected by simple parity bits, and the master
copy reloaded on error. Write back caches ought to be protected by some
form of ECC, for if they suffer an error, they may have the only copy of the
data now corrupted.

The term ‘Harvard architecture’ comes from an early American computer which used physically separate areas of main memory for
storing data and instructions. No modern computer does this.
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Explicit Prefetching

One spin-off from caching is the possibility of prefetching.

Many processors have an instruction which requests that data be moved from
main memory to primary cache when it is next convenient.

If such an instruction is issued ahead of some data being required by the CPU
core, then the data may have been moved to the primary cache by the time
the CPU core actually wants them. If so, much faster access results. If not, it
doesn’t matter.

If the latency to main memory is 100 clock cycles, the prefetch instruction
ideally needs issuing 100 cycles in advance, and many tens of prefetches
might be busily fetching simultaneously. Most current processors can handle
a couple of simultaneous prefetches. . .
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Implicit Prefetching

Some memory controllers are capable of spotting certain access patterns as a
program runs, and prefetching data automatically. Such prefetching is often
called streaming.

The degree to which patterns can be spotted varies. Unit stride is easy, as
is unit stride backwards. Spotting different simultaneous streams is also
essential, as a simple dot product:

do i=1,n
d=d+a(i)*b(i)

enddo

leads to alternate unit-stride accesses for a and b.

IBM’s Power3 processor, and Intel’s Pentium 4 both spotted simple patterns
in this way. Unlike software prefetching, no support from the compiler is
required, and no instructions exist to make the code larger and occupy the
instruction decoder. However, streaming is less flexible.
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Clock multiplying

Today all of the caches are usually found on the CPU die, rather than on
external chips. Whilst the CPU is achieving hits on its caches, it is unaffected
by the slow speed of the outside world (e.g. main memory).

Thus it makes sense for the CPU internally to use much higher clock-speeds
than its external bus. The gap is actually decreasing currently as CPU speeds
are levelling off at around 3GHz, whereas external bus speeds are continuing
to rise. In former days the gap could be very large, such as the last of the
Pentium IIIs which ran at around 1GHz internally, with a 133MHz external
bus. In the days when caches were external to the CPU on the motherboard
there was very little point in the CPU running faster than its bus. Now it works
well provided that the cache hit rate is high (>90%), which will depend on
both the cache architecture and the program being run.

In order to reduce power usage, not all of the CPU die uses the same clock
frequency. It is common for the last level cache, which is responsible for
around half the area of the die, to use clock speeds which are only around a
half or a third of those of the CPU core and the primary cache.
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Thermal Limits to Clock Multiplying

The rate at which the transistors which make up a CPU switch is controlled
by the rate at which carriers get driven out of their gate regions. For a given
chip, increasing the electric field, i.e. increasing the voltage, will increase
this speed. Until the voltage is so high that the insulation fails.

The heat generated by a CPU contains both a simple ohmic term, proportional
to the square of the voltage, and a term from the charging of capacitors
through a resistor (modelling the change in state of data lines and transistors).
This is proportional to both frequency and the square of the voltage.

Once the CPU gets too hot, thermally excited carriers begin to swamp the
intrinsic carriers introduced by the n and p doping. With the low band-gap
of silicon, the maximum junction temperature is around 90◦C, or just 50◦C
above the air temperature which most computers can allegedly survive.

Current techniques allow around 120W to be dissipated from a chip with
forced air cooling.
Laptops, and the more modern desktops, have power-saving modes in which the clock speed is first dropped, and then a fraction of a
second later, the supply voltage also dropped.
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The Relevance of Theory

integer a(*),i,j int i,j,*a;

j=1 j=1;
do i=1,n for (i=0;i<n;i++){
j=a(j) j=a[j];

enddo }

This code is mad. Every iteration depends on the previous one, and significant
optimisation is impossible.

However, the memory access pattern can be changed dramatically by
changing the contents of a. Setting a(i)=i+1 and a(k)=1 will
give consecutive accesses repeating over the first k elements, whereas
a(i)=i+2, a(k-1)=2 and a(k)=1 will access alternate elements, etc.

One can also try pseudorandom access patterns. They tend to be as bad as
large stride access.
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Classic caches

 1

 10

 100

 1000

 1  4  16  64  256  1024  4096  16384  65536

T
im

e,
 n

s

Data set size, KB

Stride 1
Stride 2
Stride 4

Stride 16

With a 16 element (64 bytes) stride, we see access times of 8.7ns for primary cache, 33ns for
secondary, and 202ns for main memory. The cache sizes are clearly 64KB and 2MB.

With a 1 element (4 bytes) stride, the secondary cache and main memory appear to be faster.
This is because once a cache line has been fetched from memory, the next 15 accesses will
be primary cache hits on the next elements of that line. The average should be (15 ∗ 8.7 +

202)/16 = 20.7ns, and 21.6ns is observed.

The computer used for this was a 463MHz XP900 (Alpha 21264). It has 64 byte cache lines.
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Performance Enhancement
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On the left a 2.4GHz Pentium 4 (launched 2002, RAMBUS memory), and on the right a
2.4GHz Core 2 quad core (launched 2008, DDR3 memory). Both have 64 byte cache lines.

For the Pentium 4, the fast 8KB primary cache is clearly seen, and a 512KB secondary less
clearly so. The factor of four difference between the main memory’s latency at a 64 byte
and 128 byte stride is caused by automatic hardware prefetching into the secondary cache.
For strides of up to 64 bytes inclusive, the hardware notices the memory access pattern, even
though it is hidden at the software level, and starts fetching data in advance automatically.

For the Core 2 the caches are larger – 32KB and 4MB, and the main memory is a little faster.
But six years and three generations of memory technology have changed remarkably little.
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Matrix Multiplication: Aij = BikCkj

do i=1,n for(i=0;i<n;i++){
do j=1,n for(j=0;j<n;j++){
t=0 t=0;
do k=1,n for(k=0;k<n;k++){

t=t+b(i,k)*c(k,j) t+=b[i][k]*c[k][j];
enddo }
a(i,j)=t a[i][j]=t;

enddo }
enddo }

The above Fortran has unit stride access on the array c in the inner loop, but
a stride of n doubles on the array b. The C manages unit stride on b and a
stride of n doubles on the array c. Neither manages unit stride on both arrays.

Optimising this is not completely trivial, but is very worthwhile.
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Very Worthwhile

The above code running on a 2.4GHz Core 2 managed around 500 MFLOPS
at a matrix size of 64, dropping to 115 MFLOPS for a matrix size of 1024.

Using an optimised linear algebra library increased the speed for the
smaller sizes to around 4,000 MFLOPS, and for the larger sizes to around
8,700 MFLOPS, close to the computer’s peak speed of 9,600 MFLOPS.
There are many possibilities to consider for optimising this code. If the matrix size is very small, don’t, for it will all fit in L1 cache
anyway. For large matrices one can consider transposing the matrix which would otherwise be accessed with the large stride. This is
most beneficial if that matrix can then be discarded (or, better, generated in the transposed form). Otherwise one tries to modify the
access pattern with tricks such as

do i=1,nn,2
do j=1,nn

t1=0 ; t2=0
do k=1,nn

t1=t1+b(i,k)*c(k,j) ! Remember that b(i,k) and
t2=t2+b(i+1,k)*c(k,j) ! b(i+1,k) are adjacent in memory

enddo
a(i,j)=t1
a(i+1,j)=t2

enddo
enddo

This halves the number of passes through b with the large stride, and therefore shows an immediate doubling of speed at n=1024
from 115 MFLOPS to 230 MFLOPS. Much more to be done before one reaches 8,000 MFLOPS though, so don’t bother: link with a
good BLAS library and use its matrix multiplication routine! (Or use the F90 intrinsic matmul function in this case.) [If trying this
at home, note that many Fortran compilers spot simple examples of matrix multiplication and re-arrange the loops themselves. This
can cause confusion.]
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Memory Access Patterns in Practice

88

Matrix Multiplication

We have just seen that very different speeds of execution can be obtained by
different methods of matrix multiplication.

Matrix multiplication is not only quite a common problem, but it is also very
useful as an example, as it is easy to understand and reveals most of the issues.
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More Matrix Multiplication

Aij =
∑

k=1,N

BikCkj

So to form the product of two N×N square matrices takes N3 multiplications
and N3 additions. There are no clever techniques for reducing this
computational work significantly (save eliminating about N2 additions,
which is of little consequence).

The amount of memory occupied by the matrices scales as N2, and is exactly
24N2 bytes assuming all are distinct and double precision.

Most of these examples use N = 2048, so require around 100MB of memory,
and will take 16s if run at 1 GFLOPs.
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Our Computer

These examples use a 2.4GHz quad core Core2 with 4GB of RAM. Each
core can complete two additions and two multiplications per clock cycle, so
its theoretical sustained performance is 9.6 GFLOPs.

Measured memory bandwidth for unit stride access over an array of 64MB is
6GB/s, and for access with a stride of 2048 doubles it is 84MB/s (one item
every 95ns).

We will also consider something older and simpler, a 2.8GHz Pentium 4 with
3GB of RAM. Theoretical sustained performance is 5.6 GFLOPs, 4.2GB/s
and 104ns. Its data in the following slides will be shown in italics in square
brackets.

The Core 2 processor used, a Q6600, was first released in 2007. The Pentium 4 used was first released in 2002. The successor to the
Core 2, the Nehalem, was first released late in 2008.
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Speeds

do i=1,n for(i=0;i<n;i++){
do j=1,n for(j=0;j<n;j++){
t=0 t=0;
do k=1,n for(k=0;k<n;k++){

t=t+b(i,k)*c(k,j) t+=b[i][k]*c[k][j];
enddo }
a(i,j)=t a[i][j]=t;

enddo }
enddo }

If the inner loop is constrained by the compute power of the processor, it will
achieve 9.6 GFLOPs. [5.6 GFLOPS]

If constrained by bandwidth, loading two doubles and performing two
FLOPS per iteration, it will achieve 750 MFLOPs. [520 MFLOPS]

If constrained by the large stride access, it will achieve two FLOPs every
95ns, or 21 MFLOPs. [19 MFLOPS]
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The First Result

When compiled with gfortran -O0 the code achieved 41.6 MFLOPS.
[37 MFLOPS]

The code could barely be less optimal – even t was written out to memory,
and read in from memory, on each iteration. The processor has done an
excellent job with the code to achieve 47ns per iteration of the inner loop.
This must be the result of some degree of speculative loading overlapping the
expected 95ns latency.

In the mess which follows, one can readily identify the memory location -40(%rbp) with t, and one can also see two integer
multiplies as the offsets of the elements b(i,k) and c(k,j) are calculated.
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Messy
.L22:

movq -192(%rbp), %rbx
movl -20(%rbp), %esi
movslq %esi, %rdi
movl -28(%rbp), %esi
movslq %esi, %r8
movq -144(%rbp), %rsi
imulq %r8, %rsi
addq %rsi, %rdi
movq -184(%rbp), %rsi
leaq (%rdi,%rsi), %rsi
movsd (%rbx,%rsi,8), %xmm1
movq -272(%rbp), %rbx
movl -28(%rbp), %esi
movslq %esi, %rdi
movl -24(%rbp), %esi
movslq %esi, %r8
movq -224(%rbp), %rsi
imulq %r8, %rsi
addq %rsi, %rdi
movq -264(%rbp), %rsi
leaq (%rdi,%rsi), %rsi
movsd (%rbx,%rsi,8), %xmm0
mulsd %xmm1, %xmm0
movsd -40(%rbp), %xmm1
addsd %xmm1, %xmm0
movsd %xmm0, -40(%rbp)
cmpl %ecx, -28(%rbp)
sete %bl
movzbl %bl, %ebx
addl $1, -28(%rbp)
testl %ebx, %ebx
je .L22
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Faster

When compiled with gfortran -O1 the code achieved 118 MFLOPS. The
much simpler code produced by the compiler has given the processor greater
scope for speculation and simultaneous outstanding memory requests. Don’t
expect older (or more conservative) processors to be this smart – on an ancient
Pentium 4 the speed improved from 37.5 MFLOPS to 37.7 MFLOPS.

Notice that t is now maintained in a register, %xmm0, and not written out to memory on each iteration. The integer multiplications
of the previous code have all disappeared, one by conversion into a Shift Arithmetic Left Quadbyte of 11 (i.e. multiply by 2048, or
2ˆ11).

.L10:
movslq %eax, %rdx
movq %rdx, %rcx
salq $11, %rcx
leaq -2049(%rcx,%r8), %rcx
addq %rdi, %rdx
movsd 0(%rbp,%rcx,8), %xmm1
mulsd (%rbx,%rdx,8), %xmm1
addsd %xmm1, %xmm0
addl $1, %eax
leal -1(%rax), %edx
cmpl %esi, %edx
jne .L10
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Unrolling: not faster

do i=1,nn
do j=1,nn

t=0
do k=1,nn,2
t=t+b(i,k)*c(k,j)+b(i,k+1)*c(k+1,j)

enddo
a(i,j)=t

enddo
enddo

This ‘optimisation’ reduces the overhead of testing the loop exit condition,
and little else. The memory access pattern is unchanged, and the speed is
also pretty much unchanged – up by about 4%.
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Memory Access Pattern

a(1,1) a(2,1) a(3,1) a(n,1) a(1,2) a(2,2)

Below an 8 × 8 array being access the correct and incorrect way around.

97



Blocking: Faster

do i=1,nn,2
do j=1,nn

t1=0
t2=0
do k=1,nn

t1=t1+b(i,k)*c(k,j)
t2=t2+b(i+1,k)*c(k,j)

enddo
a(i,j)=t1
a(i+1,j)=t2

enddo
enddo

This has changed the memory access pattern on the array b. Rather than the pessimal order
b(1,1) b(1,2) b(1,3) b(1,4) ... b(1,n) b(2,1) b(2,2)
we now have
b(1,1) b(2,1) b(1,2) b(2,2) ..... b(1,n) b(2,n) b(3,1) b(4,1)
Every other item is fetched almost for free, because its immediate neighbour has just been
fetched. The number of iterations within this inner loop is the same, but the loop is now
executed half as many times.
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Yes, Faster

We would predict a speedup of about a factor of two, and that is indeed seen.
Now the Core 2 reaches 203 MFLOPS (up from 118 MFLOPS), and the
Pentium 4 71 MFLOPS (up from 38 MFLOPS).

Surprisingly changing the blocking factor from 2 to 4 (i.e. four elements
calculated in the inner loop) did not impress the Core 2. It improved to just
224 MFLOPS (+10%). The Pentium 4, which had been playing fewer clever
tricks in its memory controller, was much happier to see the blocking factor
raised to 4, now achieving 113 MFLOPS (+59%).
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More, more more!

do i=1,nn,nb
do j=1,nn

do kk=0,nb-1
a(i+kk,j)=0

enddo
do k=1,nn

do kk=0,nb-1
a(i+kk,j)=a(i+kk,j)+b(i+kk,k)*c(k,j)

enddo
enddo

enddo
enddo

With nb=1 this code is mostly equivalent to our original naı̈ve code. Only
less readable, potentially buggier, more awkward for the compiler, and
a(i,j) is now unlikely to be cached in a register. With nb=1 the Core 2
achieves 74 MFLOPS, and the Pentium 4 33 MFLOPS. But with nb=64 the
Core 2 achieves 530 MFLOPS, and the Pentium 4 320 MFLOPS – their best
scores so far.
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Better, better, better

do k=1,nn,2
do kk=0,nb-1

a(i+kk,j)=a(i+kk,j)+b(i+kk,k)*c(k,j)+ &
b(i+kk,k+1)*c(k+1,j)

enddo
enddo

Fewer loads and stores on a(i,j), and the Core 2 likes this, getting
707 MFLOPS. The Pentium 4 now manages 421 MFLOPS. Again this is
trivially extended to a step of four in the k loop, which achieves 750 MFLOPS
[ 448 MFLOPS]
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Other Orders

a=0
do j=1,nn
do k=1,nn

do i=1,nn
a(i,j)=a(i,j)+b(i,k)*c(k,j)

enddo
enddo

enddo

Much better. 1 GFLOPS on the Core 2, and 660 MFLOPS on the Pentium 4.

In the inner loop, c(k,j) is constant, and so we have two loads and one
store, all unit stride, with one add and one multiply.
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Better Yet

a=0
do j=1,nn,2
do k=1,nn

do i=1,nn
a(i,j)=a(i,j)+b(i,k)*c(k,j)+ &

b(i,k)*c(k,j+1)
enddo

enddo
enddo

Now the inner loop has c(k,j) and c(k,j+1) constant, so still has two
loads and one store, all unit stride (assuming efficient use of registers), but
now has two adds and two multiplies.

Both processors love this – 1.48 GFLOPS on the Core 2, and 1.21 GFLOPS
on the Pentium 4.
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Limits

Should we exend this by another factor of two, and make the outer loop of
step 4?

The Core 2 says a clear yes, improving to 1.93 GFLOPS (+30%). The
Pentium 4 is less enthusiastic, improving to 1.36 GFLOPS (+12%).

What about 8? The Core 2 then gives 2.33 GFLOPS (+20%), and the
Pentium 4 1.45 GFLOPS (+6.6%).
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Spills

With a step of eight in the outer loop, there are eight constants in the inner
loop, c(k,j) to c(k,j+7), as well as the two variables a(i,j) and
b(i,k). The Pentium 4 has just run out of registers, so three of the constant
c’s have to be loaded from memory (cache) as they don’t fit into registers.

The Core 2 has twice as many FP registers, so has not suffered what is called
a ‘register spill’, when values which ideally would be kept in registers spill
back into memory as the compiler runs out of register space.
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Horrid!

Are the above examples correct? Probably not – I did not bother to test them!

The concepts are correct, but the room for error in coding in the above style
is large. Also the above examples assume that the matrix size is divisible by
the block size. General code needs (nasty) sections for tidying up when this
is not the case.

Also, we are achieving around 20% of the peak performance of the processor.
Better than the initial 1-2%, but hardly wonderful.
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Best Practice

Be lazy. Use someone else’s well-tested code where possible.

Using Intel’s Maths Kernel Library one achieves 4.67 GFLOPS on the
Pentium 4, and 8.88 GFLOPS on one core of a Core 2. Better, that library can
make use of multiple cores of the Core 2 with no further effort, then achieving
33.75 GFLOPS when using all four cores.

N.B.

call cpu_time(time1)
...
call cpu_time(time2)
write(*,*) time2-time1

records total CPU time, so does not show things going faster as more cores are used. One
wants wall-clock time:

call system_clock(it1,ic)
time1=real(it1,kind(1d0))/ic
...
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Other Practices

Use Fortran90’s matmul routine.

Core 2

ifort -O3: 5.10 GFLOPS
gfortran: 3.05 GFLOPS
pathf90 -Ofast: 2.30 GFLOPS
pathf90 1.61 GFLOPS
ifort: 0.65 GFLOPS

Pentium 4

ifort -O3: 1.55 GFLOPS
gfortran: 1.05 GFLOPS
ifort: 0.43 GFLOPS

108

Lessons

Beating the best professional routines is hard.

Beating the worst isn’t.

The variation in performance due to the use of different routines is much
greater than that due to the single-core performance difference between a
Pentium 4 and a Core 2. Indeed, the Pentium 4’s best result is about 30× as
fast as the Core 2’s worst result.
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Difficulties

For the hand-coded tests, the original naı̈ve code on slide 95 compiled with
gfortran -O1 recorded 118 MFLOPS [37.7 MFLOPS], and was firmly
beaten by reversing the loop order (slide 102) at 1 GFLOPS [660 MFLOPS].

Suppose we re-run these examples with a matrix size of 25 × 25 rather
than 2048 × 2048. Now the speeds are 1366 MFLOPS [974 MFLOPS] and
1270 MFLOPS [770 MFLOPS].

The three arrays take 3 × 25 × 25 × 8 bytes, or 15KB, so things fit into L1
cache on both processors. L1 cache is insensitive to data access order, but the
‘naı̈ve’ method allows a cache access to be converted into a register access
(in which a sum is accumulated).

110

Leave it to Others!

So comparing these two methods, on the Core 2 the one which wins by
a factor of 8.5 for the large size is 7% slower for the small size. For the
Pentium 4 the results are more extreme: 17× faster for the large case, 20%
slower for the small case.

A decent matrix multiplication library will use different methods for different
problem sizes, ideally swapping between them at the precisely optimal point.
It is also likely that there will be more than two methods used as one moves
from very small to very large problems.
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Reductio ad Absurdum

Suppose we now try a matrix size of 2 × 2. The ‘naı̈ve’ code now
manages 400 MFLOPS [540 MFLOPS], and the reversed code 390 MFLOPS
[315 MFLOPS].

If instead one writes out all four expressions for the elements of a explicitly,
the speed jumps to about 3,200 MFLOPS [1,700 MFLOPS].

Loops of unknown (at compile time) but small (at run time) iteration count
can be quite costly compared to the same code with the loop entirely
eliminated.

For the first test, the 32 bit compiler really did produce significantly better code than the 64 bit compiler, allowing the Pentium 4 to
beat the Core 2.
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Maintaining Zero GFLOPS

One matrix operation for which one can never exceed zero GFLOPS is the
transpose. There are no floating point operations, but the operation still takes
time.

do i=1,nn
do j=i+1,nn

t=a(i,j)
a(i,j)=a(j,i)
a(j,i)=t

enddo
enddo

This takes about 24ns per element in a on the Core 2 [96ns on Pentium 4]
with a matrix size of 4096.
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Problems

It is easy to see what is causing trouble here. Whereas one of the accesses in
the loop is sequential, the other is of stride 32K. We would naı̈vely predict that
this code would take around 43ns [52ns] per element, based on one access
taking negligible time, and the other the full latency of main memory.

The Pentium 4 is doing worse than our naı̈ve model because 104ns is its access time for reads from main memory. Here we have
writes as well, so there is a constant need to evict dirty cache lines. This will make things worse.

The Core 2 is showing the sophistication of a memory controller capable of having several outstanding requests and a CPU capable
of speculation.
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Faster

If the inner loop instead dealt with a small 2 × 2 block of element, it would
have two stride 32K accesses per iteration and exchange eight elements,
instead of one stride 32K access to exchange two elements. If the nasty stride
is the problem, this should run twice as fast. It does: 12ns per element [42ns].

115



Nasty Code

do i=1,nn,2
do j=i+2,nn,2

t=a(i,j)
a(i,j)=a(j,i)
a(j,i)=t
t=a(i+1,j)
a(i+1,j)=a(j,i+1)
a(j,i+1)=t
t=a(i,j+1)
a(i,j+1)=a(j+1,i)
a(j+1,i)=t
t=a(i+1,j+1)
a(i+1,j+1)=a(j+1,i+1)
a(j+1,i+1)=t

enddo
enddo

do i=1,nn,2
j=i+1
t=a(i,j)
a(i,j)=a(j,i)
a(j,i)=t

enddo

Is this even correct? Goodness knows – it is unreadable, and untested. And it is certainly wrong if nn is odd.
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How far should we go?

Why not use a 3 × 3 block, or a 10 × 10 block, or some other n × n block?
For optimum speed one should use a larger block than 2 × 2.

Ideally we would read in a whole cache line and modify all of it for the
sequential part of reading in a block in the lower left of the matrix. Of course,
we can’t. There is no guarantee that the array starts on a cache line boundary,
and certainly no guarantee that each row starts on a cache line boundary.

We also want the whole of the block in the upper right of the matrix to stay in
cache whilst we work on it. Not usually a problem – level one cache can hold
a couple of thousand doubles, but with a matrix size which is a large power
of two, a(i,j) and a(i,j+1) will be separated by a multiple of the cache
size, and in a direct mapped cache will be stored in the same cache line.
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Different Block Sizes

Block Size Pentium 4 Athlon II Core 2

1 100ns 41ns 25ns
2 42ns 22ns 12ns
4 27ns 21ns 11ns
8 22ns 19ns 8ns
16 64ns 17ns 8ns
32 88ns 41ns 9ns
64 102ns 41ns 12ns

Caches:
Pentium 4: L1 16K 4 way, L2 512K 8 way.
Athlon II: L1 64K 2 way, L2 1MB 16 way.
Core 2: L1 32K 8 way, L2 4MB 16 way.

Notice that even on this simple test we have the liberty of saying that the Athlon II is merely 15% faster than the old Pentium 4, or a
more respectable 3.75× faster. One can prove almost anything with benchmarks. I have several in which that Athlon II would easily
beat that Core 2. . .
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Nastier Code

do i=1,nn,nb
do j=i+nb,nn,nb

do ii=0,nb-1
do jj=0,nb-1
t=a(i+ii,j+jj)
a(i+ii,j+jj)=a(j+jj,i+ii)
a(j+jj,i+ii)=t

enddo
enddo

enddo
enddo

do i=1,nn,nb
j=i
do ii=0,nb-1

do jj=ii+1,nb-1
t=a(i+ii,j+jj)
a(i+ii,j+jj)=a(j+jj,i+ii)
a(j+jj,i+ii)=t

enddo
enddo

enddo

Is this even correct? Goodness knows – it is unreadable, and untested. And it is certainly wrong if nn is not divisible by nb.
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Different Approaches

One can also transpose a square matrix by recursion: divide the matrix into
four smaller square submatrices, transpose the two on the diagonal, and
transpose and exchange the two off-diagonal submatrices.

For computers which like predictable strides, but don’t much care what those
strides are (i.e. old vector computers, and maybe GPUs?), one might consider
a transpose moving down each off-diagonal in turn, exchanging with the
corresponding off-diagonal.

By far the best method is not to transpose at all – make sure that whatever one
was going to do next can cope with its input arriving lacking a final transpose.

Note that most routines in the ubiquitous linear algebra package BLAS accept their input matrices in either conventional or transposed
form.
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There is More Than Multiplication

This lecture has concentrated on the ‘trivial’ examples of matrix
multiplication amd transposes. The idea that different methods need to be
used for different problem sizes is much more general, and applies to matrix
transposing, solving systems of linear equations, FFTs, etc.

It can make for large, buggy, libraries. For matrix multiplication, the task is
valid for multiplying an n × m matrix by a m × p matrix. One would hope
that any released routine was both correct and fairly optimal for all square
matrices, and the common case of one matrix being a vector. However, did
the programmer think of testing for the case of multiplying a 1, 000, 001 × 3
matrix by a 3×5 matrix? Probably not. One would hope any released routine
was still correct. One might be disappointed by its optimality.
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Doing It Oneself

If you are tempted by DIY, it is probably because you are working with a
range of problem sizes which is small, and unusual. (Range small, problem
probably not small.)

To see if it is worth it, try to estimate the MFLOPS achieved by whatever
routine you have readily to hand, and compare it to the processor’s peak
theoretical performance. This will give you an upper bound on how much
faster your code could possibly go. Some processors are notoriously hard to
get close to this limit. Note that here the best result for the Core 2 was about
91%, whereas for the Pentium 4 it was only 83%.

If still determined, proceed with a theory text book in one hand, and a stop-
watch in the other. And then test the resulting code thoroughly.

Although theory may guide you towards fast algorithms, processors are sufficiently complex and undocumented that the final
arbitrator of speed has to be the stopwatch.
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Memory Management
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Memory: a Programmer’s Perspective

From a programmer’s perspective memory is simply a linear array into which
bytes are stored. The array is indexed by a pointer which runs from 0 to 232

(4GB) on 32 bit machines, or 264 (16EB) on 64 bit machines.

The memory has no idea what type of data it stores: integer, floating point,
program code, text, it’s all just bytes.

An address may have one of several attributes:

Invalid not allocated
Read only for constants and program code
Executable for program code, not data
Shared for inter-process communication
On disk paged to disk to free up real RAM

(Valid virtual addresses on current 64 bit machines reach only 248 (256TB).
So far no-one is complaining. To go further would complicate the page table
(see below).)
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Pages

In practice memory is broken into pages, contiguous regions, often of 4KB,
which are described by just a single set of the above attributes. When the
operating system allocates memory to a program, the allocation must be an
integer number of pages. If this results in some extra space, malloc()
or allocate() will notice, and may use that space in a future allocation
without troubling the operating system.

Modern programs, especially those written in C or, worse, C++, do a lot of
allocating and deallocating of small amounts of memory. Some remarkably
efficient procedures have been developed for dealing with this. Ancient
programs, such as those written in Fortran 77, do no run-time allocation of
memory. All memory is fixed when the program starts.

Pages also allow for a mapping to exist between virtual addresses as seen by
a process, and physical addresses in hardware.
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No Fragmentation
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Pages also have an associated location in real, physical memory. In this
example, program A believes that it has an address space extending from
0MB to 1400MB, and program B believes it has a distinct space extending
from 0MB to 400MB. Neither is aware of the mapping of its own virtual
address space into physical memory, or whether that mapping is contiguous.
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Splendid Isolation

This scheme gives many levels of isolation.

Each process is able to have a contiguous address space, starting at zero,
regardless of what other processes are doing.

No process can accidentally access another process’s memory, for no process
is able to use physical addresses. They have to use virtual addresses, and
the operating system will not allow two virtual addresses to map to the same
physical address (except when this is really wanted).

If a process attempts to access a virtual address which it has not been granted
by the operating system, no mapping to a physical address will exist, and the
access must fail. A segmentation fault.

A virtual address is unique only when combined with a process ID (deliberate
sharing excepted).
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Fast, and Slow

This scheme might appear to be very slow. Every memory access involves
a translation from a virtual address to a physical address. Large translation
tables (page tables) are stored in memory to assist. These are stored at known
locations in physical memory, and the kernel, unlike user processes, can
access physical memory directly to avoid a nasty catch-22.

Every CPU has a cache dedicated to storing the results of recently-used page
table look-ups, called the TLB. This eliminates most of the speed penalty,
except for random memory access patterns.
A TLB is so essential for performance with virtual addressing that the 80386, the first Intel processor to support virtual addressing,
had a small (32 entry) TLB, but no other cache.
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Page Tables

A 32 bit machine will need a four-byte entry in a page table per page. With
4KB pages, this could be done with a 4MB page table per process covering
the whole of its virtual address space. However, for processes which make
modest use of virtual address space, this would be rather inefficient. It would
also be horrific in a 64 (or even 48) bit world.

So the page table is split into two. The top level describes blocks of 1024
pages (4MB). If no address in that range is valid, the top level table simply
records this invalidity. If any address is valid, the top level table then points
to a second level page table which contains the 1024 entries for that 4MB
region. Some of those entries may be invalid, and some valid.

The logic is simple. For a 32 bit address, the top ten bits index the top level
page table, the next ten index the second level page table, and the final 12 an
address within the 4KB page pointed to by the second level page table.
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Page Tables in Action

Physical Address

Directory
Table
Page

10 10 12

1220

32 bit Virtual Address

Tables
Page

For a 64 bit machine, page table entries must be eight bytes. So a 4KB page contains just 512 (29) entries. Intel currently uses a four
level page table for ‘64 bit’ addressing, giving 4 × 9+12 = 48 bits. The Alpha processor used a three level table and an 8KB page
size, giving 3 × 10 + 13 = 43 bits.
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Efficiency

This is still quite a disaster. Every memory reference now requires two
or three additional accesses to perform the virtual to physical address
translation.

Fortunately, the CPU understands pages sufficiently well that it remembers
where to find frequently-referenced pages using a special cache called a TLB.
This means that it does not have to keep asking the operating system where a
page has been placed.

Just like any other cache, TLBs vary in size and associativity, and separate
instruction and data TLBs may be used. A TLB rarely contains more than
1024 entries, often far fewer.

Even when a TLB miss occurs, it is rarely necessary to fetch a page table from main memory, as the relevant tables are usually still
in secondary cache, left there by a previous miss.

TLB = translation lookaside buffer
ITLB = instruction TLB, DTLB = data TLB if these are separate
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The left is a repeat of the graph on page 84, but with an 8KB stride added. The XP900 uses
8KB pages, and has a 128 entry DTLB. Once the data set is over 1MB, the TLB is too small
to hold its pages, and, with an 8KB stride, a TLB miss occurs on every access, taking 92ns
in this case.

The right is a repeat of the Core 2 graph from page 85, with a 4KB stride added. The Core 2
uses 4KB pages, and has a 256 entry DTLB. Some more complex interactions are occuring
here, but it finishes up with a 50ns penalty.

Given that three levels of page table must be accessed, it is clear that most of the relevant parts of the page table were in cache. So
the 92ns and 50ns recovery times for a TLB miss are best cases – with larger data sets it can get worse. The Alpha is losing merely
43 clock cycles, the Core 2 about 120. As the data set gets yet larger, TLB misses will be to page tables not in cache, and random
access to a 2GB array results in a memory latency of over 150ns on the Core 2.
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More paging

Having suffering one level of translation from virtual to physical addresses,
it is conceptually easy to extend the scheme slightly further. Suppose that the
OS, when asked to find a page, can go away, read it in from disk to physical
memory, and then tell the CPU where it has put it. This is what all modern
OSes do (UNIX, OS/2, Win9x / NT, MacOS), and it merely involves putting
a little extra information in the page table entry for that page.

If a piece of real memory has not been accessed recently, and memory is in
demand, that piece will be paged out to disk, and reclaimed automatically (if
slowly) if it is needed again. Such a reclaiming is also called a page fault,
although in this case it is not fatal to the program.

Rescuing a page from disk will take about 10ms, compared with under 100ns for hitting main memory. If just one in 105 memory
accesses involve a page-in, the code will run at half speed, and the disk will be audibly ‘thrashing’.

The union of physical memory and the page area on disk is called virtual memory. Virtual addressing is a prerequisite for virtual
memory, but the terms are not identical.
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Less paging

Certain pages should not be paged to disk. The page tables themselves are an
obvious example, as is much of the kernel and parts of the disk cache.

Most OSes (including UNIX) have a concept of a locked, that is, unpageable,
page. Clearly all the locked pages must fit into physical memory, so they are
considered to be a scarce resource. On UNIX only the kernel or a process
running with root privilege can cause its pages to be locked.

Much I/O requires locked pages too. If a network card or disk drive wishes to
write some data into memory, it is too dumb to care about virtual addressing,
and will write straight to a physical address. With locked pages such pages
are easily reserved.

Certain ‘real time’ programs which do not want the long delays associated with recovering pages from disk request that their pages
are locked. Examples include CD writing software.
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Blatant Lies

Paging to disk as above enables a computer to pretend that it has more RAM
than it really does. This trick can be taken one stage further. Many OSes are
quite happy to allocate virtual address space, leaving a page table entry which
says that the address is valid, not yet ever been used, and has no physical
storage associated with it. Physical storage will be allocated on first use.
This means that a program will happily pass all its malloc() / allocate
statements, and only run into trouble when it starts trying to use the memory.

The ps command reports both the virtual and physical memory used:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
spqr1 20241 100 12.7 711764 515656 pts/9 Rl+ 13:36 3:47 castep si64

RSS – Resident Set Size (i.e. physical memory use). Will be less than the
physical memory in the machine. %MEM is the ratio of this to the physical
memory of the machine, and thus can never exceed 100.

VSZ – Virtual SiZe, i.e. total virtual address space allocated. Cannot be
smaller than RSS.
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The Problem with Lying

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
spqr1 25175 98.7 25.9 4207744 1049228 pts/3 R+ 14:02 0:15 ./a.out

Currently this is fine – the process is using just under 26% of the memory.
However, the VSZ field suggests that it has been promised 104% of the
physical memory. This could be awkward.

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
spqr1 25175 39.0 90.3 4207744 3658252 pts/0 D+ 14:02 0:25 ./a.out

Awkward. Although the process does no I/O its status is ‘D’ (waiting for
‘disk’), its share of CPU time has dropped (though no other process is active),
and inactive processes have been badly squeezed. At this point Firefox had
an RSS of under 2MB and was extremely slow to respond. It had over 50MB
before it was squeezed.

Interactive users will now be very unhappy, and if the computer had another
GB that program would run almost three times faster.
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Grey Areas – How Big is Too Big?

It is hard to say precisely. If a program allocates one huge array, and then
jumps randomly all over it, then the entirety of that array must fit into physical
memory, or there will be a huge penalty. If a program allocates two large
arrays, spends several hours with the first, then moves it attention to the
second, the penalty if only one fits into physical memory at a time is slight.
Total usage of physical memory is reported by free under Linux. Precise
interpretation of the fields is still hard.

$ free
total used free shared buffers cached

Mem: 4050700 411744 3638956 0 8348 142724
-/+ buffers/cache: 260672 3790028
Swap: 6072564 52980 6019584

The above is fine. The below isn’t. Don’t wait for free to hit zero – it won’t.

$ free
total used free shared buffers cached

Mem: 4050700 4021984 28716 0 184 145536
-/+ buffers/cache: 3876264 174436
Swap: 6072564 509192 5563372
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Page sizes

A page is the smallest unit of memory allocation from OS to process, and
the smallest unit which can be paged to disk. Large page sizes result in
wasted memory from allocations being rounded up, longer disk page in and
out times, and a coarser granularity on which unused areas of memory can be
detected and paged out to disk. Small page sizes lead to more TLB misses, as
the virtual address space ‘covered’ by the TLB is the number of TLB entries
multiplied by the page size.

Large-scale scientific codes which allocate hundreds of MB of memory
benefit from much larger page sizes than a mere 4KB. However, a typical
UNIX system has several dozen small processes running on it which would
not benefit from a page size of a few MB.

Intel’s processors do support 2MB pages, but support in Linux is
unimpressive prior to 2.6.38. Support from Solaris for the page sizes offered
by the (ancient) UltraSPARC III (8K, 64K, 512K and 4MB) is much better.
DEC’s Alpha solves this issue in another fashion, by allowing one TLB entry to refer to one, eight, 64 or 512 consecutive pages, thus
effectively increasing the page size.
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Large Pages in Linux

From kernel 2.6.38, Linux will use large pages (2MB) by default when it can.
This reduces TLB misses when jumping randomly over large arrays.
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The disadvantage is that sometimes fragmentation in physical memory will
prevent Linux from using (as many) large pages. This will make code run
slower, and the poor programmer will have no idea what has happened.
This graph can be compared with that on page 133, noting that here a random access pattern is used, the y axis is not logarithmic, the
processor is an Intel Sandy Bridge, and the x axis is extended another factor of 64.
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Expectations

The Sandy Bridge CPU used to generate that graph has a 32KB L1 cache, a
256KB L2, and a 8MB L3. If one assumes that the access times are 1.55ns,
3.9ns, 9.5ns for those, and for main memory 72.5ns, then the line for 2MB
pages can be reproduced remarkably accurately. (E.g. at 32MB assume one
quarter of accesses are lucky and are cached in L3 (9.5ns), the rest are main
memory (72.5ns), so expect 56.7ns. Measured 53.4ns.)

With 4KB pages, the latency starts to increase again beyond about 512MB.
The cause is the last level of the page table being increasingly likely to have
been evicted from the last level of cache by the random access on the data
array. If the TLB miss requires a reference to a part of the page table in main
memory, it must take at least 72ns. This is probably happening about half of
the time for the final data point (4GB).

This graph shows very clearly that ‘toy’ computers hate big problems:
accessing large datasets can be much slower than accessing smaller ones,
although the future is looking (slightly) brighter.
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Caches and Virtual Addresses

Suppose we have a two-way associative 2MB cache. This means that we can
cache any contiguous 2MB region of physical memory, and any two physical
addresses which are identical in their last 20 bits.

Programs works on virtual addresses. The mapping from virtual to
physical preserves the last 12 bits (assuming 4KB pages), but is otherwise
unpredictable. A 2MB region of virtual address space will be completely
cacheable only for some mappings. If one is really unlucky, a mere 12KB
region of virtual address space will map to three physical pages whose last
20 bits are all identical. Then this cannot be cached. A random virtual to
physical mapping would make caching all of a 2MB region very unlikely.

Good OSes do magic (page colouring) which reduces, or eliminates, this
problem. This is particularly important if a CPU’s L1 cache is larger than
its associativity multiplied by the OS’s page size (DEC Alpha, AMD Athlon
/ Opteron). When the problem is not eliminated, one sees variations in
runtimes as a program is run repeatedly (and the virtual to physical mapping
changes). One also notices that the expected sharp steps in performance as
arrays grow larger than caches are slurred.
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Segments

A program uses memory for many different things. For instance:

• The code itself
• Shared libraries
• Statically allocated uninitialised data
• Statically allocated initialised data
• Dynamically allocated data
• Temporary storage of arguments to function calls and of local variables

These areas have different requirements.
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Segments
Text

Executable program code, including code from statically-linked libraries.
Sometimes constant data ends up here, for this segment is read-only.

Data

Initialised data (numeric and string), from program and statically-linked
libraries.

BSS

Uninitialised data of fixed size. Unlike the data segment, this will not form
part of the executable file. Unlike the heap, the segment is of fixed size.

heap

Area from which malloc() / allocate() gain memory.

stack

Area for local temporary variables in recursive functions, function return
addresses, and arguments passed to functions.
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A Linux Memory Map

rw−

rw−

rw−

r−x

rw−

Access

(128MB)

Growable

Growable

(3GB)

Growable

kernel
0xffff ffff

0xc000 0000

stack

0x0000 0000
reserved

text

data
bss

heap

0x0804 8000

free

free
0xb800 0000

mmap

This is roughly the layout used by Linux 2.6 on 32 bit machines, and not to scale.

The mmap region deals with shared libraries and large objects allocated via malloc, whereas smaller malloced objects are placed
on the heap in the usual fashion. Earlier versions grew the mmap region upwards from about 1GB (0x4000 0000).

Note the area around zero is reserved. This is so that null pointer dereferencing will fail: ask a C programmer why this is important.
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What Went Where?

Determining to which of the above data segments a piece of data has been
assigned can be difficult. One would strongly expect C’s malloc and F90’s
allocate to reserve space on the heap. Likewise small local variables tend
to end up on the stack.

Large local variables really ought not go on the stack: it is optimised for
the low-overhead allocation and deletion needed for dealing with lots of
small things, but performs badly when a large object lands on it. However
compilers sometimes get it wrong.

UNIX limits the size of the stack segment and the heap, which it ‘helpfully’
calls ‘data’ at this point. See the ‘ulimit’ command ([ba]sh).

Because ulimit is an internal shell command, it is documented in the shell man pages (e.g. ‘man bash’), and does not have its
own man page.
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Sharing

If multiple copies of the same program or library are required in memory,
it would be wasteful to store multiple identical copies of their unmodifiable
read-only pages. Hence many OSes, including UNIX, keep just one copy
in memory, and have many virtual addresses refering to the same physical
address. A count is kept, to avoid freeing the physical memory until no
process is using it any more!

UNIX does this for shared libraries and for executables. Thus the memory
required to run three copies of Firefox is less than three times the memory
required to run one, even if the three are being run by different users.

Two programs are considered identical by UNIX if they are on the same device and have the same inode. See elsewhere for a
definition of an inode.

If an area of memory is shared, the ps command apportions it appropriately when reporting the RSS size. If the whole libc is being
shared by ten processes, each gets merely 10% accounted to it.
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mmap

It has been shown that the OS can move data from physical memory to disk,
and transparently move it back as needed. However, there is also an interface
for doing this explicitly. The mmap system call requests that the kernel set up
some page tables so that a region of virtual address space is mapped onto a
particular file. Thereafter reads and writes to that area of ‘memory’ actually
go through to the underlying file.

The reason this is of interest, even to Fortran programmers, is that it is how all
executable files and shared libraries are loaded. It is also how large dynamic
objects, such as the result of large allocate / malloc calls, get allocated.
They get a special form of mmap which has no physical file associated with
it.
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Heap vs mmap

Consider the following code:

a=malloc(1024*1024*1024); b=malloc(1); free(a)

(in the real world one assumes that something else would occur before the
final free).

With a single heap, the heap now has 1GB of free space, followed by a single
byte which is in use. Because the heap is a single contiguous object with just
one moveable end, there is no way of telling the OS that is can reclaim the
unused 1GB. That memory will remain with the program and be available for
its future allocations. The OS does not know that its current contents are no
longer required, so its contents must be preserved, either in physical memory
or in a page file. If the program (erroneously) tries accessing that freed area,
it will succeed.

Had the larger request resulted in a separate object via mmap, then the free
would have told the kernel to discard the memory, and to ensure that any
future erroneous accesses to it result in segfaults.
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Automatically done

Currently by default objects larger than 128KB allocated via malloc are
allocated using mmap, rather than via the heap. The size of allocation
resulting will be rounded up to the next multiple of the page size (4KB). Most
Fortran runtime libraries end up calling malloc in response to allocate.
A few do their own heap management, and only call brk, which is the basic
call to change the size of the heap with no concept of separate objects existing
within the heap.

Fortran 90 has an unpleasant habit of placing large temporary and local
objects on the stack. This can cause problems, and can be tuned with options
such as -heap-arrays (ifort) and -static-data (Open64).

Objects allocated via mmap get placed in a region which lies between the
heap and the stack. On 32 bit machines this can lead to the heap (or stack)
colliding with this region.
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Heap layout

double precision, allocatable :: a(:),b(:),c(:)
allocate (a(300),b(300),c(20000))

In the absence of other allocations, one would expect the heap to contain a
followed by b. This is 600 doubles, 4,800 bytes, so the heap will be rounded
to 8KB (1024 doubles), the next multiple of 4KB. The array c, being over
128KB, will go into a separate object via mmap, and this will be 160KB,
holding 20,480 doubles.

a
b

free heap

c

spare space

heap,
8KB

160KB

object,
mmapped

to scale!
Diagram not

bss
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More segfaults

So attempts to access elements of c between one and 20,480 will work, and
for a indices between one and 300 will find a, between 301 and 600 will
find b, and 601 and 1024 will find free space. Only a(1025) will cause
a segfault. For indices less than one, c(0) would be expected to fail, but
b(-100) would succeed, and probably hit a(200). And a(-100) is
probably somewhere in the static data section preceeding the heap, and fine.

Array overwriting can go on for a long while before segfaults occur, unless
a pointer gets overwritten, and then dereferenced, in which case the resulting
address is usually invalid, particularly in a 64 bit world where the proportion
of 64 bit numbers which are valid addresses is low.

Fortran compilers almost always support a -C option for checking array
bounds. It very significantly slows down array accesses – use it for
debugging, not real work! The -g option increases the chance that line
numbers get reported, but compilers differ in how much information does
get reported.
C programmers using malloc() are harder to help. But they may wish to ask Google about Electric Fence.
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Theory in Practice

$ cat test.f90
double precision, allocatable :: a(:),b(:),c(:)

allocate (a(300),b(300),c(20000))
a=0
b(-100)=5

write(*,*)’Maximum value in a is ’,maxval(a), &
’ at location ’,maxloc(a)

end

$ ifort test.f90 ; ./a.out
Maximum value in a is 5.00000000000000 at location 202

$ f95 test.f90 ; ./a.out
Maximum value in a is 5.0 at location 204

$ gfortran test.f90 ; ./a.out
Maximum value in a is 5.0000000000000000 at location 202

$ openf90 test.f90 ; ./a.out
Maximum value in a is 0.E+0 at location 1
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-C
$ ifort -C -g test.f90 ; ./a.out
forrtl: severe (408): fort: (3): Subscript #1 of the array B
has value -100 which is less than the lower bound of 1

$ f95 -C -g test.f90 ; ./a.out

****** FORTRAN RUN-TIME SYSTEM ******
Subscript out of range. Location: line 5 column 3 of ’test.f90’
Subscript number 1 has value -100 in array ’B’
Aborted

$ gfortran -C -g test.f90 ; ./a.out
Maximum value in a is 5.0000000000000000 at location 202

$ gfortran -fcheck=bounds -g test.f90 ; ./a.out
At line 5 of file test.f90
Fortran runtime error: Index ’-100’ of dimension 1 of array ’b’
below lower bound of 1

$ openf90 -C -g test.f90 ; ./a.out
lib-4964 : WARNING

Subscript is out of range for dimension 1 for array
’B’ at line 5 in file ’test.f90’,
diagnosed in routine ’__f90_bounds_check’.

Maximum value in a is 0.E+0 at location 1
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Disclaimer

By the time you see this, it is unlikely that any of the above examples is with
the current version of the compiler used. These examples are intended to
demonstrate that different compilers are different. That is why I have quite a
collection of them!

ifort: Intel’s compiler, v 11.1
f95: Sun’s compiler, Solaris Studio 12.2
gfortran: Gnu’s compiler, v 4.5
openf90: Open64 compiler, v 4.2.4

Four compilers. Only two managed to report line number, and which array
bound was exceeded, and the value of the errant index.
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The Stack Layout

Address Contents Frame Owner

. . . calling
2nd argument function

%ebp+8 1st argument
%ebp+4 return address
%ebp previous %ebp

local current
variables function

etc.

%esp end of stack

The stack grows downwards, and is divided into frames, each frame
belonging to a function which is part of the current call tree. Two registers
are devoted to keeping it in order.
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Memory Maps in Action

Under Linux, one simply needs to examine /proc/[pid]/maps using
less to see a snapshot of the memory map for any process one owns. It also
clearly lists shared libraries in use, and some of the open files. Unfortunately
it lists things upside-down compared to our pictures above.

The example on the next page clearly shows a program with the bottom four
segments being text, data, bss and heap, of which text and bss are read-only.
In this case mmaped objects are growing downwards from f776 c000,
starting with shared libraries, and then including large malloced objects.

The example was from a 32 bit program running on 64 bit hardware and
OS. In this case the kernel does not need to reserve such a large amount
of space for itself, hence the stack is able to start at 0xfffb 9000 not
0xc000 0000, and the start of the mmap region also moves up by almost
1GB.
Files in /proc are not real files, in that they are not physically present on any disk drive. Rather attempts to read from these ‘files’
are interpretted by the OS as requests for information about processes or other aspects of the system.

The machine used here does not set read and execute attributes separately – any readable page is executable.
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The Small Print
$ tac /proc/20777/maps
ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
fff6e000-fffb9000 rwxp 00000000 00:00 0 [stack]
f776b000-f776c000 rwxp 0001f000 08:01 435109 /lib/ld-2.11.2.so
f776a000-f776b000 r-xp 0001e000 08:01 435109 /lib/ld-2.11.2.so
f7769000-f776a000 rwxp 00000000 00:00 0
f774b000-f7769000 r-xp 00000000 08:01 435109 /lib/ld-2.11.2.so
f7744000-f774b000 rwxp 00000000 00:00 0
f773e000-f7744000 rwxp 00075000 00:13 26596314 /opt/intel/11.1-059/lib/ia32/libguide.so
f76c8000-f773e000 r-xp 00000000 00:13 26596314 /opt/intel/11.1-059/lib/ia32/libguide.so
f76a7000-f76a9000 rwxp 00000000 00:00 0
f76a6000-f76a7000 rwxp 00017000 08:01 435034 /lib/libpthread-2.11.2.so
f76a5000-f76a6000 r-xp 00016000 08:01 435034 /lib/libpthread-2.11.2.so
f768e000-f76a5000 r-xp 00000000 08:01 435034 /lib/libpthread-2.11.2.so
f768d000-f768e000 rwxp 00028000 08:01 435136 /lib/libm-2.11.2.so
f768c000-f768d000 r-xp 00027000 08:01 435136 /lib/libm-2.11.2.so
f7664000-f768c000 r-xp 00000000 08:01 435136 /lib/libm-2.11.2.so
f7661000-f7664000 rwxp 00000000 00:00 0
f7660000-f7661000 rwxp 00166000 08:01 435035 /lib/libc-2.11.2.so
f765e000-f7660000 r-xp 00164000 08:01 435035 /lib/libc-2.11.2.so
f765d000-f765e000 ---p 00164000 08:01 435035 /lib/libc-2.11.2.so
f74f9000-f765d000 r-xp 00000000 08:01 435035 /lib/libc-2.11.2.so
f74d4000-f74d5000 rwxp 00000000 00:00 0
f6fac000-f728a000 rwxp 00000000 00:00 0
f6cec000-f6df4000 rwxp 00000000 00:00 0
f6c6b000-f6c7b000 rwxp 00000000 00:00 0
f6c6a000-f6c6b000 ---p 00000000 00:00 0
f6913000-f6b13000 rwxp 00000000 00:00 0
f6912000-f6913000 ---p 00000000 00:00 0
f6775000-f6912000 rwxp 00000000 00:00 0
097ea000-0ab03000 rwxp 00000000 00:00 0 [heap]
0975c000-097ea000 rwxp 01713000 08:06 9319119 /scratch/castep
0975b000-0975c000 r-xp 01712000 08:06 9319119 /scratch/castep
08048000-0975b000 r-xp 00000000 08:06 9319119 /scratch/castep
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The Madness of C

#include<stdio.h>
#include<stdlib.h>

void foo(int *a, int *b);

int main(void){
int *a,*b;

a=malloc(sizeof(int));
b=malloc(sizeof(int));

*a=2;*b=3;

printf("The function main starts at address %.8p\n",main);
printf("The function foo starts at address %.8p\n",foo);

printf("Before call:\n\n");
printf("a is a pointer. It is stored at address %.8p\n",&a);
printf(" It points to address %.8p\n",a);
printf(" It points to the value %d\n",*a);
printf("b is a pointer. It is stored at address %.8p\n",&b);
printf(" It points to address %.8p\n",b);
printf(" It points to the value %d\n",*b);
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foo(a,b);

printf("\nAfter call:\n\n");
printf(" a points to the value %d\n",*a);
printf(" b points to the value %d\n",*b);

return 0;
}

void foo(int *c, int *d){

printf("\nIn function:\n\n");

printf("Our return address is %.8p\n\n",*(&c-1));

printf("c is a pointer. It is stored at address %.8p\n",&c);
printf(" It points to address %.8p\n",c);
printf(" It points to the value %d\n",*c);
printf("d is a pointer. It is stored at address %.8p\n",&d);
printf(" It points to address %.8p\n",d);
printf(" It points to the value %d\n",*d);

*c=5;

*(*(&c+1))=6;
}
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The Results of Madness
The function main starts at address 0x08048484
The function foo starts at address 0x080485ce
Before call:

a is a pointer. It is stored at address 0xbfdf8dac
It points to address 0x0804b008
It points to the value 2

b is a pointer. It is stored at address 0xbfdf8da8
It points to address 0x0804b018
It points to the value 3

In function:

Our return address is 0x0804858d

c is a pointer. It is stored at address 0xbfdf8d90
It points to address 0x0804b008
It points to the value 2

d is a pointer. It is stored at address 0xbfdf8d94
It points to address 0x0804b018
It points to the value 3

After call:

a points to the value 5
b points to the value 6
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The Explanation

0xbfdf ffff approximate start of stack
....

0xbfbf 8da8 local variables in main()
....

0xbfdf 8d94 second argument to function foo()
0xbfdf 8d90 first argument
0xbfdf 8d8c return address

....
0x0fdf 8d?? end of stack

0x0804 b020 end of heap
0x0804 b018 the value of b is stored here
0x0804 b008 the value of a is stored here
0x0804 b000 start of heap

0x0804 85ce start of foo() in text segment
0x0804 858d point at which main() calls foo()
0x0804 8484 start of main() in text segment

And if you note nothing else, note that the function foo managed to manipulate its second argument using
merely its first argument.

(This example assumes a 32-bit world for simplicity.)
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Hello: My First Program
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Hello, World

The idea of a first example program being one to print the text “hello,
world” is mainly due to the first example in Kernighan and Ritchie’s book
“The C Programming Language.” (Kernighan and Ritchie invented C, with
most of the work being done by 1973. Before C was standardised by a
proper standards’ body (ANSI, in 1989), their book (published 1978) was
the definitive description of the language.)

This section considers many ways of writing such a program, and, so that it
is as clear as possible what is really happening, most of the examples are in
assembler. The first does not even make use of the operating system to do
more than act as a program loader.

!!WARNING!! Some of the examples in this section work only on very
specific OS versions, although the concepts are much more general. All the
Linux examples assume 32 bit Intel Linux, not 64 bit.

165



Direct Hardware Access

On an IBM PC, the default text video mode is 80 columns by 25 lines. The
video memory is mapped starting at address 0xB8000 (top left of screen),
with alternate bytes being the ASCII(-ish) representation of the character,
and an attribute byte which specifies the colour.

0 1 3 4 52 6

H e l l

colour information for preceeding letter

As the screen usually scrolls by one line immediately after a command
finishes, we shall print the string on the second line, so starting 160 bytes
into the video memory.
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DOS Memory

DOS runs on 16 bit computers, so addresses are 16 bits in size, and only
64KB of memory can be addressed. As this was ridiculous, even in the early
1980s, it uses a trick of combining two registers, a segment register and an
offset register, in order to construct an address. The physical address is given
by 16× segment value + offset, allowing addresses of up to 1MB (20 bits).

One would say that this is an historical irrelevance if it were not for the fact
that all Intel’s 32 bit processors from the Pentium Pro onwards use something
called PAE (Physical Address Extension) to allow them to break the 4GB
barrier of 32 bit addressing and address up to 64GB of memory. This uses a
similar sort of segment plus offset trick.

PAE is supported by the 32 bit versions of Linux, MacOS X and some
versions of Windows Server 2000 and 2003.
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DOS .COM files

The simplest executable file format is the DOS .COM file. Its contents are
simply loaded into a segment at an offset of 0x100 within that segment, all
segment registers are pointed to that segment, and the instruction pointer is
set to address 0x100 to commence execution.

So a .COM file contains no header information, must fit within a 64KB
segment, and is always loaded at the same address.
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Hello, World (1)

section .text
org 0x100 void main(){

int cx;
mov ax,0xB800 char *di, *si;
mov es,ax
mov di,160 di=(char*)(0xb8000+160);

lea si,[string] si="Hello, World";
mov cx,12 cx=12;

next_ch: movsb do { *(di++)=*(si++);
inc di di++;
loop next_ch cx--;} while (cx>0);

ret }

string db "Hello, World"
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Hello, PC World (1)

Tell the assember that this is the text segment, and it starts at 0x100.

The address we wish to write the string to is 0xB800:160 – set this up in es:di.

Point si at the start of our string, and put the number of characters in cx.

The movsb instruction is a horrible CISCy thing. It reads a byte from ds:si, writes it to
es:di, and adds one to both si and di.

We need to skip the attribute bytes in the video memory, so di is incremented again.

Finally loop is another CISCy thing. It decrements cx, and jumps to the label given if cx
is not zero.
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Hello, PC World(2)

The above can be assembled (the syntax is NASM’s) to give a remarkably
short .COM file: just 32 bytes.

A disassembler interprets the resulting file as follows

D:\MJR\ASM\NASM>debug hello1.com
-u
0C80:0100 B800B8 MOV AX,B800
0C80:0103 8EC0 MOV ES,AX
0C80:0105 BFA000 MOV DI,00A0
0C80:0108 8D361401 LEA SI,[0114]
0C80:010C B90C00 MOV CX,000C
0C80:010F A4 MOVSB
0C80:0110 47 INC DI
0C80:0111 E2FC LOOP 010F
0C80:0113 C3 RET
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Hello, PC World(3)

The .COM file has been loaded at into segment number 0x0c80 at the
expected offset of 0x100.

Note the variable instruction lengths, one to four bytes here, and the backward
(little-endian) nature of the storage of immediate data: A000 for 00A0 (160),
1401 for 0114, 0C00 for 000C (12), etc. The reference to 0114 is to the string
“Hello, World” which follows the executable instructions immediately.

In the loop instruction, the jump is −4 bytes, as the next instruction will be
10F (again) not 113. Converting −4 to two’s complement, one gets FC. Label
names have been lost – there is no occurance of ‘next ch’ or ‘string’ in the
.COM file.
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Calling DOS

The above code has several disadvantages. It works in just one video mode.
It always writes at the same location on the screen, regardless of what was
there. It requires precise knowledge of the hardware. Its output does not
obey the normal redirections (’>’ and ’|’).

DOS provides a function for writing a string to the terminal, which works in
whichever video mode is in use, which writes at the current cursor position,
and which does obey redirections. DOS is called via the CPU’s ‘interrupt’
instruction, normally interrupt number 0x21. The arguments to the function
are passed in the CPU’s registers. Most importantly, the ah register specifies
which DOS function one requires.

Function 9 prints a string from the address in dx. The string must be
terminated by a ‘$’.

Function 0x4C exits, returning the contents of al as the exit code.
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Hello, DOS World

section .text
org 0x100

lea dx,[string]
mov ah,9
int 0x21

mov ax,0x4C00
int 0x21

string db "Hello, World$"

Now a mere 26 bytes!
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Hello, DOS World (2)

In the mad world of Intel, the 16 bit ax can be addressed as two halves, ah
being the top half, and al being the bottom half. Thus
mov ax,0x4C00 is equivalent to
mov ah,0x4C; mov al,0.

The ‘h’ and ‘l’ suffices stand for high and low, with ‘x’ being the extended
register.

Of course, in 1985 Intel’s first 32 bit processor appeared, with 32 bit registers
such as eax, of which ax is the bottom half. Now one has 64 bit registers,
such as rax, with eax being the bottom half. . . .

eax
rax

ah al

ax

175



Real Operating Systems: Linux

A real operating system would not allow direct hardware access as used in
the first example above (indeed, in the presence of virtual addressing, the first
example is nonsensical). It would insist on a coding style like the second.

However, like DOS it is called via an interrupt instruction, and again the
required function and its arguments are placed in the CPU registers. Unlike
DOS, the interrupt is always number 0x80.

Being C-based, UNIX tends to have functions similar to some of the C
functions. Two of interest here are write() and exit(). In Linux write
is function number four, and has three arguments: file descriptor, pointer to
data, and length of data to be written.

Linux uses a more structured form for its binary files, called ELF.

(ELF = Enhanced Library Format.)

176

Hello, Linux World

section .text
global _start
_start

mov eax,4 ; write is function 4
mov ebx,1 ; unit 1 is stdout
lea ecx,[msg] ; pointer to message
mov edx,13 ; length of message
int 0x80
mov eax,1 ; exit is function 1
mov ebx,0 ; exit code of zero
int 0x80

msg db "Hello, World",10
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Hello, Linux World (2)

This file can be run (on a 32 bit Linux PC) using:

$ nasm -f elf hello.asm
$ ld hello.o
$ ./a.out
Hello, World

Here ld is not linking, merely adding (more) ELF magic to the object
file. It likes the global symbol start to specify where execution
should commence. Some superfluous information can be removed with the
command strip a.out.

The resulting binary file is 364 bytes long. That it contains more structure
than the DOS .COM file can be revealed by

$ file a.out
a.out: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), statically linked, stripped
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Babel

Those used to the more command AT&T / Gnu assembler syntax will have been surprised
by these examples which are in Intel’s syntax. They would prefer:

.section .text

.global _start
_start:

movl $4,%eax # write is function 4
movl $1,%ebx # unit 1 is stdout
lea msg,%ecx # pointer to message
movl $12,%edx # length of message
int $0x80
movl $1,%eax # exit is function 1
movl $0,%ebx # exit code of zero
int $0x80

msg:
.ascii "Hello World\n"

Note the dollars before constants, %s before register names, the reversal of the order of the
operands, and the change of the comment character. Create a binary with:
as -o hello.o hello.s ; ld hello.o

179



The int in detail

In the DOS example, we chose to call DOS via the conventional int 0x21 call. However,
the DOS ‘kernel’ ran with the same privileges as our own code, and we could have jumped
into it by any route. Executing int 0x21 merely places a return address on the stack, and
jumps to the address given by entry number 0x21 in the interrupt vector table, which, for the
8086, starts at address zero, occupies the first 1K of memory, and is easily read or modified.

In Linux, int 0x80 is rather different. The address it refers to is not modifiable by the
user code, and when it is executed, a flag in the CPU is immediately set to indicate that the
CPU is executing kernel code. When this flag is set, direct hardware access is possible. The
flag gets reset as the execution returns to the original program. Any attempt to execute the
privileged instructions which the kernel uses without this flag set will be denied by the CPU
itself. There is a very clear distinction between ‘kernel space’ and ‘user space’.

The 8086 interrupt table has 256 four-byte (segment then offset) entries.

The IA32 processors have several modes of operation. The default, used by DOS, has no concept of privileged instructions –
everything is always acceptable. The modes which Linux (MacOS X, Windows) use do enforce different privilege levels.
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Using libraries

As a first example of using a library, we shall convert the above Linux code
to call the write() and exit() functions from libc, rather than using
the kernel interface directly.

The most important UNIX library, libc, contains all the (non-maths)
functions required by ANSI C and any extensions supported by the platform,
as well as C wrappers to all kernel calls. Thus some of its functions, such
as strlen(), do not call the kernel at all, some, such as printf() do
considerable work before calling a more basic kernel function and others,
such as write(), are trivial wrappers for kernel functions.

The last category is traditionally documented in section 2 of the manual
pages, whereas the others are in section 3.

Some C functions call kernel functions occasionally, such as malloc(), which needs to provide any amount of memory that the
program requests, but can only request memory from the kernel in multiples of the page size (typically 4K or 8K).

Yes, UNIX has an online manual for C functions. E.g. ‘man 3 printf’ for those who cannot remember ever format specifier.
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Using libraries: 2

Several changes are necessary to our code. The symbols write and exit
need to be declared to the assembler as external – they are not defined in the
code given, and the linker will insert the relevant code.

The routines in libc can be invoked using the call instruction, but they do
not expect their arguments to be in registers, but rather on the stack. The stack
is a downwards-growing area of scratch memory whose next free address is
given by the register esp. An instruction such as push eax puts a copy of
the value in eax on the stack, and subtracts four from esp (as four bytes are
needed to store the value in eax).

The call instruction also uses the stack for storing the return address – the
address to return to after the function exits.
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A Stack of Arguments

Third Argument

Second Argument

First Argument

variables local
function

Stack pointer
on entry to Return Address

Space for

to function

of calling funct
Local variables

called

The stack mixes function return addresses, local variables and arguments in close proximity, with predictable, bad, results. It may
also contain compiler-generated temporary variables.

Here all the arguments were of the same size. Of course double precision numbers, and, on 64 bit machines, pointers, will be twice
the size of a 32 bit integer. The use of the stack for all arguments is inefficient. Sometimes the first few arguments are sent in registers
instead. But of course the library and the calling program must agree about how arguments are transfered!

In practice, all C compilers on Linux agree, and for this, and other, reasons, one can compile different bits of a C program with
different compilers, and everything works. Fortran compilers agree about almost nothing. This is why one needs a separate NAG
(and MKL and MPI and . . . ) library for the Intel, PathScale, Gnu, Portland, Sun, . . . , compiler, and it is very tedious.
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Hello, libc World

.section .text

.extern write

.extern _exit

.global _start
_start:

movl $13,%eax # length of message
push %eax
lea msg,%eax # pointer to message
push %eax
movl $1,%eax # unit 1 is stdout
push %eax
call write # write(fd,*buff,count)
pop %eax # remove the three arguments
pop %eax
pop %eax
mov $0,%eax
push %eax
call _exit # _exit(status)

msg:
.ascii "Hello, World\n"

184

The Linker

The above code can be compiled and linked with

$ as -o hello.libc.o hello.libc.asm
$ ld -static hello.libc.o -lc

The assembler was told that write and exit were external symbols, that
is, symbols used but not defined in the source file.

Linkers join together collections of binary object files resolving such
references. A library is merely a collection of many object files from separate
source files gathered into a single archive file. The library libc.a, which
will contain a superset of those functions required by the ANSI C standard,
on the system used was a 2.5MB archive formed from 1,300 separate .o files.

The linker extracted just those routines required and placed them in the
resulting executable. So the final executable file was 1770 bytes.

Don’t try this at home! A modern libc expects various initialisation routines to be called before it is used, and will simply segfault in
this example.
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Linker and Compiler command lines

The option -lfoo is simply shorthand for ‘look for libfoo.a in all
the directories where library files are expected, included those directories
specified by -L options.’ So specifying -lc here is equivalent to specifiying
/usr/lib/libc.a.

Computers read from left to right.

$ ld -static -lc hello.libc.o

fails reporting undefined references to write and exit. Initially the
linker regards start as its only undefined symbol. In libc.a it found
no definition of start, so included none of that archive. Looking in
hello.lib.c.o it found a definition of start, but gained write and
exit as unresolved symbols. Continuing through the files in the order

given, there are no more left from which to find definitions of these symbols.

Fortunately modern compilers often do work if one specifies libraries before the source files which require them. It means that
well-educated Humans can detect which of their colleagues are less than precise in their approach to their work.
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FIX ME!

It should be clear that none of the sections taken from the library will end
up at any particular address. Their destination will depend on the size of the
user-supplied program, and which other library functions have been included.

The linker performs the task of relocating the code, ‘fixing’ any absolute
addresses within the library code (text and data) as required.

The virtual addresses at which the text, initialised data and uninitialised data
(the fixed-sized segments) will be loaded is fixed at link time.
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Moving to C

A C programmer would probably use the function printf() rather than
write() in a ‘Hello World’ program. A C compiler expects the start of the
code to be a function called main, not a point called start.

In C main is a function returning an integer, and for 32 bit Linux this means
that the return value should be placed in the register eax.

Strings in C are terminated with a null byte (rather than the Fortran / Pascal
practice of storing a separate length, and having no byte as a special end-of-
string marker).
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Hello, mostly C

.section .text

.extern printf

.global main
main:

lea msg,%eax # pointer to message
push %eax
call printf # printf(*buff)
pop %eax # remove one argument
movl $0,%eax
ret # return from function

msg:
.ascii "Hello, World\n"
.byte 0

This needs compiling as

$ as -o hello.c.o hello.C.s
$ gcc -static hello.C.o

And this might even work on a current 32-bit Linux installation.
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gcc vs ld

This was not linked with ld, but with gcc. What is the difference?

Firstly gcc assumes a -lc automatically.

Secondly, to cope with the fact that a C programmer expects the starting point
to be an integer function called main (taking two or three arguments, which
we are ignoring), and UNIX expects the starting point to be called start,
gcc includes a tiny object file which has an entry point called start and
itself calls main. This file is called crt1.o by gcc.

In practice gcc includes a few other tiny object files, and sometimes the odd
library too. And, indeed, crt1.o actually calls libc start main so
that libc can do any initialisation it wishes, and it then calls main.

The days when one could call ld directly to link are probably over for those
who wish to remain sane.

Of course, had gcc been offered a file ending .c rather than .o, it would have compiled it first and passed the resulting .o file to
the linker.
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Bloat

The problem with our gcc-linked program is that it is 2.6MB (on a machine
with a 15MB libc.a). Even a completely null program is this length.

The reason people have ceased caring about such bloat is that executables
today usually perform dynamic linking (or runtime linking). The linker
merely places in the executable the names of the libraries which will be
needed at runtime, and checks that they do resolve all unresolved symbols.
The actual linking process occurs every time the program is run.

Dynamic linking is the default. The -static options above changed back
to the older style of linking.

Unfortunately one can not use the same library for both static and dynamic
linking. So every library appears twice. Once, as a .a file for static linking
(and only needed to support compiling in conjunction with static linking),
and once as a .so file (shared object) which is needed at both compile time
and run time for dynamic executables.
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Dynamic or Static?

$ gcc -static hello.C.o

produces a 2.6MB executable, whereas

$ gcc hello.C.o

produces a 9.7KB executable. One can tell which libraries are being used at
run-time by typing

$ ldd ./a.out
linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb76ec000)
/lib/ld-linux.so.2 (0xb786d000)

(The first and the last of the above are needed by every dynamic executable
running on Linux.)
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Libraries and Paths

At compile time, the linker searches a set of default directories for libraries,
probably
/lib, /usr/lib, and maybe /usr/local/lib
but maybe with lib replaced by lib64. At run-time the dynamic linker
searches a set of directories which is probably set to be the same.

The linker option ‘-L’ prefixes directories to the standard search path at
compile time. The linker option ‘-rpath’ does the same for the run-time
linkage, storing the extra path in the executable. The environment variable
LD LIBRARY PATH, if set, is also used at run-time for finding libraries.

So, if linking against a library which is in an unusual place, there are three choices:

1/ Make sure you link against a static library
2/ If the library is shared, and unlikely to move, use -L and -rpath.
3/ If the library is likely to move (e.g. you might try giving a bundle of files to a friend), then LD LIBRARY PATH may be needed.

(The rules for shared libraries which require additional shared libraries which were not specified at compile time are different and
confusing. Once one has worked out which libraries they will require, specifying them at compile time solves all problems.)
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Dynamic Advantages

If each of the 2,000 executables residing in /usr/bin needed to be just
2MB bigger, the disk space requirement would be annoying. However, X11
programs tend to be dynamically linked against tens of MB of libraries, so
the increase could be more dramatic.

Also significant is the gain in physically memory use. If two programs use
the same dynamic library, it is loaded just once into physical memory, even
if different users are executing it. If they are statically linked, the kernel has
no way of telling which parts of the executables are common, and two copies
are needed in physical memory.

If a bug is fixed in a dynamic library, any program using it will get the new
version next time it is run, with no need to relink or recompile.
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Dynamic Disadvantages

Programs are no longer stand-alone binary blobs, but need a host of libraries,
of the correct version, on the machine on which they are run. Users have
some control over this via LD LIBRARY PATH.

Beware that LD LIBRARY PATH is searched first every time any dynamic
executable is run. Point this at an NFS-mounted directory, and if there is any
problem on that server even simple commands such as ls on a local directory
will take forever, as ls is a dynamic executable, so will attempt to use the
target of LD LIBRARY PATH for finding its libraries before looking at the
standard system libraries.

If a bug is introduced in a dynamic library, programs using it will get the new
version next time it is run, and programs which used to work cease working.
So also the same program can give different answers on different computers.

If one links against a library unnecessarily (no symbols from that library were
actually required), its presence is still required at run-time. So don’t link
everything against everything just in case. Only Gnomes do that.

There is a (very) slight and often overstated overhead on every function call.
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Not C

There are two approaches for compilers of non-C languages. One could
call the kernel directly from some sort of libc equivalent designed for the
language in question. This is tedious compared to having a language-specific
library which, rather than calling the kernel, uses libc for access to kernel
functions.

So most Fortran compilers have a Fortran library, often called libf, which
supplies those functions which a Fortran programmer expects, and, when
kernel assistance is required (e.g. for write and open, but not for sqrt or
sin) calls libc.
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Avoiding Collisions

If one is linking against libc, one must avoid using the name of any C
function in one’s code. This is fine in C, but it is unreasonable to expect
Fortran programmers to avoid using names such as rand, abort, system,
qsort etc. because C got there first.

The solution used by most Fortran compilers is to append an underscore to all
external names. No external symbol in the C library ends in an underscore,
so collisions are avoided. Calling functions in libc directly from Fortran
becomes impossible, as any attempt to write

call qsort(...)

will look for a routine called qsort . However, only the very simplistic
would think that they had a hope of working out the syntax to get Fortran to
pass the four arguments which qsort required: a pointer to an array, two
size t objects, and a pointer to a function.

197



Overloading

Neither the C language nor ld permit function overloading, that is, functions
behaving differently depending on the number and type of their arguments.
C++ and Fortran 90 do. When a C++ programmer writes

int add(int a, int b);
double add(double a, double b);

void dummy(int x, double y){

*x=add(x,x);

*y=add(y,y);
}

the linker needs to see three distinct functions. With C++ on Linux these
names are mangled to Z3adddd, Z3addii and Z5dummyid. As
C/C++ identifiers must start with a letter, there is no ambiguity here. A
debugger which understands C++ will demangle the names automatically.
The same situation applies to Fortran 90.

A C++ program calling (or creating) a C function must do so explicitly.

extern "C" void dummy(int x, double y){ ...
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Debugging

Names which are not needed by the dynamic linker are not needed in an
executable. So a static executable does not need to retain any hint of the
variable names or function names which were in the original program. A
dynamic executable does need to retain the names of those functions which it
calls from dynamic libraries, but that is all.

The inclusion of original variable and function names can be extremely
useful when debugging. By default most compilers include function name
information in their code, and some variable names too. If encouraged
with options such as -g, the names of all local variables are included, and
even which source line number gave rise to which instructions (a slightly
ill-defined concept, particularly on high optimisation levels).

Including detailed debugging information can easily double the size of the
executable. It need not slow it down, although -g sometimes implies -O0
to prevent the compiler from optimising variables entirely into registers,
reordering lines, etc.
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Debugging the Stack

An executable with debugging information will contain information about
which address ranges correspond to which of its functions. If a program
crashes and produces a ‘core dump’, that dump contains a snapshot of the
program’s memory and registers at the time the crash occured.

A debugger can examine the dump, work out what function was active when
the dump happened (from the value of the instruction pointer register), and,
making use of the extra ‘base pointer’ register, it can walk backwards through
the stack to find the complete call tree until it reaches the initial main()’
function.

This works perfectly, provided the stack is not corrupted. However, programs
often crash precisely because they have suffered from variables over-writing
each other, at which point the vulnerable structure of ‘frames’ on the stack
will be destroyed, and the debugger will have no clue where it is.

Really bad debuggers then crash themselves. In the worse cases, they produce core dumps which over-write the one which you were
attempting to analyse. Yes, such lunacy has persisted into the 21st century.
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Compilers & Optimisation
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Optimisation

Optimisation is the process of producing a machine code representation of a
program which will run as fast as possible. It is a job shared by the compiler
and programmer.

The compiler uses the sort of highly artificial intelligence that programs have.
This involves following simple rules without getting bored halfway through.

The human will be bored before he starts to program, and will never have
followed a rule in his life. However, it is he who has the Creative Spirit.

This section discussed some of the techniques and terminology used.
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Loops

Loops are the only things worth optimising. A code sequence which is
executed just once will not take as long to run as it took to write. A loop,
which may be executed many, many millions of times, is rather different.

do i=1,n
x(i)=2*pi*i/k1
y(i)=2*pi*i/k2

enddo

Is the simple example we will consider first, and Fortran will be used
to demonstrate the sort of transforms the compiler will make during the
translation to machine code.
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Simple and automatic

CSE

do i=1,n
t1=2*pi*i
x(i)=t1/k1
y(i)=t1/k2

enddo

Common Subexpression Elimination. Rely on the compiler to do this.

Invariant removal

t2=2*pi
do i=1,n
t1=t2*i
x(i)=t1/k1
y(i)=t1/k2

enddo

Rely on the compiler to do this.
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Division to multiplication

t2=2*pi
t3=1/k1 t1=2*pi/k1 t1=2*pi/k1
t4=1/k2 t2=2*pi/k2 t2=2*pi/k2
do i=1,n do i=1,n do i=1,n

t1=t2*i t=real(i,kind(1d0))
x(i)=t1*t3 x(i)=i*t1 x(i)=t*t1
y(i)=t1*t4 y(i)=i*t2 y(i)=t*t2

enddo enddo enddo

From left to right, increasingly optimised versions of the loop after the elimination of the
division.

The compiler shouldn’t default to this, as it breaks the IEEE standard subtly. However, there
will be a compiler flag to make this happen: find it and use it!

Conversion of x**2 to x*x will be automatic.

Remember multiplication is many times faster than division, and many many times faster than logs and exponentiation.

Some compilers now do this by default, defaulting to breaking IEEE standards for arithmetic. I prefered the more Conservative world
in which I spent my youth.
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Another example

y=0
do i=1,n
y=y+x(i)*x(i)

enddo

As machine code has no real concept of a loop, this will need converting to a
form such as

y=0
i=1

1 y=y+x(i)*x(i)
i=i+1
if (i<n) goto 1

At first glance the loop had one fp add, one fp multiply, and one fp load. It
also had one integer add, one integer comparison and one conditional branch.
Unless the processor supports speculative loads, the loading of x(i+1)
cannot start until the comparison completes.
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Unrolling

y=0
do i=1,n-mod(n,2),2
y=y+x(i)*x(i)+x(i+1)*x(i+1)

enddo
if (mod(n,2)==1) y=y+x(n)*x(n)

This now looks like

y=0
i=1
n2=n-mod(n,2)

1 y=y+x(i)*x(i)+x(i+1)*x(i+1)
i=i+2
if (i<n2) goto 1

if (mod(n,2)==1) y=y+x(n)*x(n)

The same ‘loop overhead’ of integer control instructions now deals with two
iterations, and a small coda has been added to deal with odd loop counts.
Rely on the compiler to do this.
The compiler will happily unroll to greater depths (2 here, often 4 or 8 in practice), and may be able to predict the optimum depth
better than a human, because it is processor-specific.
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Reduction

This dot-product loop has a nasty data dependency on y: no add may start
until the preceeding add has completed. However, this can be improved:

t1=0 ; t2=0
do i=1,n-mod(n,2),2
t1=t1+x(i)*x(i)
t2=t2+x(i+1)*x(i+1)

enddo
y=t1+t2
if (mod(n,2)==1) y=y+x(n)*x(n)

There are no data dependencies between t1 and t2. Again, rely on the
compiler to do this.
This class of operations are called reduction operations for a 1-D object (a vector) is reduced to a scalar. The same sort of transform
works for the sum or product of the elements, and finding the maximum or minimum element.

Reductions change the order of arithmetic operations and thus change the answer. Conservative compilers won’t do this without
encouragement.

Again one should rely on the compiler to do this transformation, because the number of partial sums needed on a modern processor
for peak performance could be quite large, and you don’t want your source code to become an unreadable lengthy mess which is
optimised for one specific CPU.
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Prefetching

y=0
do i=1,n
prefetch_to_cache x(i+8)
y=y+x(i)*x(i)

enddo

As neither C/C++ nor Fortran has a prefetch instruction in its standard, and
not all CPUs support prefetching, one must rely on the compiler for this.

This works better after unrolling too, as only one prefetch per cache line is required. Determining how far ahead one should prefetch
is awkward and processor-dependent.

It is possible to add directives to one’s code to assist a particular compiler to get prefetching right: something for the desperate only.
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Loop Elimination

do i=1,3
a(i)=0

endo

will be transformed to

a(1)=0
a(2)=0
a(3)=0

Note this can only happen if the iteration count is small and known at compile
time. Replacing ‘3’ by ‘n’ will cause the compiler to unroll the loop about 8
times, and will produce dire performance if n is always 3.
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Loop Fusion

do i=1,n
x(i)=i

enddo
do i=1,n

y(i)=i
enddo

transforms trivially to

do i=1,n
x(i)=i
y(i)=i

enddo

eliminating loop overheads, and increasing scope for CSE. Good compilers
can cope with this, a few cannot.

Assuming x and y are real, the implicit conversion of i from integer to real is a common operation which can be eliminated.
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Strength reduction

double a(2000,2000)

do j=1,n
do i=1,n
a(i,j)=x(i)*y(j)

enddo
enddo

The problem here is finding where the element a(i,j) is in memory. The
answer is 8(i − 1) + 16000(j − 1) bytes beyond the first element of a: a
hideously complicated expression.

Just adding eight to a pointer every time i increments in the inner loop is
much faster, and called strength reduction. Rely on the compiler again.
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Inlining

function norm(x)
double precision norm,x(3)

norm=x(1)**2+x(2)**2+x(3)**2
end function
...
a=norm(b)

transforms to

a=b(1)**2+b(2)**2+b(3)**2

eliminating the overhead of the function call.

Often only possible if the function and caller are compiled simultaneously.
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Instruction scheduling and loop pipelining

A compiler ought to move instructions around, taking care not to change the
resulting effect, in order to make best use of the CPU. It needs to ensure
that latencies are ‘hidden’ by moving instructions with data dependencies on
each other apart, and that as many instructions as possible can be done at
once. This analysis is most simply applied to a single pass through a piece of
code, and is called code scheduling.

With a loop, it is unnecessary to produce a set of instructions which do not
do any processing of iteration n+1 until all instructions relating to iteration
n have finished. It may be better to start iteration n+1 before iteration n has
fully completed. Such an optimisation is called loop pipelining for obvious
reasons..

Sun calls ‘loop pipelining’ ‘modulo scheduling’.

Consider a piece of code containing three integer adds and three fp adds, all independent. Offered in that order to a CPU capable of
one integer and one fp instruction per cycle, this would probably take five cycles to issue. If reordered as 3×(integer add, fp add), it
would take just three cycles.
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Debugging

The above optimisations should really never be done manually. A decade ago
it might have been necessary. Now it has no beneficial effect, and makes code
longer, less readable, and harder for the compiler to optimise!

However, one should be aware of the above optimisations, for they help
to explain why line-numbers and variables reported by debuggers may not
correspond closely to the original code. Compiling with all optimisation off
is occassionally useful when debugging so that the above transformations do
not occur.
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Loop interchange

The conversion of

do i=1,n
do j=1,n
a(i,j)=0

enddo
enddo

to

do j=1,n
do i=1,n
a(i,j)=0

enddo
enddo

is one loop transformation most compilers do get right. There is still no
excuse for writing the first version though.
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The Compilers

f90 -fast -o myprog myprog.f90 func.o -lnag

That is options, source file for main program, other source files, other objects,
libraries. Order does matter (to different extents with different compilers),
and should not be done randomly.

Yet worse, random options whose function one cannot explain and which
were dropped from the compiler’s documentation two major releases ago
should not occur at all!
The compile line is read from left to right. Trying

f90 -o myprog myprog.f90 func.o -lnag -fast

may well apply optimisation to nothing (i.e. to the source files following -fast). Similarly

f90 -o myprog myprog.f90 func.o -lnag -lcxml

will probably use routines from NAG rather than cxml if both contain the same routine. However,

f90 -o myprog -lcxml myprog.f90 func.o -lnag

may also favour NAG over cxml with some compilers.
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Calling Compilers

Almost all UNIX commands never care about file names or extensions.

Compilers are very different. They do care greatly about file names, and they
often use a strict left to right ordering of options.

Extension File type
.a static library
.c C
.cc C++
.cxx C++
.C C++
.f Fixed format Fortran
.F ditto, preprocess with cpp
.f90 Free format Fortran
.F90 ditto, preprocess with cpp
.i C, do not preprocess
.o object file
.s assembler file
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Consistency

It is usual to compile large programs by first compiling each separate source
file to an object file, and then linking them together.

One must ensure that one’s compilation options are consistent. In particular,
one cannot compile some files in 32 bit mode, and others in 64 bit mode. It
may not be possible to mix compilers either: certainly on our Linux machines
one cannot link together things compiled with NAG’s f95 compiler and Intel’s
ifc compiler.
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Common compiler options

-lfoo and -L

-lfoo will look first for a shared library called libfoo.so, then a static library
called libfoo.a, using a particular search path. One can add to the search path
(-L${HOME}/lib or -L.) or specify a library explicitly like an object file, e.g.
/temp/libfoo.a.

-O, -On and -fast

Specify optimisation level, -O0 being no optimisation. What happens at each level is
compiler-dependent, and which level is achieved by not specifying -O at all, or just -O with
no explicit level, is also compiler dependent. -fast requests fairly aggressive optimisation,
including some unsafe but probably safe options, and probably tunes for specific processor
used for the compile.

-c and -S

Compile to object file (-c) or assembler listing (-S): do not link.

-g

Include information about line numbers and variable names in .o file. Allows a debugger to
be more friendly, and may turn off optimisation.
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More compiler options

-C

Attempt to check array bounds on every array reference. Makes code much slower, but can
catch some bugs. Fortran only.

-r8

The -r8 option is entertaining: it promotes all single precision variables, constants and
functions to double precision. Its use is unnecessary: code should not contain single precision
arithmetic unless it was written for a certain Cray compiler which has been dead for years.
So your code should give identical results whether compiled with this flag or not.

Does it? If not, you have a lurking reference to single precision arithmetic.

The rest

Options will exist for tuning for specific processors, warning about unused variables,
reducing (slightly) the accuracy of maths to increase speed, aligning variables, etc. There
is no standard for these.

IBM’s equivalent of -r8 is -qautodbl=dbl4.
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A Compiler’s view: Basic Blocks

A compiler will break source code into basic blocks. A basic block is a
sequence of instructions with a single entry point and a single exit point. If
any instruction in the sequence is executed, all must be executed precisely
once.

Some statements result in multiple basic blocks. An if/then/else instruction
will have (at least) three: the conditional expression, the then clause, and the
else clause. The body of a simple loop may be a single basic block, provided
that it contains no function calls or conditional statements.

Compilers can amuse themselves re-ordering instructions within a basic
block (subject to a little care about dependencies). This may result in a
slightly complicated correspondence between line numbers in the original
source code and instructions in the compiled code. In turn, this makes
debugging more exciting.
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A Compiler’s view: Sequence Points

A sequence point is a point in the source such that the consequences of
everything before it point are completed before anything after it is executed.
In any sane language the end of a statement is a sequence point, so
a=a+2
a=a*3
is unambiguous and equivalent to a=(a+2)*3.

Sequence points usually confuse C programmers, because the increment and
decrement operators ++ and -- do not introduce one, nor do the commas
between function arguments.

j=(++i)*2+(++i);
printf("%d %d %d\n",++i,++i,++i);

could both do anything. With i=3, the first produces 13 with most compilers,
but 15 with Open64 and PathScale. With i=5, the latter produces ‘6 7 8’
with Intel’s C compiler and ‘8 8 8’ with Gnu’s. Neither is wrong, for the
subsequent behaviour of the code is completely undefined according to the C
standard. No compiler tested produced a warning by default for this code.
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And: there’s more

if ((i>0)&&(1000/i)>1) ...

if ((i>0).and.(1000/i>1)) ...

The first line is valid, sane, C. In C && is a sequence point, and logical
operators guarantee to short-circuit. So in the expression

A&&B

A will be evaluated before B, and if A is false, B will not be evaluated at all.

In Fortran none of the above is true, and the code may fail with a division by
zero error if i=0.

A.and.B

makes no guarantees about evaluation order, or in what circumstances both
expressions will be evaluated.
What is true for && in C is also true for || in C.
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Fortran 90

Fortran 90 is the langauge for numerical computation. However, it is not
perfect. In the next few slides are described some of its many imperfections.

Lest those using C, C++ and Mathematica feel they can laugh at this point,
nearly everything that follows applies equally to C++ and Mathematica. The
only (almost completely) safe language is F77, but that has other problems.

Most of F90’s problems stem from its friendly high-level way of handling
arrays and similar objects.

So that I am not accused of bias,

http://www.tcm.phy.cam.ac.uk/˜mjr/C/

discusses why C is even worse. . .
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Slow arrays

a=b+c

Humans do not give such a simple statement a second glace, quite forgetting
that depending what those variables are, that could be an element-wise
addition of arrays of several million elements. If so

do i=1,n
a(i)=b(i)+c(i)

enddo

would confuse humans less, even though the first form is neater. Will both
be treated equally by the compiler? They should be, but many early F90
compilers produce faster code for the second form.
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Big surprises

a=b+c+d

really ought to be treated equivalently to

do i=1,n
a(i)=b(i)+c(i)+d(i)

enddo

if all are vectors. Many early compilers would instead treat this as

temp_allocate(t(n))
do i=1,n

t(i)=b(i)+c(i)
enddo
do i=1,n

a(i)=t(i)+d(i)
enddo

This uses much more memory than the F77 form, and is much slower.
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Sure surprises

a=matmul(b,matmul(c,d))

will be treated as

temp_allocate(t(n,n))
t=matmul(c,d)
a=matmul(b,t)

which uses more memory than one may first expect. And is the matmul
the compiler uses as good as the matmul in the BLAS library? Not if it is
Compaq’s compiler.

I don’t think Compaq is alone in being guilty of this stupidity. See IBM’s -qessl=yes option. . .

Note that even a=matmul(a,b) needs a temporary array. The special case which does not is a=matmul(b,c).
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Slow Traces

allocate (a(16384,16384))

call tr(a(1:nn,1:nn),nn,x)

subroutine tr(m,n,t)
double precision m(n,n),t
integer i,n

t=0
do i=1,n

t=t+m(i,i)
enddo

end subroutine

As n was increased by factors of two from 512 to 16384, the time in seconds
to perform the trace was 3ms, 13ms, 50ms, 0.2s, 0.8s, 2ms.
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Mixed Languages

The tr subroutine was written in perfectly reasonable Fortran 77. The call is
perfectly reasonable Fortran 90. The mix is not reasonable.

The subroutine requires that the array it is passed is a contiguous 2D array.
When n=1024 it requires m(i,j) to be stored at an offset of 8(i − 1) +
8192(j − 1) from m(1,1). The original layout of a in the calling routine of
course has the offsets as 8(i − 1) + 131072(j − 1).

The compiler must create a new, temporary array of the shape which tr
expects, copy the relevant part of a into, and, after the call, copy it back,
because in general a subroutine may alter any elements of any array it is
passed.

Calculating a trace should be order n in time, and take no extra memory. This
poor coding results in order n2 in time, and n2 in memory.
In the special case of n=16384 the compiler notices that the copy is unnecessary, as the original is the correct shape.

Bright people deliberate limit their stack sizes to a few MB (see the output of ulimit -s. Why? As soon as their compiler creates
a large temporary array on the stack, their program will segfault, and they are thus warned that there is a performance issue which
needs addressing.
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Pure F90

use magic

call tr(a(1:nn,1:nn),nn,x)

module magic
contains
subroutine tr(m,n,t)
double precision m(:,:),t
integer i,n

t=0
do i=1,n

t=t+m(i,i)
enddo

end subroutine
end module magic

This is decently fast, and does not make extra copies of the array.

232

Pure F77

allocate (a(16384,16384))

call tr(a,16384,nn,x)

subroutine tr(m,msize,n,t)
double precision m(msize,msize),t
integer i,n,msize

t=0
do i=1,n

t=t+m(i,i)
enddo

end subroutine

That is how a pure F77 programmer would have written this. It is as fast as
the pure F90 method (arguably marginally faster).
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Type trouble

type electron
integer :: spin
real (kind(1d0)), dimension(3) :: x

end type electron

type(electron), allocatable :: e(:)
allocate (e(10000))

Good if one always wants the spin and position of the electron together. However, counting
the net spin of this array

s=0
do i=1,n

s=s+e(i)%spin
enddo

is now slow, as an electron will contain 4 bytes of spin, 4 bytes of padding, and three 8 byte
doubles, so using a separate spin array so that memory access was unit stride again could be
eight times faster.
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What is temp allocate?

Ideally, an allocate and deallocate if the object is ‘large’, and placed
on the stack otherwise, as stack allocation is faster, but stacks are small and
never shrink. Ideally reused as well.

a=matmul(a,b)
c=matmul(c,d)

should look like

temp_allocate(t(n,n))
t=matmul(a,b)
a=t
temp_deallocate(t)
temp_allocate(t(m,m))
t=matmul(c,d)
c=t
temp_deallocate(t)

with further optimisation if m=n. Some early F90 compilers would allocate
all temporaries at the beginning of a subroutine, use each once only, and
deallocate them at the end.
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Precision

complex (kind(1d0)) :: c
real (kind(1d0)) :: a,b,pi
...
pi=3.1415926536
c=cmplx(a,b)

This should read

pi=3.1415926536d0
c=cmplx(a,b,kind(1d0))

for both a constant and the cmplx function default to single precision.
Some compilers automatically correct the above errors.

Note also that π expressed to full double precision is not the above value: either use

real (kind(1d0)) :: pi
pi=4*atan(1d0)

or

real (kind(1d0)), parameter :: pi=3.141592653589793d0

(The latter has the advantage that one cannot accidently change the value of π in the program, the former that it is less likely to be
mistyped.)

c=(0.2d0,0.4d0) is sensible, as (,) produces a complex constant of the same precision as the real constants in the brackets.
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Precision again

real*8 x
real(8) :: y

The first is a ubiquitous F77 extension. The second is a foolish
misunderstanding: some compilers may use a kind value of 8 to represent an
8 byte double precision number, but nothing in the standard says they should
use eight rather than three (as a few do), or anything else.

double precision x
real (kind(1d0)) :: y

is the correct F77 and F90 respectively.

integer, parameter :: dp=kind(1d0)
real (dp) :: y

is a common (and correct) F90 construction.
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Disks & Filing Systems
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A Physical Disk Drive

A single hard disk contains a spindle with multiple platters. Each platter has
two magnetic surfaces, and at least one head ‘flying’ over each surface. The
heads do fly, using aerodynamic effects in a dust-free atmosphere to maintain
a very low altitude. Head crashes (head touching surface) are catastrophic.
There is a special ‘landing zone’ at the edge of the disk where the heads must
settle when the disk stops spinning.

The size of a drive is such that it fits into a standard 31
2

′′ drive bay, which is
just 10cm wide and 1′′ tall for the whole assembly.

Spin speeds were 3,600 rpm in the mid 1980s, and now 7,200 to 15,000 rpm.
Capacity has grown over the same period from typically 20MB to typically
1TB.

Drive bays are 1” tall, or 13
4” tall (half height), or 31

2” tall (full height). Their width is 10cm (called ‘31
2 inch’) or 15cm (‘51

4 inch’),
though the imperial width measurements refer to the size of floppy disk taken by a drive which fits in given width. Laptops use yet
smaller drives.

Although the heads move only radially, the air is dragged into tangential motion by the spinning platters, and in this air stream the
heads fly. It also causes drag and hence power loss, so low power disk drives spin slower.
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Data Storage and Access Times

Data are written in concentric tracks on each platter. Each track is subdivided
into sectors. An individual sector typically records just 512 bytes.

For data to be read, the disk heads have to move into position, and then wait
for the correct piece of disk to rotate past. The head seek time is typically
around 7 ms, and the rotational latency is 3 ms at 10,000 rpm.
In other words, the bandwidth is about 20 times lower than main memory, but the latency is over 30,000 times higher.

sector

track

platter

head

This disk has three platters and six heads. In reality the heads are much smaller than shown above.

A modern (Seagate) 2TB disk has four platters and eight heads. It records 236,000 tracks per inch, and 1,400,000 bits per inch along
the track. The unrecoverable error rate is 1 in 1014 bits, and the maximum data transfer rate is 95MB/s. (When I first gave this slide
in 2004 the figures were 36GB, 13,500 tpi, 260k bpi, raw error rate 1 in 1012 bits, corrected error rate 1 in 1014, transfer rate 15 to
30MB/s.)
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Disk Speeds

The speed of a disk drive is unlikely to improve. Spin speeds cannot increase
without considerable power losses due to atmospheric drag, and evacuating
the drive would be hard, and would prevent the current aerodynamic tricks by
which the heads fly over the platters. Spin speeds for server disks are actually
decreasing in order to save power.

Data density may increase slightly, which will also increase the bandwidth.
Already latencies of 5 to 10ms, and bandwidths of 50 to 100MB/s mean
that the smallest contiguous amount of data one should read from a disk is
somewhere at least 250KB in order to achieve reasonable performance. This
is much larger than the 512 sector size most disks still use, or the 4KB sector
size that most filesystems use (or the 4KB page size that most OSes use).

Assuming a 5ms latency and 100MB/s, then in 15ms one could read three random bytes, or two chunks of 250KB, or one chunk of
1MB.

241



Reading a Whole Disk

The time taken to read the whole of a disk is the time taken to read one track,
multiplied by the number of tracks per surface, multiplied by the number of
surfaces (unless the heads can be used in parallel).

The time taken to read one track is simply the time taken for the disk to rotate
once. So around 5ms to 10ms, and not getting any faster.

The number of tracks is increasing, as the recording density increases. So the
time taken to read the whole disk is increasing.

A 2TB Seagate drive has six recording surfaces, 1,600 kbits inch along a track, 274k tracks/inch. It spins at 5,900 rpm. From this we
can calculate that there are approximately 300,000 tracks (the usable range for the radius is about 1.1 inches). So the whole surface
will take 50 minutes to read. Or 55 minutes after adding the extra 1ms it takes the heads to move from track to track. Reading all six
surfaces would take about 6hr.

The specification also quotes a peak internal data transfer rate of 1900 Mbit/s. That suggests a linear speed of 1,200 inches/s. With
a spin rate of 100 rps, this suggests a track of diameter 3.7 inches. As a ‘3.5 inch’ hard disk drive usually has a platter diameter of
about 3.7 inches, this strongly suggests that the heads are not used in parallel.

(A ‘3.5 inch’ hard disk fits into the hole that a 3.5 inch floppy disk drive requires. The removeable disk of a 3.5 inch floppy disk was
3.5 inches wide, so unsurprisingly the hole is wider, 4 inches.)
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Bad Writing

Writing a single byte to a disk drive is very bad, because it can operate only
on whole sectors. So one must read the sector, wait for the disk to spin a
whole revolution, and write it out again with the one byte changed. Even
assuming that the heads do not need moving, this must take, on average, the
time for 1.5 revolutions. So a typical 7,200rpm disk (60rps) can manage no
more than 40 characters per second when addressed in this fashion.

Hence the OS does much caching of disk accesses, including writes, in an
attempt to collapse multiple small writes into fewer, larger writes. Even the
disk itself will have a few MB of RAM so it can do this trick internally.

Of course one should not power off a computer until all its disk caches have
finished transfering data to permanent magnetic storage.
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File systems: the requirements

First let us consider what a file system needs.

• a concept of a ‘file’ as an ordered set of disk blocks.

• a way of refering to a file by a textual name.

• a way of keeping track of free space on the disk.

• a concept of subdirectories.

There are other things which would be useful too, as shall be discussed.

The data which describes the files is called ‘metadata’, as opposed to the plain
data which the files contain.
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The DOS Filesystem

In an ideal world, the DOS filesystem would have been abandoned. However,
it exists not only as a useful contrast to the UNIX filesystem, but it is
also commonly used on USB memory sticks and on memory cards used in
cameras and smart phones. It has been extended since the original 1980s
design, but patents (may) cover some of the later versions.

We will first consider the original version of the DOS filesystem, for the
extensions are conceptually fairly straight-forward.
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FAT16

The original DOS filesystem is known as FAT16, meaning ‘File Allocation
Table, 16 bit,’ and a prominent feature is the FAT.

The disk is divided into fewer than 216 clusters, each of which is then
identified by a 16 bit number.

The FAT is a table with one 16 bit entry per cluster. If the entry is 0, the
cluster is unused, if 65535, the cluster is the last in a file, and otherwise the
FAT entry contains the cluster number of the next cluster in the file.

The limit of just under 65536 clusters per disk can make clusters quite large leading to poor use of space. On a 1GB partition, the
cluster size would be 16K, leading to an average of 8K wasted per file.

On partitions of under 32MB, the cluster size is 512 bytes, or one block, the smallest possible size.
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Chains

FAT entry number value

0 1
1 2
2 65535
3 0
4 65535
5 8
6 65535
7 0
8 6

Here we see two free clusters (3 and 7) and three files occupying clusters 0,
1 and 2, cluster 4, and clusters 5, 8 and 6. Such sequences of clusters in the
FAT are called ‘chains’.

So the FAT has already given us the concept of a file, but not of a filename.
The metadata in the FAT are so important that DOS stores the FAT twice at the beginning of a disk.
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A directory

Immediately following the two copies of the FAT is the root directory. Like
every other directory, it contains a 32 byte entry per file, with the following
information:

File name (8 bytes)
File extension (3 bytes)
File attributes (1 byte)
Last modified time (4 bytes)
Starting FAT entry (2 bytes)
File size (4 bytes)
Reserved (10 bytes)

The bits in the attribute byte indicate things such as whether the entry is a file
or a subdirectory, whether it is read-only, whether it should be hidden from
directory listings, etc.
The root directory is of fixed length. No other directory is.

Every subdirectory contains at least two entries. One, called ‘..’, which describes its parent directory, and one, called ‘.’, which
describes itself.
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Simple operations

File Deletion
The directory entry has the first byte zeroed, and the corresponding FAT
entries are marked free.

File Creation
An unused directory entry is found and used, and a FAT chain of at least one
block created.

File Renaming
Only the directory entry needs changing.

Appending to a file
The file length in the directory needs modifying, and possibly a new cluster
allocating and the FAT changing, as well as writing the data.

etc.
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Consistency

There are many ways in which a DOS filesystem can become inconsistent. A
consistent one has the following properties:

• The two copies of the FAT are identical
• The FAT contains chains, but no loops.
• Every chain has precisely one directory entry pointing at it.
• Every directory entry points to the beginning of a chain.
• The filesizes in the directory entries are consistent with the corresponding

chain lengths.

The programs chkdsk and scandisk check these consistency issues.

chkdsk = CHecKDiSK

250

Other FATs

FAT32 was recently introduced, and makes the obvious extension to the size
of the FAT. Thus smaller cluster sizes can be used on large disks.

VFAT is a FAT-like filesystem which supports long, mixed case filenames.
It does this by using several of FAT’s directory entries for each file, keeping
a FAT-like one holding a ‘short’ file name, and marking the additional ones
as hidden files taking zero space so that one rarely sees them listed. The
resulting disk is fully usable by a system which supports FAT but not VFAT.
VFAT does have the air of a nasty hack, rather than a well-thought-out
solution.

VFAT uses Unicode not ASCII to store filenames. This permits all sorts of exciting foreign characters, at the expense of using two
bytes per letter, not one.
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The UNIX file system

Every UNIX vendor has one (or more) file systems of his own. However, the
traditional UNIX file system (UFS) has the following features.

The UNIX file system has three types of metadata: the block bitmap, the
index node (inode) and the directory entry.

The block bitmap simply contains one bit for each cluster (block) on the disk,
and marks whether the cluster is free. One can have up to 224 or 232 clusters
typically.

The directory entry is also simple: a variable-length field containing the
name, and a field giving an index into the inode table.

The original UNIX filesystem was even simpler, with fixed-length 16 byte directory entries containing a 14 character name and a two
byte i-node number.

Again every subdirectory contains explicit entries for ‘.’ and ‘..’ giving its own and its parent’s inode number.
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The inode table

The inode table follows the block bitmap at the beginning of the disk. It
is of fixed size, containing a fixed number of fixed-length records (typically
128 bytes each), each describing one file. Each record contains:

File length
File ownership (user and group)
File ‘creation’, modification and last access times
File access permissions
The number of directory entries pointing at this file
A list of the first ten clusters occupied by the file
Three pointers to clusters containing details of further clusters used

Again, the block bitmap, inode table and directory entries must all be
consistent.

The file and group ownership records the numeric user id (typically 32 bits), not the eight character textual user name.

The program fsck checks for consistency. fsck = File System ChecK.
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Large files

Files smaller than 10 blocks have the complete list of blocks used in their
inode. Longer files use an entry which points to a disk block filled with a list
of the next blocks used. If a block number is 4 bytes long, and a block is 1K,
this gives another 256 blocks.

For larger files, the inode has another entry pointing to a block filled with
entries pointing to blocks containing the rest of the list! This adds another
65000 or so blocks.

1

3

5
6
7
8

10

114

2
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to

1035-1546

523-1034

267-522

9

65547-65802

In this example, one would need another level of indirection to support files larger than 64MB. In practice, the block size is probably
4K, and this scheme will therefore work up to 4GB.
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Fast or Slow?

Simply getting a list of files from a directory is fast – the directory needs to
be read, usually the files then get sorted alphabetically, and that is it. With
luck the directory is stored in a very small number of contiguous blocks on
disk.

The output of ls -l, ls -F, or a ‘colour’ ls, is much more complicated.
For each entry in the directory, the corresponding inode must be opened and
read in order to find out information about the file type, length, etc. Chasing a
bunch of inodes, which may be quite widely separated on disk, is slow. Hope
that they are in some cache, and there is no need to search the physical disk!

The traditional directory also becomes inefficient once there are more than a
thousand or so files in a directory – the traditional directory is an unindexed,
variable record length, flat file database, the worse sort. More recent UNIXes
use slightly saner structures, but it is generally bad to attempt to turn a
filesystem into a database with tens of thousands of entries per directory.
If you do think that tens of thousands of files in a directory is a good idea, make sure that you understand that commands such as
‘rm *dat’ will behave oddly if ‘*dat’ expands to more than about 100,000 characters. . .

255



Open, Move, Delete

Opening a file is done by name, and involves a directory look-up to find an
inode number. Once a file is open, the directory entry is irrelevant.

The mv command renames a file, possibly between directories, without
changing its inode number.

Truncating a file to zero length and writing it out again (presumably modified)
does not change its inode number. Deleting it and creating a new file with the
same name does.

Deleting a file which is open does not remove it from disk – the processes
which have it open will be unaware of its deletion, and only when the last
process closes it will it be removed from disk.

If mv is used to move a file between devices, then of course the inode must change, and it is equivalent to cp followed by rm.
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Hard Links

So far we have seen two file types: ordinary files and directories. UNIX also
has two forms of link.

The first, the hard link, is not a new file type at all. One merely has
two directory entries pointing at the same inode. As the inode stores the
information about file length and access times, there are no consistency
problems.
This would not be the case for DOS’s FAT filesystem, in which file length and modification time are stored along with the name in
the directory entry.

The link count in the inode keeps track of how many directory entries point
to that inode, and only when deletion reduces the count to zero are the inode
and data blocks actually freed.

All directory entries pointing at the same inode are equivalent, and must
reside on the same filesystem.
Deletion (the freeing of data blocks) will also not occur if any program has the file open, even if there is no remaining directory entry
pointing to its inode.

Hard links to directories are not permitted, as they would cause the directory to have multiple equivalent parents.
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Hard Link Surprises

If foo and bar are hard links to each other, and hence indistinguishable,
then
mv bar baz
leaves foo and baz as indistinguishable hard links. Similarly truncating
foo and writing new contents into it leaves foo and bar identical.

However, deleting foo and recreating a file with the same name will break
the hard link, and foo and bar will now be completely distinct, as is also
the case after
cp bar baz; rm bar
which leaves foo and baz as independent files with separate inodes.

A compiler should delete and recreate its output file. Then, if its output file (i.e. an executable) is open (i.e. is being run), the run will
continue uninterrupted. If it truncates and rewrites, the running program will suffer modification whilst it runs, and will crash.

An editor should truncate and rewrite, otherwise it will break hard links, which presumably existed for a reason.

A directory has a link count of two plus the number of subdirectories it has. (Consider its own ‘.’ entry, and its subdirectories’ ‘..’
entries.) A directory with a link count of just two has no subdirectories.
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Symbolic links

A symbolic, or soft, link is a new file type. The file simply contains an
indirection, saying ‘don’t look at me, look over there instead.’

tcm30:/usr/sbin> ls -l /usr/sbin/sendmail
lrwxrwxrwx 1 root system 24 Sep 12 1998

sendmail -> /usr/local/exim/bin/exim

References to /usr/sbin/sendmail will be redirected to
/usr/local/exim/bin/exim. The l at the beginning of the
permissions bits indicates that this is a symbolic link. The rest of the
permissions are ignored (the file is not world-writable!).

The file length, 24 bytes, is the number of characters in the filename linked
to. This name is stored as the file ‘data’. The link and the file linked to are
quite distinguishable, and need not be on the same filesystem.
Soft links to directories are permitted. UNIX will check for circular paths in symlinks.

Soft links are usually safer, in that they lead to fewer surprises. However, the UNIX ln command defaults to making hard links, and
one needs to specify ln -s for the soft sort.
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Fragmentation

For optimal speed, a file should be stored in a single set of contiguous blocks.
However, once files start being deleted, the free space on a disk becomes
fragmented, and files subsequently written are in danger of being fragmented
too. The situation tends to get worse as the disk gets fuller.

DOS’s allocation strategy is very poor: it always allocates the first available
free cluster whenever a file needs to grow. It takes no account of which
clusters the file is currently occupying.

UFS has two weapons to control this. Firstly a more intelligent block
allocation algorithm which tries to avoid excessive fragmentation. Secondly,
it always keeps 5% of the blocks free, which also tends to reduce
fragmentation.

These ‘reserved blocks’ can be used by root. It gives the OS the chance to clear up, or at least die gracefully, if a user fills up an
important disk, for the OS can still find free blocks if it wants them.
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Partitioning

One might wish to put several filesystems on the same physical disk. Perhaps
FAT16 and ext2 for a Windows / Linux dual boot computer, or perhaps two
FAT16 filesystems because one has a 4GB disk.

This is done by breaking the disk into partitions. The disk starts with a
partition table, which describes the number of partitions on the disk, and
where they each start and finish. The OS uses a partition as if it were a
complete independent disk, and thus the term ‘logical disk’ is sometimes
used.

Partitions cannot be resized or moved without destroying the filesystem they
contain unless much magic is applied.

If one has a 1GB disk and wishes to run Windows95, one can choose a single partition with a 16K cluster size, or, maybe, two 512MB
partitions each with an 8K cluster size and with the advantage that the FAT for the second half of the disk is (probably) then stored in
the middle of the disk, physically closer to the data it describes. A poor man’s zoning is thus achieved.

The downside occurs when each partition has 20MB free and you wish to write a 30MB file. . .

The partition table usually exists, even if it shows just one partition using the whole disk.
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Inconsistencies

A file system will be consistent before and after a file is deleted, but not
during the deletion: the directory might be changed but the block bitmap not.

And clearly if the OS has a write-behind cache, the data on the disk need not
be the same the data in the cache.

Hence it is important to tell a computer to finish all disk operations and to
send all modified data from its cache to the disk before turning it off. This is
called flushing the cache, or syncing the disks.

(‘Syncing’ abbreviates ‘synchronising’, so is similarly pronounced.)

Any filesystem which records last access times (such as UFS) will be frequently modifying data on disk.

UNIX systems, and some versions of Windows, will detect if they have been turned off without being shutdown properly, and check
their disks for consistency when they are next turned on. If they have been shutdown correctly, they don’t bother.

Though fsck and scandisk can often autorepair a filesystem to a consistent state, it is worth pointing out that consistency and
correctness are different: formatting a disk also reduces its filesystem to a consistent state, but in a slightly unhelpful manner.
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Journalling filesystems

Because checking filesystem consistency is painful on large fileservers – it
can often take over an hour – various filesystems which never need a full
consistency check have been developed.

They all work by keeping a log, or journal, of operations which they are about
to do. Deleting a UNIX file might be broken down as:

write to journal ‘I am about to remove this
directory entry, free this inode, and mark
these clusters as free.’

do the above
remove the journal entry

After a crash, the journal is scanned and those entries which have not been
completed are finished.

A journalling filesystem must flush the journal from cache to disk before attempting the updates described by the journal.

Digital UNIX has AdvFS as a journalled filesystem, Irix has xfs, AIX has jfs, Linux has ext3, and WinNT has NTFS.
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Journal problems

Journalling produces a significant performance penalty, as every write is
turned into two: one to the journal, and one to the real file. For this reason
most journalled filesystems only journal metadata.

Journalling metadata can ensure that the filesystem remains consistent, and
guards against the type of errors which can cause whole directories to vanish.
The contents of files can still be corrupted by crashes.

Journalling data as well as metadata is a serious performance penalty, and
requires a much bigger area for the journal. Many journalling filesystems do
not support data journalling at all.

The final problem with journalling is that hardware errors or bugs in the OS
can still cause a journalled filesystem to become inconsistent. Because the
recovery tools for journalled filesystems are used less frequently, they tend to
be less tested and less effective.

Linux’s ext3 and Solaris’s UFS support journalling and still use the same layout as the older, non-journalled, filesystem they are based
on. Hence the old recovery tools are valid.
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The History of ext

The first version of Linux’s ext filesystem was quickly forgotten, indeed, it
had existed for only about a year before it was superceded by ext2 in 1993.

The ext2 filesystem is pretty much a ‘standard’ UNIX filesystem. It was
extended in 2001 as ext3, which supported journalling. The journal was
stored in a hidden file in such a fashion that an OS which understood ext2,
but not ext3, could use an ext2 volume without any problems (though without
journalling). It also added optional support for storing directories as B-trees,
rather than flat files. An ext3 volume using this feature cannot be mounted
as an ext2 volume, but B-trees are much faster for directories with larger
numbers of files.

In 2008 ext4 was released. This has significant performance improvements,
such as being able to treat a contiguous space of up to 128MB as a single
‘extent’, rather than as 32,768 4KB blocks. However, if extents are used the
volume cannot be mounted as ext3.

Ext4’s party trick is to mark unallocated sections of blocks and inodes. This makes running fsck on a near-empty disk much faster.
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Multiple filesystems

DOS, Windows and MacOS present each filesystem to the user as a separate
‘disk drive.’ With DOS, they are called friendly things like C:, D: and E:,
whereas MacOS pops up icons with configurable textual names.

UNIX does things rather differently. It presents a single directory tree with a
single root directory. Different filesystems are then grafted on to that tree.
On a typical TCM Linux PC, there are two filesystems resident on local
disks: / and /scratch. There are also several remote filesystems including
/u/tcmsf1 (where the home directories reside), /rscratch (centralised
scratch space), and /usr/local/shared (where many applications are
to be found).

The joins between these filesystems are almost invisible to the user, and
programs like ‘mv’ automatically switch between doing a rename if moving
within a filesystem, to a copy then delete if moving between filesystems.

‘df -k .’ will tell you where you really are.
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Mounting filesystems

The process of ‘grafting on’ a filesystem under UNIX, or mounting it,
is always done explicitly (unlike DOS / Windows which find all local
filesystems themselves). If a filesystem is mounted as being modifiable, it
is immediately marked as being ‘dirty.’

Unmounting, which will happen on shutdown or when requested, causes all
cached data referring to that filesystem to be written out, and then the dirty
bit reset. A crash leaves the dirty bit set, and prompts fsck to run.

With traditional UNIXes only root can mount or unmount. Linux allows users
to mount with carefully controlled options.

With CDs, being read-only, it hardly matters, but the eject button will not work until you do. With floppies, being read-write, it does
matter, and the eject button will work even if you don’t. With USB memory sticks, it matters, and there is no eject button.

MacOS automatically mounts under /Volumes, Gnomes automatically mount under /media.
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Multiple programs

What happens when two programs try to manipulate the same file? Chaos,
often.

As an example, consider a password file, and suppose two users change their
entries ‘simultaneously.’ As the entries need not be the same size as before,
the following might happen:

User A reads in password file, changes his entry in his copy in memory,
deletes the old file, and starts writing out the new file.

Before A has finished, user B reads in the password file, changes his entry in
memory, deletes the old, and writes out the new.

It is quite possible that A was part way through writing out the file when
B started reading it in, and that B hit the end of file marker before A had
finished writing out the complete file. Hence B read a truncated version of
the file, changed his entry, and wrote out that truncated version.
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Locking

The above scenario is rather too probable. It is unlikely that one can write out
more than a few 10s of KB before there is a strong chance that your process
will lose its scheduling slot to some other process.

UNIX tacked on the concept of file locking to its filing systems. A ‘lock’ is a
note to the kernel (nothing is recorded on disk) to say that a process requests
exclusive access to a file. It will not be granted if another process has already
locked that file.

Because locking got tacked on later, it is a little unreliable, with two different
interfaces (flock and fcntl), and a very poor reputation when applied to
remote filesystems over NFS.

As the lock is recorded in the kernel, should a process holding a lock die, the
lock is reliably cleared, in the same way that memory is released, etc.

Microsoft, trying to be positive, refers to ‘file sharing’ not ‘file locking.’
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Multiple Appending

What happens when multiple programs open the same file, e.g. a log file, and
later try to append to it?

Suppose two programs try to write ‘Hello from A’ and ‘Hello from B’
respectively.

The output could occur in either order, be interleaved:
Hello frHello from A
om B
or the last one to write might over-write the previous output, and thus one
sees only a single line.

The obvious problem is that the file can grow (or shrink) after program A has opened it, but before it writes to it, without the change
being caused by program A.

This situation is common with parallel computers, when multiple nodes attempt to write to the same file. A set of standards called
‘POSIX’ states that over-writing will not occur when appending, but not all computers obey this part of POSIX.
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File Servers

Filesystems are tolerably fast and reliable when the process accessing them
is running on the same computer that the physical disks are in. There is
one kernel to which the processes send their filesystem-related requests, and
which controls all accesses to the disk drives. Caching reads is particularly
easy, as the kernel knows that nothing apart from itself can change the
contents of the disk. If remote fileservers are involved, this gets complicated.
The kernel on the remote server can cache agressively, but the kernel on the
machine the program is running on cannot.

cache
kernel

process

cache
kernel

process

cache
kernel

Client Client

Server Disk
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Solutions

The clients could abandon all caching, and rely on the server to cache.
However, this introduces a large overhead – the fastest one could hope to
send a packet over a local network and get a response is about 100µs, or
about 105 clock cycles of the CPU.

So in practice the clients do cache, and do not even always check with the
server to see if their cached data is now incorrect. However, the clients dare
not cache writes ever.

This restores half-tolerable performance, at the cost of sometimes showing
inconsistencies.
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Does it Matter

If one is reading and writing large amounts of data which would not have
been cacheable anyway, this is not much of an issue.

The other extreme is writing a small file, reading it in again, and deleting it.
This is almost precisely what a compiler does. (It writes an object file, which
is then read by the linker to produce the executable, and the object file is often
deleted. It may even write an assembler file and then read that in to produce
the object file.)

If this is aimed at a local disk, a good OS will cache so well that the file which
is deleted is never actually written. If a remote disk is involved, the writes
must go across the network, and this will be much slower.

Compiling on a local scratch disk can be much faster than compiling on a
network drive.

On remote drives the difference in performance between ls and ls -l (or
coloured ls) can be quite noticeable.
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Remote Locking

The performance problems on a remote disk are nothing compared to the
locking problems. Recall that locks are taken out be processes, and then
returned preferably explicitly, and otherwise when the file is closed, or when
the process exits for any reason. There is no concept of asking a process
which has a lock whether it really still needs it, or even of requiring it to
demonstrate that it is still alive.

With remote servers this is a disaster. The lock must exist on the server, so
that it effects all clients. But the server has no way of telling when a process
on a remote client exits. It is possible that the remote kernel, or, more likely,
some daemon on the remote client, may tell it, but this cannot be reliable.
In particular, if the client machine’s kernel crashes, then it cannot tell any
remote server that locks are no longer relevant – it is dead.
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Are You There?

Networks are unreliable. They lose individual packets (a minor issue which
most protocols cope with), and sometimes they go down completely for
seconds, minutes, or hours (sometimes because a Human has just unplugged
a cable). A server has no way of telling if a client machine has died, or if
there is a network fault.

Most networked filing systems are quite good at automatically resuming once
the network returns. But locking presents a problem. Can a server ever decide
that a client which appears to have died no longer requires a lock? If the client
has really died, this is fine. If the client is alive, and the network is about to be
restored, there is no mechanism for telling a process that the lock it thought
it had has been rescinded.

Similarly a client cannot tell the difference between a network glitch and a
server rebooting. It expects its locks to be maintained across both events,
especially because it might not have noticed either – network glitches and
server reboots are obvious only if one is actively attempting to use the
network or server.
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Whose Lock is it Anyway

UNIX’s locking mechanisms is particularly deficient. The only way of testing
whether a file is locked is to attempt to lock it yourself. If you succeed, it
wasn’t. There is no standard mechanism for listing all locks in existance, or
even for listing all locks on a given file.

Most UNIXes provide some backdoor for reading the relevant kernel data
structure. This may be accessible to root only. In the case of remote locks,
they will all be owned by one of the server’s local NFS daemons. This makes
tracing things hard. With luck the server’s NFS lock daemon will provide a
mechanism for listing which clients currently have locks. Even then, it will
not actually know the process ID on the remote machine, as all requests will
have been channelled through a single NFS daemon on the remote client.

Daemon – a long-running background process dedicated to some small, specific task.

In Linux locks are usually listed in /proc/locks, which is world-readable.
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Breaking Locks

The safest recipe is probably as follows.

Copy the locked file to a new file in the same directory, resulting in two files
of identical contents, but different inode numbers, only the original being
locked.

Move the new version onto the old. This will be an atomic form of delete
followed by rename. The old name is now associated with the new, unlocked
file. The old file has no name, so no new process can accidentally access it.

Unfortunately the old, locked, file still exists – neither its inode nor its disk
blocks are freed. If it is locked, it must be open by some process. If it is
open, it cannot be removed from the disk merely because another process has
removed its directory entry. Any processes which have it open will write to
the original if they attempt any updates, and such updates will be lost when
the last process closes the file.
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Parallel Computers
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Not Parallel: Multitasking

A single CPU can run only one program at once. Multitasking is an illusion
for the confusion of gullible humans.

The processor runs one program for a timeslice, typically 1 to 20ms, then
switches to another. The shorter the timeslice, the less humans will notice.

When the CPU performs a process switch, it must save to memory all its
registers and reload the set relevant to the new process. This will take
hundreds of clock cycles. The restarted process will also find the caches
mostly, or entirely, storing data relevant to the previous process.

The more registers a CPU has, the more expensive a process switch is, although the flushing of caches, TLBs and branch prediction
history is a significant hidden cost too. The longer the timeslice, the less time is wasted switching.
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Inequality

If the operating system knows a process is waiting for input (disk, network,
human), it will not give that process any timeslices until input is ready for
it. Such a process will be marked as waiting rather than running. The
arrival of input might cause an immediate process switch to be triggered,
with the timeslice of whatever process was running being interrupted. Thus
fast response to I/O events is achieved.

The part of the operating system responsible for assigning priorities to
processes is called the scheduler. The priorities need not be equal.

The UNIX ps command shows processes waiting for input in a state of ‘wait’ or ‘sleep’. Only those in a state of ‘run’ are actively
competing for CPU cycles.

The load or load average is UNIX’s term for the number of proceses is the ‘run’ state averaged over a short period. The uptime
command reports three averages, over 1, 5 and 15 minutes on most UNIXes, and 5s, 30s, and 1 minute on Tru64.

Under UNIX the nice and renice commands can be used to decrease the scheduling priority of any process you own. The priority
cannot be increased again, unless one is root. (If you use tcsh or csh as your shell, nice is a shell built-in and is documented in
the shell man page. Otherwise, it is /usr/bin/nice and documented by man nice in the usual way.)
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Co-operate or be Pre-empted

Early forms of MacOS and Windows used co-operative multitasking. Each
process was responsible for giving back control to the scheduler, and would
retain the CPU until that point. Naughty or buggy programs could thus
prevent multitasking.

With pre-emptive multitasking, the process need know nothing of
multitasking, for it will be automatically and unavoidably suspended at the
end of its allotted time. Thus UNIX, Win9x, WinNT, and most modern OSes.

Pre-emptive multitasking needs support from the CPU. The 80386 was the first Intel processor to support this, although all Motorola’s
68000 range were capable, as are all of most modern processor ranges (SPARC, Alpha, MIPS).
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Privilege

Modern CPUs associate a privilege level with each piece of code, and support
at least two such levels. The lower is forced to use virtual addressing, cannot
access any hardware directly (video, disk, ethernet card, PCI bus, etc.), and
cannot change scheduling priorities. The higher can use physical addressing,
access all hardware, and do anything.

UNIX runs just the kernel at the higher level, with all processes running at
the lower. Whenever a process accesses disk, video or network, or allocates
memory, it must send the request via the kernel. The kernel then applies
appropriate restrictions, restricting root slightly less than other users.

The interface between the two privilege levels is carefully designed to prevent
a normal process being able to run its own code with full privilege.
Early, cheap CPUs designed for single-user computers, e.g. the 8086 and Z80, did not support this concept at all.

In any OS, the kernel should be as small as possible, for bugs in the kernel have the greatest potential for mischieve.
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Parallel Computers: the Concepts

Modern supercomputers are generally parallel computers. That is, they
have more than one CPU. So are desktops and laptops now that almost all
processors have multiple cores.

Some tasks are clearly suited to being done by a ‘farm’ of ‘workers’ working
simultaneously, whilst others are not. As two examples:

Integration of differential equation over very many timesteps. Clearly one
cannot start the 5,000th timestep until the 4,999th has been finished. The
process is fundamentally serial.

Dumb Factorisation of a large number. The independent trial factors from 2
to

√
n are readily distributed amongst multiple processors.

A simple example of parallelisation has alrady been seen in the various ‘multimedia’ instructions. This is known as SIMD parallelism:
Single Instruction Multiple Data. The parallelism discussed in this section is MIMD (Multiple. . . ).
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Scaling

How much faster does a code run when spread over more CPUs?

no. of CPUs

Sp
ee

d

From top to bottom: Linear scaling (rare!), Amdahl’s Law (see below), The
Real World

Notice that the speed is not monotonic in the number of CPUs
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Amdahl’s Law

Amdahl was a pioneer of supercomputing and an employee of IBM.

This law assume that a program splits neatly into an unparallelisable part, and
a completely parallelisable part. It claims:

tn = ts + tp/n

The total run time on n processors is the time for the serial part of the code,
plus the time the parallel part would take on a single processor divided by the
number of processors.

Consider ts = 0.2 and tp = 0.8. Then t1 = 1.0, t32 = 0.225 and t∞ = 0.2.

On 32 processors the speedup is 4.5× and the efficiency is just 14%.
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Bigger is better

Suppose ts and tp scale differently with problem size.

Assume ts scales as N and tp as N3 and consider a problem 4× as large as
before. Now

ts = 0.8 and tp = 51.2 giving t1 = 52 and t32 = 2.4.

Now the speedup on 32 processors is 21×, and the efficiency is now over
67%.

Supercomputers like big problems.
Conversely, workstations hate big problems, as their various caches become less effective and their overall efficiency falls.
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MPP and SMP

We first consider the MPP design of parallel computer. It is simple, consisting
of lots of separate single-processor computers with a fast network between
them. Each separate sub-computer, or node, has its own memory, and, in
some cases, even its own disk drive. Such a parallel computer is called a
distributed memory computer or massively parallel processor

cache

I/Omemory

CPU cache

I/Omemory

CPU

Interconnect

memory I/O

cacheCPU

memory

CPU

I/O

cache
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Breaking the Code

This arrangement is so far removed from the traditional model of a computer,
that traditional code does not run on it. The programmer must be prepared to
think in terms of multiple processors working on his program at once, each
with its own private memory, and any interprocessor communication being
explicitly requested.

Fortunately this is not nearly as hard as it might sound, and there are standard
programming models to assist. Thus one can write code for a Cray T3E, using
C or FORTRAN with MPI, and be confident that it will run, unmodified, on
an IBM SP, a Beowulf cluster, or on a machine not yet developed. One merely
has to follow the relevant standards and not be lured down the road of vendor-
specific extensions. . .

MPI (1994) and PVM (1991, now obsolete) standardised the programming model for MPPs. Before PVM, each vendor had its own
way of doing things.
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Topologies

There are many different ways of connecting nodes together, as ever governed
by cost and practicality.

Two useful ways of characterising a network are the ‘diameter’, the maximum
number of hops from one node to another, and the bisectional bandwidth, the
bandwidth between two halves of the machine.

Bandwidth Diameter
Ring 2 N/2

2D Grid
√

N 2
√

N

2D Torus 2
√

N
√

N
Hypercube N/2 log2 N
Tree 2 2 log2 N
Fat tree N/2 2 log2 N
X-bar N/2 1
3D X-bar N/2 3

The Cray T3D was a 2D torus, the IBM SP2 a fat tree, the SGI Origin2000 a form of hypercube, and the Hitachi SR2201 a 3D X-bar.

Ideally the network topology should not be apparent to the user.

289



16 Nodes. . .

Hypercube

2D mesh

2D torus

Ring (1D torus)

Tree (log 2) Fat Tree (log 4)
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Performance

Another important characteristic of the interconnect is its raw performance,
both bandwidth and latency. These are most usefully measured using a
standard interface such as MPI, and not using the hardware directly.

Ideally the time to transmit a packet is simply

latency + size / bandwidth

If size < latency × bandwidth, then the latency will dominate.

Also ideally communication between a pair of nodes is unaffected by any
other communications happening simultaneously between other nodes. Such
a network is called non-blocking.

Typical figures are 1 to 3 GB/s bandwidth and 1 to 3 µs latency. Clusters using 1GBit/s ethernet typically run at around 100 MB/s
and 20 µs.
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Parallelisation Overheads

Amdahl’s law assume that there are no overheads associated with
parallelisation. This is certainly a gross approximation.

Consider the case where each node must exchange data with every other node
at some point in the program: some sort of rearranging of an array spread over
all the nodes. E.g. an FFT

Each node must send n − 1 messages of size a/n where a is the size of the
distributed array. Even assuming that the nodes can do this simultaneously,
the time taken will be

(n − 1) ×
(
λ +

a

nσ

)
≈ nλ +

a

σ

where λ is the latency and σ the bandwidth.
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Amdahl revisited

A better form of Amdahl’s law might be

tn = t′s + tp/n + cλn

where t′s > ts.

Now tn is no longer a monotonically decreasing function, and its minimum
value is governed by λ.

This form stresses that the quality of the interconnect can be more important
than the quality of the processors.

Hence ‘cheap’ PC clusters work well up to about 16 nodes, and then their high latency compared to ‘real’ MPPs starts to be significant.
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SMP: Bused Based

SMP (Symmetric Multi Processor, Shared Memory Processor) describes
another class of multi-CPU computer.

The original, bus-based, SMP computer simply has multiple CPUs attached
to a single system bus.

CPU CPU CPU CPU

memory

The architecture is symmetric (all CPUs are equivalent), and the memory is
shared between them.

294

Shared memory

As all processors access the same main memory, it is easy for different parts
of a program executing on different processors to exchange data. One CPU
can write an array into memory, possibly from disk, possibly as the result of
a calculation, then all other CPUs can read it with no further effort.

Programming is thus simple: all the data are in one place, and there is merely
the little matter of dividing up the millions of instructions to be executed in
a long loop between the multiple eager processors – a job so simple that the
compiler can do it automatically.

Except it is not quite that simple.
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Two Heads are Better than One?

As in a conventional, single-CPU computer, the single processor typically
spends between 75 and 95% of its time waiting for memory, trying to ‘feed’
two or more CPUs from one memory bank is clearly crazy. The memory
was, and is, the bottleneck. The CPU was not. However the design is cheap,
and is now ubiquitous within a CPU, as the diagram below illustrates, and is
common in multi-socket designs.

cache cache cache cache

Core 1 Core 2 Core 3 Core 4

Shared  cache

Memory Controller
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Cache coherency

CPUCPU
A B

cache cache

memory

Processor A reads a variable from memory. Later, it reads the same variable,
which it can now get directly from its cache, without troubling the system
bus.

Only it can’t. For what if processor B has modified that variable, and
processor A needs the new value? If processor B has a write back cache,
the new value may not even have reached the main memory, with the current
value being held in processor B’s cache only.
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Snoopy caches

The trivial solution is to abandon all caches.

An easy solution is to ban write-back caches, and to ensure that each cache
‘snoops’ the traffic on the system bus, and, if it sees a write to a line it is
currently caching, it must either update itself automatically, or mark its copy
as being invalid.

These solutions severely compromise one’s cache architecture, and often
lead to a SMP machine generating more traffic to the main memory than a
uniprocessor machine would running the same code. Thus a SMP machine
can fail to reach the performance of a single-processor workstation based on
the same CPU.

With either of these solutions, the definitive data are always those in the main memory.

Even single core single CPU workstations have a lesser version of this problem, as it is common for the CPU and the disk controller
to be able to read and write directly to the main memory. However, with just two combatants, the problem is fairly easily resolved.
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More Complexity: NUMA

Most modern SMP machines are not bus based. Internally they are configured
like MPPs, with the memory physically distributed amongst the processors.
Much magic makes this distributed memory appear to be global.

This (partially) addresses the poor memory bandwidth of the bus based SMP
machines.

However, there are problems. . .

Not least that some memory is now local to a CPU, some attached to
its neighbour(s), some its next nearest neighbour(s). Access times and
bandwidths will vary depending on the relationship between the physical
location of the memory and the core on which a process is executing. Hence
the acronym Non Uniform Memory Architecture.

And magic costs money, and, in this case tends to degrade performance over an MPP, providing instead increased flexibility.

To emphasise that majic has been used to make even caches work correctly, one sometimes sees the acronym cc-NUMA, cache-
coherent NUMA. Fortunately the alternative of non cache coherent NUMA is extremely rare.
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Modern, small SMPs

Modern processors not only contain multiple cores, but also often contain the
interconnect needed to construct SMP machines of two or four sockets. (The
below diagram should really show four or six cores per CPU.)
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AMD’s HyperTransport (HT) interconnect and Intel’s rather later Quick Path Interconnect (QPI) are quite similar. In both cases a
CPU has about three links, which can connect either to other CPUs, or to I/O controllers (e.g. PCIe bus controllers). The above
diagram shows the left-hand processor using two links, and the right-hand one. Not only is the memory NUMA, but so is access to
disk and network.
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NUMA in Action

A version of the Streams benchmark written in MPI gives a measure of
memory bandwidth. The command taskset can be used to specify which
cores it runs on. Here a dual socket machine with quad core processors:

Process count cores used bandwidth
1 1 9.8 GB/s
2 1&3 12.3 GB/s
2 1&5 12.3 GB/s
2 1&2 19.6 GB/s
4 1,3,5&7 13.0 GB/s
4 1,2,3&4 24.1 GB/s
4 1,2,5&6 24.1 GB/s
8 1–8 26.0 GB/s

Conclusion: each core has maximum b/w of c.10 GB/s
each socket has maximum b/w of c.13 GB/s

This was a dual socket 2.4GHz quad core Intel ‘Nehalem’. Each processor has a 24 byte wide bus to DDR3/800 memory, so
theoretically 19.2GB/s per socket. It seems that cores 1, 3, 5 & 7 are on one CPU (socket), and the even numbers on the other.
Note that here the performance gain in moving from one process to eight on an eight core machine for a code with no inter-process
communication is a factor of merely 2.7. The gain from using one core per socket to all four is a factor of just 1.3.
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The Consequences of NUMA

If a processor is mangling an array, it now matters crucially that that array
is stored in the memory on directly attached to that processor, and not on
memory the other side of the machine. Getting this wrong can drop the
performance by a factor of three or more instantly.

Whereas with MPP all memory accesses are guaranteed to be local, as one
cannot access remote memory except by explicit requests at the program
level, with SMP the compiler has many ways of getting things wrong.

for(i=0;i<10000000;i++)
t+=x[i]*y[i];

Consider this on a two processor NUMA machine. If the code is split so
that each processor stores the first 5000000 elements of each array in its
directly attached memory, and does the first half of the loop, then optimal
performance is obtained. If the whole of x is stored in the memory local to
one processor, the whole of y the other, then much reduced performance will
result.
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MESI solutions for caches

A typical SMP has extra bits associated with each cache line, which mark it
as being on one of four states:

• Modified (i.e. dirty) – this state exists for uniprocessor machines too
• Exclusive (in no other cache)
• Shared (possibly in other caches too)
• Invalid

Modified implies exclusive, and a line must be exclusive before it can be
modified.

A line fill for a read ensures that no other cache has the line modified or
exclusive, then loads the line marked as ‘shared.’ A fill for a write also
ensures than any caches with that line shared mark it invalid. In either case
any cache with it ‘modified’ (there can be only one) writes it back to memory.
Thus a line can be:
In no caches
In one cache and marked as modified (or exclusive)
In one or more caches and modified (or exclusive) in none
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More Messes

It may seem as though ensuring that each thread works on its own data, and
rarely exchanges data with other threads, is sufficient to ensure performance.
It isn’t, for there is the overhead of checking to ensure that one core is not
trying to update data held in another core’s cache. All modern computers do
this in hardware. Even if the compiler knows that two data items are distinct,
the hardware will still check, and may need to do so as a thread may migrate
from one core to another during its execution.

One method of checking simply broadcasts details of all line fills to all cache
controllers, and the fill does not progress until the other controllers have had
an opportunity to reveal that they held the line. The amount of broadcast
traffic tends to scale as the square of the number of caches, so this works
poorly for large numbers of CPU – in practice, beyond about four.
A significant improvement uses a ‘directory’. A directory entry is associated with each line in memory, and records which caches
have copies of the line. Then a fill need simply check the directory, contact only those caches listed (probably none), and proceed,
updating the directory as it does so. In practice a directory which only provides partial coverage of the main memory can be used,
falling back to broadcasting when the directory is incomplete.

Secondly, the important concept is not the sharing of data, but the sharing of cache lines. If two threads attempt to write to adjacent
items in the same cache line, this is no better from the point of view of copying data around in a MESI system than if they were
writing to the same element. This is sometimes called ‘false sharing’.
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Broadcast Failures

In 2006 I had the fun of testing an 8-socket Opteron server with dual
core processors. The board design was cheap, and not quite up to AMD’s
recommendations, so the following results are not a fair reflection on
AMD. . .

The measured bandwidth using the Streams benchmark was 2.0GB/s for a
single process, peaked at 8.0GB/s for six, and 7.4GB/s for sixteen. Why am
I convinced that this reflects a severe broadcast problem? The server design
allowed me to remove physically four of the CPUs. The numbers I then
measured were 4.4GB/s for a single process, and 16.3GB/s for eight.

Simply having the extra four CPUs present, and informed of what was
happening, even if one did not use them, halved the preformance of this
machine for Streams! A single process memory latency benchmark moved
from a poor 190ns to a very poor 290ns just by having the extra CPUs present.

Even Linpack, normally forgiving of poor memory subsystems, managed 26.4 GFLOPS running on eight cores (four CPUs present),
and only 22 GFLOPS on 16 cores (8 CPUs present) with an array size of 40,000. The cores had a theoretical peak performance of
4.4 GFLOPS each.
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Sharing, True and False

Naturally things get worse if multiple processors really are trying to update
the same memory location. Not only does this need detecting, but once
detected, it needs action to ensure that correct behaviour is observed.
Corrective action tends to involve the automatic transfer of cache lines
between CPUs. Not fast, as lines are big.

However, the important concept is not the sharing of data, but the sharing
of cache lines. If two threads attempt to write to adjacent items in the same
cache line, this is no better from the point of view of copying data around
in a MESI system than if they were writing to the same element. This is
sometimes called ‘false sharing’.
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A False Sharing Example

#pragma omp parallel for private(j,ptr1,ptr2)
for(i=0;i<=1;i++){

if(i==0){
ptr1=line;
ptr2=line+2*OFFSET;

}
else{

ptr1=line+OFFSET;
ptr2=ptr1+3*OFFSET;

}
for(j=0;j<(1<<28);j++){

*ptr1+=*ptr2;
}

}

The above takes 2s to execute in a serial fashion on a certain dual core
machine with a particular compiler. In parallel, it takes 1s. Unless OFFSET
is one or two, in which case it takes over 12s in parallel, and still 2s in serial.
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Inclusive Levels

There are three common approaches to a cache hierarchy:

• Data in one level is guaranteed to be in no other level.

• Data in level n is guaranteed to be in all levels > n.

• Neither of the above guarantees

Intel likes the second scheme, inclusive caches. In response to cache
coherency requests, it need only check the last level cache, for if the data
are not there, they can be in no other level.

AMD likes the first, exclusive caches, for the total amount of data cached is
then the sum of the sizes of the levels, not simply the size of the last.

308

Programming Example

Consider doing an enormous dot product between two arrays previously set
up. The SMP code might look as follows:

! Let’s hope the compiler optimises
! this loop properly

t=0.0
do i=1,100000000

t=t+a(i)*b(i)
enddo

Easy to write, but little control over whether it is effective!

To be fair, HPF (High Performance Fortran) and OpenMP (a set of directives to Fortran and C) permit the programmer to tell an SMP
compiler which sections of code to parallelise, and how to break up arrays and loops. One day I might meet someone using such a
language for real research.
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Programming, MPP

! Arrays already explicitly distributed
! Do the dot product for our bit

t_local=0.0
do i=1,nmax ! nmax approx 100000000/ncpus

t_local=t_local+a(i)*b(i)
enddo

! Condense results

call MPI_AllReduce(t_local,t,1, &
MPI_DOUBLE_PRECISION, MPI_SUM, &
MPI_COMM_WORLD)

(Those MPI calls are not half as bad as they look once one is used to them!)

All the variables are local to each node, and only the MPI call causes one (t) to contain the sum of all the t local’s and to be set
to the same value on all nodes. The programmer must think in terms of multiple copies of the code running, one per node.
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The Programming Differences

With MPP programming, the programmer explicitly distributes the data
across the nodes and divides up the processing amongst the nodes. The
programmer can readily access the total number of CPUs and adjust the
distribution appropriately.

Data are moved between nodes by explicitly calling a library such as MPI.

With SMP, the compiler tries to guess how best to split the task up amongst
its CPUs. It must do this without a knowledge of the physical problem being
modeled. It cannot know which loops are long, and which short.

Artificial intelligence vs human intelligence usually produces a clear victory
for the latter!

The MPP model will work, often quite efficiently, on an SMP machine. The
converse is not true.
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Modern, large MPPs

Modern MPP designs join SMP nodes like the above. Such a machine is
awkward to program optimally, as one has both internode and intranode
parallelism to address, with two very different interconnect speeds. A
program which is merely correct, but not necessarily optimal, can ignore the
SMP nature of the nodes, and consider the machine to be an MPP of all the
cores.
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Differing Speeds

The link between a CPU and its directly-attached memory is typically a
128 bit 1333MHz DDR3 bus. Theoretical bandwidth 21GB/s, unidirectional.

The link between CPUs is typically 16 bit 3.2GHz HyperTransport. The
bandwidth is 6.4GB/s, supporting traffic in both directions simultaneously.

The link from the I/O controller to the interconnect controller is typically 16
bit PCIe 2.0. This has a theoretical bandwidth of 8GB/s, and is bidirectional.

The interconnect itself is often quad data rate Infiniband 4X. This has a
theoretical bandwidth of 4GB/s, and is bidirectional.

Measured latencies vary more widely, from under 0.1µs for accessing
memory within a node, to just over 1µs for an MPI transfer between nodes.
The numbers above would be pretty similar if they were based on Intel’s QPI nodes, rather than AMD’s HT nodes.

Infiniband is not the only possible inter-node interconnect. It is the most common of the specialised interconnects, other examples
including CrayLink and Myrinet.

The cheap and nasty option is simply to use 1GBit/s ethernet, for a theoretical bandwidth of 0.1GB/s and a latency of around 20µs.

(All data current in 2011.)
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Does Speed Matter?

The current trend seems to be for nodes to be increasing in internal
bandwidth, and in peak MFLOPS, rather faster than (cheap) inter-node
interconnects are increasing in speed. The first MPP I used seriously,
a Hitachi SR2201 installed in 1997, had a per node performance of
300MFLOPS, and an interconnect peak bandwidth of 300MB/s, so one byte
of interconnect bandwidth per FP operation.

A current node would probably have two processors, each of six cores
running at 2.5GHz and capable of four FP ops per clock cycle. With
QDR Infiniband 4X this is one byte of interconnect bandwidth per 30 FP
operations.

For some algorithms this is still so much more than is needed that one need
not care. For others, careful division of one’s code to reflect the different
performance of intra-node and inter-node transfers can be beneficial (if time-
consuming). One approach is to use OpenMP within a node, and MPI
between nodes. Another is to attempt to get topology information into the
MPI system.
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Multithreading

Whether in a uni- or multi-processor computer, the CPU is often used very
inefficiently, with most of its functional units idle waiting for memory to
respond or data dependencies to be resolved. It is rare for a four-way
superscalar CPU to be able to issue four instructions simultaneously.

Conventional multitasking is not the answer. This software-driven process-
switching takes thousands of clock cycles, so is useful for latencies caused
by disk drives, networks and humans.

However, there are rarely data dependencies between processes, so in some
sense multitasking is the answer.

A multithreading processor gains multiple banks of registers, one per ‘thread’
(process) which will be run simultaneously. These processes share access to
the functional units, caches, instruction decoding logic, etc.
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SMT

There are different ways of achieving multithreading. Some change thread
every clock-cycle, whereas the more advanced Simultaneous MultiThreading
allows instructions from different threads to be issued in the same cycle.

The extra logic on the CPU need to keep track of a modest number of threads
is very small, increasing the CPU size by less than 10%. The gain is zero if the
computer is only ever running a single thread, but sometimes the throughput
can increase by over half when two threads are run.

However, multithreading, or hyperthreading as Intel calls it, gives one no
more memory bandwidth, no more functional units, and no more caches.
A processor supporting two threads generally appears to the user as two
processors, but these virutal processors will share the caches, functional
units and memory controller that were dedicated to a single core. For most
scientific codes there is no gain to be had here.
Intel’s ‘Pentium4 with Hyperthreading’ (2002) supported two threads per processor (core), but instructions from different threads
could not be dispatched in the same clockcycle. Intel’s Core and Core 2 processors abandoned hyperthreading, but the current
Core i5/i7 line has reintroduced it, improved so that instructions from different threads can be dispatched on the same cycle.
Processors from IBM and Sun also support two threads per core. Sun’s UltraSPARC T1 series supports up to eight threads per
core. AMD has yet to offer any form of hyperthreading. Gains tend to be low in tightly coupled parallel jobs – if all threads do the
same thing at the same time, then usually one part of the CPU is overloaded, and the rest idle, with or without SMT. SMT works
better when different threads are making different demands on the CPU.
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